跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/04 23:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:方思文
研究生(外文):Szu-WenFang
論文名稱:含Carbazole芴衍生物的合成、鑑定與電致發光元件電洞傳輸層之應用
論文名稱(外文):Fluorene Derivative Containing Carbazole Terminals: Synthesis, Characterization and Hole-transporting Applications in OLEDs
指導教授:陳雲陳雲引用關係
指導教授(外文):Yun Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:107
中文關鍵詞:有機發光二極體電洞傳輸層
外文關鍵詞:OLEDfluorenecarbazole
相關次數:
  • 被引用被引用:3
  • 點閱點閱:455
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
有機發光二極體(OLEDs)是藉由電子、電洞在發光層相遇,再結合而產生發光,因此電子、電洞傳輸速率之平衡對發光效率有很大的影響。Alq3為一常見的OLEDs綠光材料,因其有高的量子效率,常做為發光層,此外,Alq3也具有好的電子傳輸特性,亦為常見的電子傳輸材料。但其電洞注入有較大的能障(0.7 eV),為了提升電洞注入,常在陽極和Alq3間加入電洞傳輸層,目前最常見的電洞傳輸層為NPB,但NPB只能用真空蒸鍍的方式成膜,耗費成本,故開發可用濕式製程成膜的電洞傳輸材料將有利元件製作及降低成本。本研究以Wittig reaction合成以芴(fluorene)為核心,carbazole為末端基之化合物(FC),並且以紅外光譜(FT-IR)、核磁共振光譜(1H-NMR、COSY、NOESY)、質譜儀(MS)、元素分析儀(EA)鑑定其結構,並探討其熱性質、電化學性質、光學性質及表面成膜性質,最後製備多層電激發光元件探討其發光特性。
FC分子以芴為核心,並經由Wittig reaction產生共軛鍵,其結構不對稱且碳4位置上的carbazole和芴平面之間形成不共平面的扭角,阻礙分子堆疊,使得FC有玻璃轉移溫度(62 oC),但沒有明顯的熔點和結晶溫度。薄膜態UV/Vis最大吸收和螢光光譜(PL)最大放光分別為409 nm和454 nm,FC分子結構具有carbazole基團,能有效提升其HOMO能階(-5.21 eV),降低電洞由PEDOT:PSS注入能障。FC (Mw = 1160.7)可利用簡易旋轉塗佈的方式製備均勻薄膜,薄膜表面的粗糙度(rms roughness = 0.96 nm)和傳統電洞傳輸材料NPB相當。FC作為電洞傳輸層元件結構為[ITO/PEDOT:PSS/HTL(25 nm)/Alq3(50 nm)/LiF (0.5 nm)/Al (100 nm)]最大亮度和最大電流效率分別為21400 cd/m2、3.20 cd/A,CIE 1931色度座標為(0.30, 0.55),電流效率高於以NPB為電洞傳輸層之元件效率(2.58 cd/A)。研究結果顯示,FC具發光及電洞傳輸功能,且可以溼式塗佈方式加工,具有光電材料應用的潛力。

An efficient trifunctional hole-transporting material 2,4,7-tri[2-(9-hexylcarbazole)ethenyl]-9,9-dihexylfluorene (FC), containing fluorene core and terminal carbazoles, has been synthesized by Wittig reaction. The FC has been fully characterized using FT-IR, 1H-NMR, mass spectrometry, elemental analysis, DSC, optical spectra, cyclic voltammetry, and AFM. Finally, it was employed as hole-transporting layer (HTL) to fabricate OLEDs to evaluate its potential application in optoelectronic devices.
From the DSC analysis, the glass transition temperature (Tg) of FC was observed at 62 ℃, but no obvious Tm and Tc was detected. The asymmetric structure of FC and the twist of 4-carbazole relative to the fluorene plane effectively prevent close packing between the molecules. In film state, it showed absorption and photo luminescence (PL) peaks at 409 nm and 454 nm, respectively. The carbazole terminals were intentionally incorporated to increase hole-transpoting ability and to decrease barrier height of hole injection. Furthermore, FC can be employed as hole-transporting layer (HTL) to increase hole injection. For instance, when fabricated as multi-layer OLED [ITO/PEDOT:PSS/ HTL(25 nm)/Alq3(50 nm)/LiF(0.5 nm)/Al(100 nm)], its maximum brightness (21400 cd/m2) and current efficiency (3.20 cd/A) were superior to those using NPB as hole-transpoting layer. In addition, homogeneous FC film was readily prepared by simple wet processes (spin-coating), while NPB film must be deposited by vacuum vapor deposition. Our results indicate that the FC is a promising optoelectronic material which is readily processed by wet methods as spin-coating.

中文摘要 I
英文摘要 II
誌 謝 III
表目錄 VI
流程目錄 VI
圖目錄 VII

第一章 序論1
1-1 前言 1
1-2 有機發光二極體之發展歷史 2
1-3 理論基論5
1-3-1 有機共軛導電材料5
1-3-2 螢光理論7
1-3-3 影響螢光強度的因素10
1-3-4 分子間激發態 12
1-4 元件發光原理及結構14
1-4-1 發光原理14
1-4-2 元件結構15
1-5 影響OLEDS發光效率的因素 19
1-6 有機發光二極體未來研究方向20

第二章 文獻回顧21
2-1 可濕式製程的小分子材料21
2-2 芴(FLUORENE)24
2-3 電洞注入/電洞傳輸材料(HIL/HTL)26
2-4 發光層及電子傳輸層—ALQ3 31
2-5 研究動機33

第三章 實驗內容34
3-1 實驗裝置與設備34
3-2 鑑定儀器36
3-3 物性及光電特性測量儀器37
3-4 藥品及材料41
3-5合成步驟與鑑定結果43
3-5-1單體合成44
3-5-2合成反應機構48
3-6 有機發光二極體元件製作50
3-6-1 ITO玻璃之清洗50
3-6-2 電洞注入層和電洞傳輸層膜的製作51
3-6-3 發光層和陰極蒸鍍51
3-6-4 元件量測53

第四章 結果與討論54
4-1 單體結構之合成與鑑定55
4-1-1 核磁共振光譜(NMR)55
4-1-2 紅外光譜(FT-IR)57
4-1-3 質譜儀(MS)58
4-1-4 元素分析儀(EA)58
4-2 熱性質分析76
4-2-1 熱重分析(TGA)76
4-2-2 微差式掃描熱卡計分析(DSC)77
4-3 光學性質80
4-3-1 UV/Vis吸收光譜和PL發光光譜80
4-4 電化學性質探討83
4-4-1 FC電化學性質探討83
4-5 成膜性探討87
4-6 有機發光二極體元件性質探討92
4-6-1 元件結構能階 92
4-6-2 電流密度(J)-電壓(V)-亮度(L)特性93
4-6-3電激發光光譜(EL)94
4-6-4 Hole-only元件95
4-6-5 和文獻中NPB比較95

第五章 結論102
參考文獻103

[1]M. Pope, H. Kallmann, P. Magnante, J. Chem. Phys., 38, 2042 (1963).
[2]C. W. Tang, S. A.Vanslyke, Appl. Phys. Lett., 51, 913 (1987).
[3]J. H. Burroughes, D. D. C. Bradly, A. R Brovn, R. N. Morks, K. Mackay, R. H. Friend, P. L. Burmond, A. B. Holmes, Nature., 374, 539 (1990).
[4]段啟聖,化工資訊與商情,第26期,P.40,民國94年8月.
[5]郭昭輝,塑膠資訊雜誌,民國91年10月.
[6]D. A. Skoog, E. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, 5th edition, Saunders College Publishing (1997).
[7]L. Akcelrud, Prog. Polym. Sci., 28, 875 (2003).
[8]T. Q. Nguyen, I. B. Martini, J. Liu, B. J. Schwartz, J. Phys. Chem. B, 104, 237 (1999).
[9]黃孝文, 陳雲,化工資訊月刊,第15卷第3期,P.8,2001年.
[10]葉昆明,陳雲,科學發展,第385期,P.58,2005年1月.
[11]陳信宏,陳雲,中工高雄會刊,第3期,P.72,2006年.
[12]楊素華,光訊雜誌,第98 期,P.29,2002 年10 月.
[13]M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, Z. V. Vardeny, Nature., 409, 494 (2001).
[14]陳金鑫,光訊雜誌,第65期,P.12,民86年4月.
[15]K. T. Wong, R. T. Chen, F. C. Fang, C. Wu, Y. T. Lin, Org. Lett., 10, 1979 (2005).
[16]G. Klaerner, R. D. Miller, Macromolecules, 31, 2007 (1998).
[17]Q. Liu, W. Liu, B. Yao, H. Tian, Z. Xie, Y. Geng, F. Wang, Macromolecules, 6, 1851 (2007).
[18]S. H. Lee, T. Nakamura, T. Tsutsui, Org. Lett., 13, 2005 (2001).
[19]Q. D. Liu, J. Lu, J. Ding, M. Day, Ye. Tao, Y. Chi, Adv. Funct. Mater., 17, 1028 (2007).
[20]D. Katsis, J. J. Ou, S. W. Culligan, S. H. Chen, L. J. Rothberg, Chem. Mater., 14, 1332 (2002).
[21]Z. Yang, B. Xu, J. He, L. Xue, Q. Guo, H. Xia, W. Tian, Org. Electron., 10, 954 (2009).
[22]Y. H. Kim, D. C. Shin, H. You, S. K. Kwon, Polymer, 46, 7969 (2005).
[23]F. Wang, J. Luo, J. W. Chen, F. Huang, Y. Cao, Polymer, 46, 8422 (2005).
[24]W. C. Wu, C. L. Liu, W. C. Chen, Polymer, 47, 527 (2006).
[25]Y. Yang, Q. Pei, A. J. Heeger, J. Appl. Phys., 79, 934 (1996).
[26]U. Scherf, E. J. W. List, Adv. Mater., 14, 477 (2002).
[27]U. Lemmer, S. Heun, R. F. Mahrt, U. Sgherf, M. Hopmeier, U. Siegner, E. O. Gobel, K. Mullen, H. Bassler, Chem. Phy. Lett., 240, 373 (1995).
[28]V. N. Bliznyuk, S. A. Carter, J. C. Scott, G. Klarner, R. D. Miller, D. C. Miller, Macromolecules, 32, 361 (1999).
[29]G. Zeng, W. L. Yu, S. J. Chua, W. Huang, Macromolecules, 35, 6907 (2002).
[30]E. J. W. List, R. Guentne, P. S. Freitas, U. Scherf, Adv. Mater., 14, 374 (2002).
[31]C. Liu, W. L. Yu, Y. H. Lai, W. Huang, Chem. Mater., 13, 984, (2001).
[32]V. P. Barberis, J.A. Mikroyannidis, J. Polym. Sci. Part A: Polym. Chem., 11, 3556 (2006).
[33]M. Kreyenschmidt, G. Klärner, T. Fuhrer, J. Ashenhurst, S. Karg, W. D. Chen, V. Y. Lee, J. C. Scott, R. D. Miller, Macromolecules, 31, 1099 (1998).
[34]G. Klarner, J. I. Lee, M. H. Davey, R. D. Miller, Adv. Mater., 110, 993 (1998).
[35]G. Klaerner, R. D. Miller, Macromolecules, 31, 2007 (1998).
[36]陳金鑫,黃孝文 有機電激發光材料與元件; 五南, 2005年.
[37]J. Li, D. Liu, Y. Li, C. S. Lee, H. L. Kwong, S. Lee, Chem. Mater., 17, 1208 (2005).
[38]J. Li, C. Ma, J. Tang, C. S. Lee, S. Lee, Chem. Mater. 17, 615 (2005).
[39]Q. X. Tong, S. L. Lai, M. Y. Chan, K. H. Lai, J. X. Tang, H. L. Kwong, C. S. Lee, S. T. Lee, Chem. Mater., 19, 5851 (2007).
[40]A. Thaengthong, S. Saengsuwan, S. Jungsuttiwong, T. Keawin,T. Sudyoadsuk, V. Promarak, Tetrahedron Lett., 52, 4749 (2011).
[41]S. W. Cha, J.-I. Jin, Synth. Met., 143, 97 (2004).
[42]O. Usluer, S. Demic, D. A. M. Egbe, E. Birckner, C. Tozlu,A. Pivrikas, A. M. Ramil, N. S. Sariciftci, Adv. Funct. Mater., 20, 4152 (2010).
[43]E. N. Harvey, “History of Luminescence, The American Philosophical Society, Philadelphia, USA (1957)
[44]D. C. Freeman, C. E. White, J. Am. Chem. Soc.,78, 2678 (1956).
[45]C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett., 51, 913 (1987).
[46]K. Mori, Y. Sakaguchi, Y. I. Ketsu, and J. Suzuki, Displays, 22, 43 (2001).
[47]O. Prache, Displsys, 22, 49 (2001).
[48]C. w. Tang, S. A. Vanslyke, Appl. Phys. Lett., 51, 913 (1987).
[49]C. Schmitz, P. Posch, M. Thelakkat, H.W. Schmidt, Macromal. Symp., 154, 209 (2000).
[50]L.F. Cheng, L.S. Liao, W.Y. Lai, X.H. Sun, N.B. Wong, C.S. Lee, S.T. Lee, Chem. Phys. Lett., 319, 418 (2000).
[51]J. F. Rusling, S. L. Suib, Adv. Mater., 6, 922 (1994).
[52]Vilsmeier, A. Haack, Ber., 60,119 (1937).
[53]E. Campaigne, W. L. Archer, Org. Synth., 4, 331 (1963).
[54]O. Meth-Cohn, S. P. Stanforth, in Comprehensive Organic Synthesis (B. M.Trost, I. Fleming, Eds.), Oxford, Vol. 2, Chap. 3.5 (1991).
[55]http://www.chem.ucalgary.ca/courses/351/Carey5th/Ch17/ch17-3-2-3.html
[56]W. Zhao, T. Cao, J. M. White, Adv. Funct. Mater., 14, 783 (2004).
[57]C. Xia, R. C. Advincula, Macromolecules, 34, 5854 (2001).
[58]V. Promarak, M. Ichikawa, T. Sudyoadsuk, S. Saengsuwan, T. Keawin, Opt. Mater., 30, 364 (2007).
[59]Q. Liu, W. Liu, B. Yao, H. Tian, Z. Xie, Y. Geng, F. Wang, Macromolecules, 40, 1851, (2007).
[60]S. H. Jin, Y. K. Sun, B. H. Shon, W. Kim, Eur. Polym. J., 36, 957 (2000).
[61]M. M. Alam, C. J. Tonzola, S. A. Jenekhe, Macromolecules, 36, 6577 (2003).
[62]“Taiwan-US-Canada Sci-Tech Newsbrief “, 10, No.4 (2002)
[63]H. Tsuji, C. Mitsui, L. Ilies, Y. Sato, E. Nakamura, J. Am. Chem. Soc., 129, 11902 (2007).
[64]H. F. Yang, W. F. Su, Y. Chen, New J. Chem. , 35, 1219 (2011).
[65]C. W. Ko, Y. T. Tao, Synth. Met., 126, 37 (2002).
[66]D. S. Leem, H. D. Park, J. W. Kang, J. H. Lee, J. W. Kim, J. J. Kim, Appl. Phys. Lett., 91, 011113 (2007).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top