跳到主要內容

臺灣博碩士論文加值系統

(3.235.60.144) 您好!臺灣時間:2021/07/27 00:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陸瑞東
研究生(外文):Juei-DongLu
論文名稱:以十二烷基胺修飾之碳材及海膽型碳材為質子交換膜燃料電池觸媒載體之研究
論文名稱(外文):Study on the performance of proton exchange membrane fuel cell with dodecylamine-modified carbon and urchin-like carbon as the catalyst supports
指導教授:楊明長
指導教授(外文):Ming-Chang Yang
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:189
中文關鍵詞:質子交換膜燃料電池奈米碳管十二烷基胺海膽型碳材
外文關鍵詞:Proton exchange membrane fuel cellnanotubedodecylamineurchin-like carbon
相關次數:
  • 被引用被引用:4
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在質子交換膜燃料電池研究上,為了增加觸媒的電化學活性面積,高表面積的碳材可作為觸媒的載體。許多研究也顯示碳材載體的特性會影響觸媒的電化學特性,因此擁有特殊官能基和高導電度的碳材載體,不但可以增加白金觸媒的分散性,也可以幫助電子的傳遞,提升電池的放電效率。本研究成功地製備出以十二烷基胺修飾的碳材和以海膽型碳材作為陰極觸媒的載體,並將其應用在質子交換膜燃料電池上。利用XRD (X-ray diffraction)分析所得之觸媒的晶粒大小、利用TEM (transmission electron microscopy)觀察其粒徑大小、利用EDS (energy dispersive spectroscopy)分析觸媒的組成、利用TGA (Thermogravimetric analysis)分析Pt-Ru觸媒在碳材上的負載量。利用三極式膜電極組所測得的陰極極化曲線進行分析,獲得氧氣還原之塔弗斜率及陰極之阻抗;利用交流阻抗分析,獲得電荷轉移電阻、歐姆阻抗。本研究發現極化曲線達到完全濃度極化(complete concentration polarization)之前,極化曲線會受到質傳所造成的濃度過電壓的影響,因此我們定義陰極極化曲線獲得的陰極阻抗與交流阻抗分析歐姆阻抗的差值,為質傳阻抗。本研究將探討不同碳材載體對陰極電極的影響。
第一個部份先利用有機合成的方式將疏水性十二烷基胺修飾在碳材上,再利用甲醇還原的方式將Pt-Ru觸媒製備在此十二烷基胺修飾的碳材上,使具有很好的觸媒分散性。將此十二烷基胺修飾的觸媒混合未修飾的觸媒,在觸媒層中會形成反應物氣體輸送的孔道,以利氣體擴散至活性點。以此複合觸媒作為陰極觸媒,最佳的混合比例為20~40%。在此混合比例下電池其最大功率密度高出商用觸媒E-TEK (125 mW cm−2)約29%。相較於一般碳材載體,40%複合式觸媒具有較低的質傳阻抗,因此獲得高的電池放電效能。
第二部份首先在中孔洞碳材上,利用含浸硝酸鐵並於高溫下還原Fe觸媒;XC-72碳材上利用熱裂解法還原製備Co觸媒。接著利用氣相沉積的方式,在沉積有Fe觸媒的中孔洞碳材和沉積有Co觸媒的XC-72碳材上成長奈米碳管,製備成海膽型碳材。Pt-Ru觸媒再分別以甲醇還原和微乳化法製備於XC-72與中孔洞海膽型碳材上。海膽型結構的碳材作為觸媒載體,上面的奈米碳管直接連接於碳材上,可以增加觸媒層中電子的導電度,而對於XC-72與中孔洞海膽型觸媒來說,碳管成長時間分別為40和60分鐘時,觸媒可獲得最高的最大放電功率,XC-72與中孔洞海膽型觸媒的最大放電功率分別高出E-TEK觸媒約43%和59%。海膽型觸媒皆具有較高的電子導電度,此外中孔洞海膽型觸媒具有較低的質傳阻抗,因此獲得較高的電池放電效能。

In order to increase the catalyst electrochemical surface area, carbon with a high surface area has been a catalyst support in proton exchange membrane fuel cells (PEMFCs). Many studies have revealed that the properties of the carbon support can greatly affect the electrochemical properties of the catalyst. It has been reported that a carbon support with special function group and good conductivity can not only provide a high dispersion of Pt nanoparticles, but also facilitate electron transfer, resulting in better performance. In this study dodecylamine modified carbon and urchin-like carbon were successfully prepared and used as cathode catalysts in PEMFC.
The grain size, particle size, atomic composition and metal loading were analyzed by XRD (X-ray diffraction), TEM (transmission electron microscopy), EDS (energy dispersive spectroscopy) and TGA (Thermogravimetric analysis), respectively. By using three-electrode membrane electrode assembly, the curve fitting of polarization curve was used to study the Tafel slopes and cathode resistance, at medium range of current densitiy, on cathode; and AC-impedance spectra was also used to study the charge transfer and ohmic resistance on cathode. Before complete concentration polarization, the polarization curves contained the concentration overpotential at medium current density region. Therefore, the difference between the cathode resistance and the ohmic resistance was defined as mass transfer resistance in this study.
In the first part, hydrophobic dodecylamine modified carbon supports were prepared by organic synthesis. Well-dispersed Pt-Ru nanoparticles, with a narrow size distribution, were then deposited on the dodecylamine modified carbon supports by methanol reduction. These dodecylamine modified catalysts were separately mixed with either a commercial catalyst or unmodified catalyst to provide hydrophobic channels to convey the reaction gas to the active sites in the catalyst layer. The best cathode composite catalyst, containing 20–40 wt% of modified-catalyst, gave approximate 29% increase in the maximum power density, comparing to E-TEK catalyst (125 mW cm−2). The composite catalyst, containing 40 wt% of modified-catalyst, showed lower mass transfer resistance in cell performance.
In the second part, the Fe catalyst was first prepared on the mesoporous carbon by immersion process followed by a high temperature reduction; the Co catalyst was prepared on XC-72 carbon by thermal decomposition reduction. Urchin-like structured carbons were prepared by growing carbon nanotubes grown on either Fe catalyst-seeded mesoporous carbon or Co catalyst-seeded XC-72 carbon by chemical vapor deposition. The Pt-Ru nanoparticles were then deposited on the urchin-like XC-72 carbon and urchin-like mesoporous carbon by methanol reduction and microemusion method, respectively. It was believed that the Urchin-like structure, comprising intimately connected carbon and carbon nanotubes, offered conductivity advantages as a catalytic support for PEMFCs. Forty and sixty of CNT growth time for urchin-like XC-72 catalyst and urchin-like mesoporous catalyst, respectively, gave the highest maximum power density. In comparison with the commercial E-TEK catalyst, the urchin-like XC-72 catalyst and urchin-like mesoporous catalyst showed higher maximum power densities by 43% and 59%, respectively. The urchin like catalysts revealed good electron conductivity in cell performance. Moreover, the urchin-like catalyst (MC) showed lower mass transfer resistance in cell performance.
摘要 I
Abstract III
致謝 VI
目錄 VIII
表目錄 X
圖目錄 XII
第一章 序論 1
1-1. 燃料電池簡介 3
1-2. 燃料電池各國發展情況 7
1-3. 質子交換模燃料電池的發展方向 9
1-4. 質子交換膜燃料電池 12
1-4-1. 原理 12
1-4-2. 陽極電極觸媒材料 30
1-4-3. 質子交換膜 32
1-4-4. 陰極觸媒對氧氣還原文獻回顧 34
1-4-5. 觸媒載體 43
1-5. 研究目的 57
1-6. 論文內容 61
第二章 實驗藥品及步驟 65
2-1. 實驗藥品與儀器 65
2-2. 十二烷基胺修飾之碳材作為燃料電池觸媒載體 67
2-2-1. 十二烷基胺修飾碳材之製備 67
2-2-2. Pt-Ru/C觸媒的製備 67
2-2-3. 電池氣體擴散電極的製備 68
2-2-4. 參考電極的製備 68
2-2-5. 三極式膜電極組(MEA)的製備 69
2-2-6. 單電池極化曲線分析 69
2-2-7. 單電池交流阻抗分析 72
2-2-8. 觸媒氧氣還原反應分析 74
2-3. 海膽型碳材作為燃料電池觸媒載體 76
2-3-1. 海膽型中孔洞碳材之製備 76
2-3-2. 海膽型XC-72碳材之製備 76
2-3-3. Pt-Ru/C觸媒於海膽型中孔洞碳材之製備 77
2-3-4. Pt-Ru/C觸媒於海膽型XC-72碳材之製備 78
2-3-5. 電池氣體擴散電極的製備 79
2-3-6. 三極式膜電極組(MEA)的製備 79
2-3-7. 單電池極化曲線分析 80
2-3-8. 交流阻抗分析 80
2-3-9. 電化學活性面積分析 80
2-3-10. 加速老化測試 82
2-4. 碳材與觸媒特性分析 83
2-4-1. 接觸角分析 83
2-4-2. 穿透式電子顯微鏡分析 83
2-4-3. 掃瞄式電子顯微鏡與能譜儀分析 83
2-4-4. X射線繞射儀分析 84
2-4-5. TGA熱重量分析 84
2-4-6. 碳材吸附面積分析 84
第三章 十二烷基胺修飾之碳材作為燃料電池觸媒載體 85
3-1. 碳材性質的分析 85
3-1-1. X射線光電子能譜的分析 85
3-1-2. 碳材親疏水性的分析 87
3-1-3. 熱重量損失分析 87
3-1-4. 碳材吸附面積分析 90
3-2. 觸媒特性的分析 90
3-3. 觸媒氧氣還原反應之性質 96
3-4. 陰極電極中觸媒組成的探討 101
3-5. 交流阻抗分析之探討 111
3-6. 電解質電阻之測量與分析 114
3-7. 複合觸媒之穩定性測試 118
3-8. 小結 121
第四章 海膽型碳材作為燃料電池觸媒載體之研究 122
4-1. 碳材性質的分析 122
4-2. 觸媒特性的分析 137
4-3. 碳管成長時間對電池效能的探討 143
4-4. 交流阻抗分析 148
4-5. 陰極觸媒效能之比較 155
4-6. 海膽型觸媒之加速老化測試 163
4-7. 海膽型觸媒於陽極電極之應用 167
4-8. 小結 172
第五章 綜合討論 174
參考文獻 177
1.林昇佃、余子隆、張幼珍、翁芳柏、李碩仁、林育才、吳和生、魏榮宗、林修正、賴子珍、曾盛恕、詹世弘,燃料電池:新世紀能源,滄海圖書,2004.
2.EG&G Technical Services, Inc., Fuel Cell Handbook, National Energy Technology Laboratory, Morgantown, 2004.
3.行政院國家科學委員會、台灣科技大學. 我國氫能科技發展規劃期末成果報告書(2010)
4.U.S. DOE, Hydrogen, Fuel Cells ad Infrastructure Technologies Prgram Multi-Year Research, Development and Demonstration Plan, EERE (2005).
5.經濟部能源局, 2010年能源產業技術白皮書.
6.行政院經濟建設委員會. 日本燃料電池及氫能源發展考察報告(2009).
7.E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy: Theory, Experiment and Application, p. 6, Wiley-Interscience, New York(2005).
8.C. M. Brett and A. M. O. Breet, Electrochemistry-Principles, Methods, and Applications, Oxford, New York, p. 405 (1993).
9.A. J. Bard and L. R. Faulkner, Electrochemical Methods Fundamentals and applications, Wiley, New York (2001).
10.M. Ciureanu, R. Roberge, J. Phys. Chem. B, Vol. 105, 3531-3539(2001).
11.Z. Xie, S. Holdcroft, J. Electroanal. Chem., Vol. 568, 247-260(2004).
12.V. A. Paganin, C. L. F. Oliveira, E. A. Ticianelli, T. E. Springer and E. R. Gonzalez, Electrochim. Acta, Vol. 43, 3761-3766(1998).
13.B. Andreaus, A.J. McEvoy and G.G. Scherer, Electrochim. Acta, Vol. 47, 2223-2229(2002).
14.T. J. P. Freire and E. R. Gonzalez, J. Electroanal. Chem., Vol. 503, 57-68(2001).
15.N. Wagner, W. Schnurnberger, B. MuÈller and M. Lang, Electrochim. Acta, Vol. 47, 2223-2229(2002).
16.H. F. Oetjen, V. M. Schmidt, U. Stimming, and F. Trila, J. Electrochemical Soc., Vol. 143, 3838-3842(1996).
17.H. A. Gasteiger, N. Markovic, P. N. Ross, Jr., and E. J. Cairns, J. Phys. Chem., Vol. 98, 617-625(1994).
18.Z. Jusys, J. Kaiser, and R. J. Behm, Electrochim. Acta, Vol. 47, 3693-3706(2002).
19.Y. Morimoto and E. B. Yeager, J. Electroana. Chem., Vol. 441, 77-81(1998).
20.E. M. Crabb, R. Marshall and D. Thompsett, J. Electrochemical Soc., Vol. 147, 4440-4447(2000).
21.P. Gouérec, M. C. Denis, D. Guay, J. P. Dodelet and R. Schulz, J. Electrochemical Soc., Vol. 147, 3989-3996(2000).
22.S. Mukerjee, S. J. Lee, E. A. Ticianelli, J. McBreen, B. N. Grgur, N. M. Markovic, P. N. Ross, J. R. Giallombardo and E. S. De Castro, Electrochem. Solid-state lett., Vol. 2, 12-15(1999).
23.D.C. Papageorgopoulos, M. Keijzer, F.A. de Bruijn, Electrochim. Acta, Vol. 48, 197-204(2002).
24.K. L. Ley, R. Liu, C. Pu, Q. Fan, N. Leyarovska, C. Segre and E. S. Smotkin, J. Electrochemical Soc., Vol. 144, 1543-1548(1997).
25.S. D. Lin and T. C. Hsiao, J. Phys. Chem. B, Vol. 103, 97-103(1999).
26.M. S. Liao, C. R. Cabrera, Y. Ishikawa, Surf. Sci., Vol. 445, 267-282(2000).
27.H. A. Gasteiger, N. M. Markovic and P. N. Ross, J. Phys. Chem., Vol. 99, 16757-16767(1995)
28.N. M. Markovic and Jr. P. N. Ross, Surf. Sci. Rep., Vol. 45, 117-229(2002).
29.S. Alayoglu, A.U. Nilekar, M. Mavrikakis and B. Eichhorn, Nat. Mater., Vol. 7, 333-338(2008).
30.M. Bernechea, S. García-Rodríguez, P. Terreros, E. de Jesuˇıs, J. Fierro and S. Rojas, J. Phys. Chem. C, Vol. 115, 1287-1294(2011).
31.L. Zhang, J. Kim, H. M. Chen, F. Nan, K. Dudeck, R. S. Liu, G. A. Botton and J. Zhang, J. Power Sources, Vol. 196, 9117-9123(2011).
32.B. Kumar and J. P. Fellner, J. Power Sources, Vol. 123, 132-136(2003).
33.12.K. T. Adjemian, S. J. Lee, S. Srinivasan, J. Benziger and A. B. Bocarsly, J. Electrochemical Soc., Vol. 149, A256-A261(2002).
34.H. Uchida, Y. Ueno, H. Hagihara, and M. Watanabe, J. Electrochemical Soc., Vol. 150, A57-A62(2003).
35.T. Toda, H. Igarashi, H. Uchida and M. Watanabe, J. Electrochemical Soc., Vol. 146, 3750-3756(1999).
36.H. Wroblowa, Y. C. Pan and G. Razumney, J. Electroanal. Chem., Vol. 69, 195-201(1976).
37.E.B. Yeager, M. Razaq, D. Gervasio, A. Razaq and D. Tryk, J. Serb. Chem. Soc., Vol. 57, 819-833(1992).
38.V. Jalan and E. J. Taylor, J. Electrochemical Soc., Vol. 130, 2299-2302(1983).
39.S. Mukerjee, S. Srinivasan and M. P. Soriaga, J. Electrochemical Soc., Vol. 142, 1409-1422(1995).
40.M.-K. Min, J. Cho, K. Cho and H. Kim, Electrochim. Acta, Vol. 45, 4211-4217(2000).
41.L. Xiong and A. Manthiram, J. Electrochemical Soc., Vol. 152, A697-A703(2005).
42.E. A. Ticianelli, C. R. Derouin, A. Redondo and S. Srinivasan, J. Electrochemical Soc., Vol. 135, 2209-2214(1988).
43.M. S. Wilson and S. Gottesfeld, J. Appl. Electrochemistry, Vol. 22, 1-7(1992).
44.S. Y. Cha and W. M. Lee, J. Electrochemical Soc., Vol. 146, 4055-4060(1999).
45.M. Neergat, A. K. Shukla and K. S. Gandhi, J. Appl. Electrochem., Vol. 31, 373-378(2001).
46.J. R. C. Salgado, E. Antolini and E. R. Gonzalez, J. Power Sources, Vol. 138, 56-60(2004).
47.L. G. R. A. Santos, C. H. F. Oliveira, I. R. Moraes and E.A. Ticianelli, J. Electroanal. Chem., Vol. 596, 141-148(2006).
48.Y. Qian, W. Wen, P. A. Adcock, Z. Jiang, N. Hakim, M. S. Saha and S. Mukerjee, J. Phys. Chem. C, Vol. 112, 1146-1157(2008).
49.Z. Liu, C. Yu, I. A. Rusakova, D. Huang, P. Strasser, Top Catal., Vol. 49, 241-250(2008).
50.S. Sun, C. B. Murray, D. Weller, L. Folks and A. Moser, Science, Vol. 287, 1989-1992(2000).
51.H. Yang, N. Alonso-Vante, J.-M. Le´ger and C. Lamy, J. Phys. Chem. B, Vol. 108, 1938-1947(2004).
52.T. O. Ely, C. Pan, C. Amiens, B. Chaudret, F. Dassenoy, P. Lecante, M.-J. Casanove, A. Mosset, M. Respaud and J.-M. Broto, J. Phys. Chem. B, Vol. 104, 695-702(2000).
53.Q. Huang, H. Yang, Y. Tang, T. Lu and D. L. Akins, Electrochem. Commun., Vol. 8, 1220-1224(2006).
54.J. Lin, W. Zhou, A. Kumbhar, J. Wiemann, J. Fang, E. E. Carpenter and C. J. O'Connor, J. Solid State Chem., Vol. 159, 26-31(2001).
55.J. Zeng, J. Yang, J. Y. Lee and W. Zhou, J. Phys. Chem. B, Vol. 110, 24606-24611(2006).
56.J. Zhang, F. H. B. Lima, M. H. Shao, K. Sasaki, J. X. Wang, J. Hanson and R. R. Adzic, J. Phys. Chem. B, Vol. 109, 22701-22704(2005).
57.M. Shao, K. Sasaki, N. S. Marinkovic, L. Zhang and R. R. Adzic, Electrochem. Commun., Vol. 9, 2848-2853(2007).
58.P. Mani, R. Srivastava and P. Strasser, J. Phys. Chem. C, Vol. 112, 2770-2778(2008).
59.H. Wu, D. Wexler, G. Wang, J. Solid State Electrochem., Vol. 16, 1105-1110(2012).
60.J. Zagal, P. Bindra, E. Yeager, ADA081235, Vol. 10, Case Western University, October 1979.
61.R. Baker, D. P. Wilkinson and J. Zhang, Electrochim. Acta, Vol. 53, 6906-6919(2008).
62.O. Contamin, C. Debiemme-Chouvy, M. Savy and G. Scarbeck, J. New Mat. Electrochem. Syst., Vol. 3, 67-74(2000).
63.S. Lj. Gojkovic, S. Gupta and R. F. Savinell, Electrochim. Acta, Vol. 45, 889-897(1999).
64.S. Pylypenko, S. Mukherjee, T. S. Olson and P. Atanassov, Electrochim. Acta, Vol. 53, 7875-7883(2008).
65.D. Susac, A. Sode, L. Zhu, P. C. Wong, M. Teo, D. Bizzotto, K. A. R. Mitchell, R. R. Parsons and S. A. Campbell, J. Phys. Chem. B, Vol. 110, 10762-10770(2006).
66.K. Lee, L. Zhang and J. Zhang, Electrochem. Commun., Vol. 9, 1704-1708(2007).
67.W. M. Milla´n, T. T. Thompson, L.G. Arriaga and M. A. Smit, Int. J. Hydrog. Energy, Vol. 34, 694-702(2009).
68.W. M. Millan and M. A. Smit, J. Appl. Polym. Sci., Vol. 112, 2959-2967(2009).
69.H. Liu, Z. Shi, J. Zhang, L. Zhang and J. Zhang, J. Mater. Chem., Vol. 19, 468-470(2009).
70.F. Jaouen, S. Marcotte, J. P. Dodelet and G. Lindbergh, J. Phys. Chem. B, Vol. 107, 1376-1386(2003).
71.C. Medard, M. Lefevre, J. P. Dodelet, F. Jaouen and G. Lindbergh, Electrochim. Acta, Vol. 51, 3202-3213(2006).
72.S. Ruggeriz and J. P. Dodelet, J. Electrochemical Soc., Vol. 154, B761-B769(2007).
73.J. Li, L. Ma, X. Li, C. Lu, H. Liu, Ind. Eng. Chem. Res., Vol. 44, 5478-5482(2005).
74.H. Shioyama, K. Honjo, M. Kiuchi, Y. Yamada, A. Ueda, N. Kuriyama and T. Kobayashi, J. Power Sources, Vol. 161, 836-838(2006).
75.G. Wu, D. Li, C. Dai, D. Wang and N. Li, Langmuir, Vol. 24, 3566-3575(2008).
76.H. K. Kim, W. Lee and D. Yoo, Electrochim. Acta, Vol. 52, 2620-2624(2007).
77.G. Selvarani, A. K. Sahu, N. A. Choudhury, P. Sridhar, S. Pitchumani and A.K. Shukla, Electrochim. Acta, Vol. 52, 4871-4877(2007).
78.P. L. Kuo, W. F. Chen and C. Y. Lin, J. Power Sources, Vol. 194, 234-242(2009).
79.M. Uchida, Y. Aoyama, N. Eda and A. Ohta, J. Electrochemical Soc., Vol. 142, 4143-4149(1995).
80.C. A. Bessel, K. Laubernds, N. M. Rodriguez and R. T. K. Baker, J. Phys. Chem. B, Vol. 105, 1115-1118(2001).
81.F. Yuan and H. Ryu, Nanotechnology, Vol. 15, S596–S602(2004).
82.W. Li, M. Waje, Z. Chen, P. Larsen and Y. Yan, Carbon, Vol. 48, 995-1003(2010).
83.M. Kumar and Y. Ando, J. Nanosci. Nanotechnol., Vol. 10, 3739-3758(2010).
84.W. Li, C. Liang, J. Qiu, W. Zhou, H. Han, Z. Wei, G. Sun and Q. Xin, Carbon, Vol. 40, 791-794(2002).
85.C. K. Poha, S. H. Lim, H. Pan, J. Lin and J. Y. Lee, J. Power Sources, Vol. 176, 70-75(2008).
86.X. Wang and I-M. Hsing, Electrochim. Acta, Vol. 47, 2981-2987(2002).
87.X. Sun, R. Li, D. Villers, J. P. Dodelet and S. Desilets, Chem. Phys. Lett., Vol. 379, 99-104(2003).
88.Y. T. Kim and T. Mitani, J. Catal., Vol. 238, 394-401(2006).
89.Y. Mu, H. Liang, J. Hu, L. Jiang and L. Wan, J. Phys. Chem. B, Vol. 109, 22212-22216(2005).
90.G. W. Yang, G.. Y. Gao, G. Y. Zhao and H. L. Li, Carbon, Vol. 45, 3036-3041(2007).
91.T. Maiyalagan, B. Viswanathan, U. V. Varadaraju, Electrochem. Commun., Vol. 7, 905-912(2005).
92.G. Wu and B. Q. Xu, J. Power Sources, Vol. 174, 148-158(2007).
93.S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki and R. Ryoo, Nature, Vol. 142, 169-172(2001).
94.G. S. Chai, S. B. Yoon, J. S. Yu, J. H. Choi and Y. E. Sung, J. Phys. Chem. B, Vol. 108, 7074-7079(2004).
95.J. Ding, K. Y. Chana, J. Rena and F. S. Xiao, Electrochim. Acta, Vol. 50, 3131-3141(2005).
96.H. Yamada, T. Hirai, I. Moriguchi and T. Kudo, J. Power Sources, Vol. 164, 538–543(2007).
97.S. Vengatesan, H. J. Kim, S. K. Kim, I. H. Oh, S. Y. Lee, E. Cho, H. Y. Ha and T. H. Lim, Electrochim. Acta, Vol. 54, 856-861(2008).
98.A. Hayashi, H. Notsu, K. Kimijima, J. Miyamoto, I. Yagi, Electrochim. Acta, Vol. 53, 6117-6125(2008).
99.A. Smirnova, X. Dong, H. Hara, A. Vasiliev and N. Sammes, Int. J. Hydrog. Energy, Vol. 30, 149-158(2005).
100.P. Kim, H. Kim, J. B. Joo, W. Kim, I. K. Song and J. Yi, J. Power Sources, Vol. 145, 139–146(2005).
101.C. Arbizzani, S. Beninati, E. Manferrari, F. Soavi and M. Mastragostino, J. Power Sources, Vol. 161, 826–830(2006).
102.C. Arbizzani, S. Beninati, E. Manferrari, F. Soavi, M. Mastragostino, J. Power Sources, Vol. 172, 578–586(2007).
103.E. Guilminot, F. Fischer, M. Chatenet, A. Rigacci, S. Berthon-Fabry, P. Achard and E. Chainet, J. Power Sources, Vol. 166, 104–111(2007).
104.E. Antolini, Appl. Catal. B-Environ., Vol. 88, 1-24(2009).
105.C. W. Chen, T. Serizawa and M. Akashi, Chem. Mater., Vol. 11, 1381-1389(1999).
106.C.F. Chi, M.C. Yang and H.S. Weng, J. Power Sources, Vol. 193 462-469(2009).
107.P. L. Kuo,W. F. Chen andC. Y. Lin, J. Power Sources, Vol. 194 234-242(2009).
108.J. Sharma, S. Mahima, B. A. Kakade, R. Pasricha, A. B. Mandale and K. Vijayamohanan, J. Phys. Chem. B, Vol. 108, 13280-13286(2004).
109.A. Haimov, H. Cohen and R. Neumann, J. Am. Chem. Soc., Vol. 126, 11762-11763(2004).
110.L. Giorgi, E. Antolini, A. Pozio and E. Passalacqua, Electrochim. Acta, Vol. 43, 3675-3680(1998).
111.S. Han, T. Yu, J. Park, B. Koo, J. Joo and T. Hyeon, J. Phys. Chem. B, Vol. 108, 8091-8095(2004).
112.M. Watanabe, M. Tomikawa and S. Motoo, J. Electroanal. Chem., Vol. 195, 81-93(1985).
113.C. M. Chuang, S. P. Sharma, J. M. Ting, H P. Lin, H. Teng, C. W. Huang, Diam. Relat. Mat., Vol. 17, 606-610(2008).
114.G. Liu, Y. Zhao, K. Deng, Z. Liu, W. Chu, J. Chen, Y. Yang, K. Zheng, H. Huang, W. Ma, L. Song, H. Yang, C. Gu, G. Rao, C. Wang, S. Xie and L. Sun, Nano Lett., Vol. 8, 1071-1075(2008).
115.Z. Tang and D. H. C. Chuaz, J. Electrochemical Soc., Vol. 157, B868-B873(2010).
116.E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy: Theory, Experiment and Application, p. 84, Wiley-Interscience, New York(2005).
117.T. A. Zawodzinski, Jr., M. Neeman, L. O. Sillerud and S. Cottesfeld, J. Phys. Chem., Vol. 95, 6040-6044(1991).
118.M. Carmo, V. A. Paganin, J. M. Rosolen and E. R. Gonzalez, J. Power Sources, Vol. 142 169-176(2005).
119.A. Lewera, L. Timperman, A. Roguska and N. A. Vante, J. Phys. Chem. C, Vol. 115, 20153-20159(2011).
120.S. Y. Huang, P. Ganesan and B. N. Popov, Appl. Catal. B-Environ., Vol. 102, 71-77(2011).
121.D. S. Kim, E. F. A. Zeid and Y.-T. Kim, Electrochim. Acta, Vol. 55, 3628-3633(2010).
122.L. W. Niedrach and H. I. Zelige, J. Electrochem. Soc., Vol. 116, 152-153(1969).
123.P. J. Kulesza and L. R. Faulkner, J. Electrochem. Soc., Vol. 136, 707-713(1989).
124.H. Chhina, S. Campbell, and O. Kesler, J. Electrochem. Soc., Vol. 154, B533-B539(2007).
125.S. Sharma and B. G. Pollet, J. Power Sources, Vol. 208 96-119(2012).
126.O. T. M. Musthafa and S. Sampath, Chem. Commun., 67-69(2008).
127.B. Avasarala and P. Haldar, Int. J. Hydrog. Energy, Vol. 36, 3965-3974(2011).
128.S. Yin, S. Mua, H. Lv, N. Cheng, M. Pan and Z. Fu, Appl. Catal. B-Environ., Vol. 93, 233-240(2010).
129.H. Meng and P. K. Shen, Chem. Commun., 4408-4410(2005).
130.H. Chhina, S. Campbell and O. Kesler, J. Power Sources, Vol. 164 431-440(2007).
131.陸瑞東,以聯氨還原製備質子交換膜燃料電池鉑鎳/碳陰極之研究,國立成功大學化學工程學系碩士論文,2005。
132.薛志鴻,質子交換膜型燃料電池電極在CO存在下之阻抗分析,國立成功大學化學工程學系碩士論文,2005。
133.J. Kim, S.-M. Lee and S. Srinivasan, J. Electrochem. Soc., Vol. 142, 2670-2674(1995).
134.J. Zhang, Y. Tang, C. Song and J. Zhang, J. Power Sources, Vol. 172 163-171(2007).
135.T. J.P. Freire and E. R. Gonzalez, J. Electroanal. Chem., Vol. 503, 57-68(2001).
136.T.. E. Springer, T. A. Zawodzinski, M. S. Wilson and S. Golfesfeld, J. Electrochem. Soc., Vol. 143, 587-599(1996).
137.M. C. Lefebvre, R. B. Martin, and P. G. Pickup, Electrochem. Solid State Lett., Vol. 2, 259-261(1999).
138.陳怡君,以不同海膽狀碳材製備鉑-釕觸媒用於電催化甲醇氧化反應,國立成功大學化學工程學系碩士論文,2009。
139.辜珮瑜,用於直接甲醇燃料電池中陽極之海膽狀PtRuSn觸媒的改良,國立成功大學化學工程學系碩士論文,2008。
140.陳美合,海膽狀碳材用於直接甲醇燃料電池之放電性能探討,國立成功大學化學工程學系碩士論文,2009。
141.李美嬅,核殼式鈷白金/碳觸媒之製備及氧氣還原反應特性探討,私立東海大學化學工程與材料工程研究所博士論文,2009。
142.R. M. D. Silva, V. Palshin, F. R. Fronczek, J. Hormes and C. S. S. R. Kumar, J. Phys. Chem. C, Vol. 111, 20153-20159(2011).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊