跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/01 16:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴俊宏
研究生(外文):Chun-HungLai
論文名稱:燃燒合成氮化鋁製程改良及量產技術開發
論文名稱(外文):Improvement for Combustion Synthesis of Aluminum Nitride and Process Development for Scale-Up Production
指導教授:鍾賢龍
指導教授(外文):Shyan-Lung Chung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:69
中文關鍵詞:氮化鋁燃燒合成法
外文關鍵詞:Aluminum NitrideCombustion synthesis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
本實驗室研究以燃燒合成法製備氮化鋁粉體已相當久的時間,也獲得多項合成技術的專利。而本論文研究為燃燒合成氮化鋁製程的進步改良及量產技術開發 ,自原本之每批次350g放大至1.4kg,探討製程方法與最佳操作條件。在最佳操作條件下,經鄂碎後小於100mesh之氮化鋁粉體其轉化率達99.5%以上,氧含量達0.45wt%以下,且產率可以高達80%以上。
在市場的需求上,大多數氮化鋁粉體所需粒徑較小,因此本實驗研究亦探討將合成之粉體使用濕式研磨,磨至所需粒徑,並從研磨使用溶劑,烘乾程序去探討氧含量上升的原因。而發現入料粉體氧含量不同,以及磨球的汙染是造成氧含量差異的主因。

Combustion synthesis methods for aluminum nitride powder have been developed in our laboratory for many years, and access to a number of synthetic technology patents. In this thesis research, the author develops the process for scale-up production of AlN based on the combustion synthesis methods established in our laboratory. The conversion of the AlN powder which is under 100 mesh after crushing is higher than 99.5%, the oxygen content is below 0.45wt%, and yield can be as high as 80% or more, under the optimum operation condition.
The particle size of AlN powder is usually required to be small in the current market. In this thesis research, the author also studies the wet milling of AlN so as to obtain the powder in the size range. We explore the reasons for the increase of oxygen content, from the solvents we use to grinding and drying process. We found that the oxygen content of the feed powder and grinding tools pollution is the main reason for the difference in oxygen content.

中文摘要 I
英文摘要 II
誌謝 III
圖目錄 VII
表目錄 IX
第一章 緒論 1
1-1 淺談陶瓷材料 1
1-2 氮化鋁性質與應用 2
1-3 目前氮化鋁主要的製備方法: 5
1-4 研究動機 7
第二章 原理及文獻回顧 10
2-1 燃燒合成法 10
2-2 燃燒波的結構 12
2-3 燃燒反應熱力學 13
2-4 燃燒反應動力學 15
2-5 反應物孔隙度和壓力對燃燒合成反應的影響 16
2-6 燃燒合成氮化物 18
2-7 氣相反應成核 21
2-7-1 均勻相成核(Homogeneous nucleation) 21
2-7-2 異質相成核(Heterogeneous nucleation) 22
2-8 氮化鋁的導熱機制 23
第三章 實驗裝置與藥品 30
3-1 小型反應器裝置 30
3-2 大型反應器裝置 30
3-3 大型研磨機裝置 31
3-4 分析儀器 31
3-5 其他儀器設備 33
3-6 藥品 33
第四章 實驗方法 37
4-1 氮化鋁量產製程開發 37
4-1-1 製備反應錠 37
4-1-2 燃燒合成反應之進行 37
4-1-3 產物轉化率測試 39
4-2 氮化鋁細磨技術建立以及抗濕處理 41
4-2-1 研磨前準備 41
4-2-2 研磨流程 41
4-2-3 研磨後粉體性質測試 42
第五章 結果與討論 43
5-1 實驗結果與討論 43
5-2 氮化鋁量產製程開發 43
5-2-1 氮化鋁產率提升研究 46
5-2-2 改變合成氮化鋁壓力 50
5-2-3 回收氮化鋁 54
5-3 氮化鋁細磨技術建立及探討 55
5-3-1 探討氧含量上升原因 56
5-3-2 改變烘乾方式 58
5-3-3 使用不同溶劑研磨 60
5-3-4 改變入料粉體 62
第六章 結論 63
第七章 參考文獻 64

[1]汪建民, 陶瓷技術手冊Ceramic technology handbook,. 中華民國科技發展協會, 1994.
[2]H. K. Sander, High-tech ceramics, in C&E News, ed, July 9,1984.
[3]吳朗, 電子陶瓷-入門, 1992.
[4]L. M. Sheppard, Aluminum Nitride - a Versatile but Challenging Material, American Ceramic Society Bulletin, vol. 69, pp. 1801-1812, Nov 1990.
[5]N. Kuramoto, H. Taniguchi, and I. Aso, Development of Translucent Aluminum Nitride Ceramics, American Ceramic Society Bulletin, vol. 68, pp. 883-887, Apr 1989.
[6]顏豐名, 材料與社會, 工研院工業材料研究所, vol. 73, p. 45, 1993.
[7]黃肇瑞, 陶瓷技術手冊(下), 1995.
[8]王宏灼, 反應性射頻濺鍍法成長氮化鋁薄膜之研究, 國立中山大學電機工程研究所碩士論文, p. 36, 1995.
[9]F. Miyashiro, N. Iwase, A. Tsuge, F. Ueno, M. Nakahashi, and T. Takahashi, High Thermal-Conductivity Aluminum Nitride Ceramic Substrates and Packages, Ieee Transactions on Components Hybrids and Manufacturing Technology, vol. 13, pp. 313-319, Jun 1990.
[10]I. Kimura, N. Hotta, H. Nukui, N. Saito, and S. Yasukawa, Synthesis of Fine Aln Powder by Vapor-Phase Reaction of Alcl3 and Nh3, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi-Journal of the Ceramic Society of Japan, vol. 96, pp. 206-210, 1988.
[11]P. M. Drygurgh, U.S. Patent Patent 4,172,754, 1979.
[12]L.Maya, Advanced Ceramic Materials, vol. 1, p. 150, 1986.
[13]R. Bachelard and P. Joubert, Aluminum Nitride by Carbothermal Nitridation, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 109, pp. 247-251, Mar 1989.
[14]O. Serpek, U.K. Patent Patent 13579, 1906.
[15]H. T. N. Kuramoto, U.S. Patent Patent 4,618,592, 1986.
[16]Y. I. H. Yamashita, R. Oguma, T. Hayashi, M. Tamura, and H. Matsuo, Japen Patent Patent 61-205606, 1986.
[17]C. Lenie, U.S. Patent Patent 3,108,887, 1963.
[18]T. Okada, M. Toriyama, and S. Kanzaki, Synthesis of aluminum nitride sintered bodies using the direct nitridation of Al compacts, Journal of the European Ceramic Society, vol. 20, pp. 783-787, May 2000.
[19]K. G. Nickel, R. Riedel, and G. Petzow, Thermodynamic and Experimental-Study of High-Purity Aluminum Nitride Formation from Aluminum-Chloride by Chemical Vapor-Deposition, Journal of the American Ceramic Society, vol. 72, pp. 1804-1810, Oct 1989.
[20]R. Riedel and K. U. Gaudl, Formation and Characterization of Amorphous Aluminum Nitride Powder and Transparent Aluminum Nitride Film by Chemical Vapor-Deposition, Journal of the American Ceramic Society, vol. 74, pp. 1331-1334, Jun 1991.
[21]W. G. M. S.D. Dunmead, K.E. Howard, K.C. Morse, U.S. Patent Patent 5,649,278, 1997.
[22]S. L. Chung, W. L. Yu, and C. N. Lin, A self-propagating high-temperature synthesis method for synthesis of AlN powder, Journal of Materials Research, vol. 14, pp. 1928-1933, May 1999.
[23]S. M. Bradshaw and J. L. Spicer, Combustion synthesis of aluminum nitride particles and whiskers, Journal of the American Ceramic Society, vol. 82, pp. 2293-2300, Sep 1999.
[24]J. Subrahmanyam and M. Vijayakumar, Self-Propagating High-Temperature Synthesis, Journal of Materials Science, vol. 27, pp. 6249-6273, Dec 1 1992.
[25]A. G. Merzhanov and I. P. Borovins, Self-Spreading High-Temperature Synthesis of Refractory Inorganic Compounds, Doklady Akademii Nauk Sssr, vol. 204, pp. 366-&, 1972.
[26]A. G. Merzhanov, Combustion processes that synthesize materials, Journal of Materials Processing Technology, vol. 56, pp. 222-241, Jan 1996.
[27]Z. A. Munir, Synthesis of High-Temperature Materials by Self-Propagating Combustion Methods, American Ceramic Society Bulletin, vol. 67, pp. 342-349, Feb 1988.
[28]L. M. Sheppard, Powders That Explode Into Materials Adv. Mater. Process, vol. 2, pp. 25-32, 1986.
[29]Z. A. Munir and U. Anselmi-Tamburini, Self-propagating exothermic reactions: The synthesis of high-temperature materials by combustion, Materials Science Reports, vol. 3, pp. 277-365, 1989.
[30]金雲學 and 張二林, 自蔓延合成技術及原位自生複合材料. 哈爾濱工業大學: 曾松岩.
[31]B. I. Kahikin and Merzhano.Ag, Theory of Thermal Propagation of a Chemical Reaction Front, Combustion Explosion and Shock Waves, vol. 2, pp. 22-&, 1966.
[32]A. G. Strunina, T. M. Martemyanova, V. V. Barzykin, and V. I. Ermakov, Ignition of Gasless Systems by a Combustion Wave, Combustion Explosion and Shock Waves, vol. 10, pp. 449-455, 1974.
[33]B. V. Novozhilov, The rate of propagation of the front of an exothermic reaction in a condensed phase, Doklady Physical Chemistry, vol. 141, p. 836, 1961.
[34]劉素英, 自蔓延高溫合成(SHS) TiN粉末的研究 vol. 自蔓延高溫合成技術研究進展: 武漢工業大學出版社, 1994.
[35]張學軍, 鄭永才, and 韓杰才, 氮氣壓力對Si3N4-SiC-TiN陶瓷自蔓延燃燒合成的影響, 複合材料學報 Acta Materiae Compositae Sinica, vol. 23, pp. 123-126, 2006.
[36]張寶林, 庄漢銳, and 符錫仁, 硅粉在高壓氮氣中字蔓延燃燒合成氮化硅的反應機理 vol. 自蔓延高溫合成技術研究進展: 武漢工業大學出版社, 1994.
[37]J. Karpinski and S. Porowski, High-Pressure Thermodynamics of Gan, Journal of Crystal Growth, vol. 66, pp. 11-20, 1984.
[38]W. C. Lee, C. L. Tu, C. Y. Weng, and S. L. Chung, A Novel Process for Combustion Synthesis of Aln Powder, Journal of Materials Research, vol. 10, pp. 774-778, Mar 1995.
[39]A. S. Mukasyan, V. M. Martynenko, A. G. Merzhanov, I. P. Borovinskaya, and M. Y. Blinov, Mechanism and Principles of Silicon Combustion in Nitrogen, Combustion Explosion and Shock Waves, vol. 22, pp. 534-540, Sep-Oct 1986.
[40]Z. A. Munir and J. B. Holt, The Combustion Synthesis of Refractory Nitrides .1. Theoretical-Analysis, Journal of Materials Science, vol. 22, pp. 710-714, Feb 1987.
[41]Merzhano.Ag, Y. E. Volodin, and Borovins.Ip, Mechanism of Porous Metal Specimen-Combustion in Nitrogen, Doklady Akademii Nauk Sssr, vol. 206, pp. 905-&, 1972.
[42]M. Eslamloogrami and Z. A. Munir, Effect of Nitrogen Pressure and Diluent Content on the Combustion Synthesis of Titanium Nitride, Journal of the American Ceramic Society, vol. 73, pp. 2222-2227, Aug 1990.
[43]A. N. Pityulin, V. A. Shcherbakov, I. P. Borovinskaya, and A. G. Merzhanov, Laws and Mechanism of Diffusional Surface Burning of Metals, Combustion Explosion and Shock Waves, vol. 15, pp. 432-437, 1979.
[44]M. Costantino and C. Firpo, High-Pressure Combustion Synthesis of Aluminum Nitride, Journal of Materials Research, vol. 6, pp. 2397-2402, Nov 1991.
[45]S. D. Dunmead, Z. A. Munir, and J. B. Holt, Gas-Solid Reactions under a Self-Propagating Combustion Mode, Solid State Ionics, vol. 32-3, pp. 474-481, Feb-Mar 1989.
[46]I. P. Borovinskaya and V. E. Loryan, Sov. Powder Metall. Met. Ceram., vol. 191, p. 851, 1979.
[47]J. B. Holt, Exothermic Process Yields Refractory Nitride Materials, Industrial Research & Development, vol. 25, pp. 88-91, 1983.
[48]E. J. Langham and B. J. Mason, The Heterogeneous and Homogeneous Nucleation of Supercooled Water, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 247, pp. 493-504, 1958.
[49]P. B. Price, Nonbasal Glide in Dislocation‐Free Cadmium Crystals. I. The (101¯1) [12¯10] System, Journal of Applied Physics, vol. 32, pp. 1746-1750, 1961.
[50]R. S. Wanger, WhiskerTechnology. New York, 1970.
[51]W. S. Jung and H. U. Joo, Catalytic growth of aluminum nitride whiskers by a modified carbothermal reduction and nitridation method, Journal of Crystal Growth, vol. 285, pp. 566-571, Dec 15 2005.
[52]H. Wang, D. O. Northwood, J. C. Han, and S. Y. Du, Combustion synthesis of AIN whiskers, Journal of Materials Science, vol. 41, pp. 1697-1703, Mar 2006.
[53]D. P. H. Hasselman and G. A. Merkel, Specimen Size Effect of the Thermal-Diffusivity Conductivity of Aluminum Nitride, Journal of the American Ceramic Society, vol. 72, pp. 967-971, Jun 1989.
[54]K. Watari, K. Ishizaki, and F. Tsuchiya, Phonon-Scattering and Thermal Conduction Mechanisms of Sintered Aluminum Nitride Ceramics, Journal of Materials Science, vol. 28, pp. 3709-3714, Jul 15 1993.
[55]G. A. Slack, Nonmetallic Crystals with High Thermal-Conductivity, Journal of Physics and Chemistry of Solids, vol. 34, pp. 321-335, 1973.
[56]J. H. Harris, R. A. Youngman, and R. G. Teller, On the Nature of the Oxygen-Related Defect in Aluminum Nitride, Journal of Materials Research, vol. 5, pp. 1763-1773, Aug 1990.
[57]王超, 彭超群, 王日初, 余琨, and 李超, AlN陶瓷基板材料的典型性能及製備技術 vol. 17. 長沙: 中南大學材料科學與工程學院, 2007.
[58]G. A. Slack, L. J. Schowalter, D. Morelli, and J. A. Freitas, Some effects of oxygen impurities on AlN and GaN, Journal of Crystal Growth, vol. 246, pp. 287-298, Dec 2002.
[59]M. Kasu and N. Kobayashi, Large and stable field-emission current from heavily Si-doped AlN grown by metalorganic vapor phase epitaxy, Applied Physics Letters, vol. 76, pp. 2910-2912, May 15 2000.
[60]W. Werdecker and F. Aldinger, Aluminum Nitride - an Alternative Ceramic Substrate for High-Power Applications in Microcircuits, Ieee Transactions on Components Hybrids and Manufacturing Technology, vol. 7, pp. 399-404, 1984.
[61]林宏穎, 氮化鋁量產製程技術開發, 碩士, 化學工程學系碩博士班, 國立成功大學, 台南市, 2010.
[62]J. Shin, D.-H. Ahn, M.-S. Shin, and Y.-S. Kim, Self-Propagating High-Temperature Synthesis of Aluminum Nitride under Lower Nitrogen Pressures, Journal of the American Ceramic Society, vol. 83, pp. 1021-1028, 2000.
[63]陳煥煜, 使用不同形態之鋁粉以燃燒合成法製備氮化鋁粉體之製程開發及反應機構探討, 碩士, 化學工程學系碩博士班, 國立成功大學, 台南市, 2011.
[64]劉益嘉, 燃燒合成氮化鋁粉體之量產製程開發, 碩士, 化學工程學系碩博士班, 國立成功大學, 台南市, 2011.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊