跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/07/30 10:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉筱君
研究生(外文):Hsiao-ChunLiu
論文名稱:含碳之鎵鈰雙成分氧化物薄膜氣體感測器之研究
論文名稱(外文):A study of carbon doped Ga2O3/CeO2 thin film gas sensor
指導教授:陳進成陳進成引用關係
指導教授(外文):Chin-Cheng Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:160
中文關鍵詞:氣體感測器氧化鎵氧化鈰摻雜
外文關鍵詞:gas sensorgallium oxidecerium oxidecarbondoping
相關次數:
  • 被引用被引用:2
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本研究以不同製程方式製備Ga2O3-CeO2薄膜氣體感測器,包括以真空蒸鍍熱氧化法製備氧化鎵薄膜摻雜氧化鈰,及以射頻磁控濺鍍法製備氧化鎵薄膜摻雜氧化鈰。並進一步以電漿化學氣相沉積法鍍上碳膜,製備C/Ga2O3-CeO2薄膜氣體感測器。藉由改變不同製程方式、氧化鈰摻雜厚度製備Ga2O3-CeO2、C/Ga2O3-CeO2薄膜來探討其表面型態、晶態結構、氧空缺相對濃度變化,再以酒精作為感測氣體進行感測性質的研究。
由SEM結果可知以熱蒸鍍法與水蒸氣熱氧化法製備之Ga2O3-CeO2薄膜表面型態為顆粒狀堆疊,鍍上碳膜後之C/Ga2O3-CeO2薄膜表面型態為較小顆粒的堆疊;而以濺鍍法製備之Ga2O3-CeO2薄膜表面型態為平整且小顆粒緻密排列。XRD分析顯示氧化鎵薄膜摻雜氧化鈰與鍍上碳膜後,不會改變其原有β-Ga2O3晶相。由光致螢光光譜分析發現鍍上碳膜後之C/Ga2O3-CeO2薄膜可提高Ga2O3-CeO2薄膜氧空缺濃度。根據酒精感測結果發現摻雜氧化鈰於薄膜中,可降低氣體感測器之起使操作溫度,減少感測器的能源消耗。且鍍上碳膜後之C/Ga2O3-CeO2薄膜感測度提升、響應時間縮短。

In this study, Ga2O3-CeO2 thin film gas sensors were prepared by different manufacture process. One was prepared by rheotaxial growth and thermal oxidation (RGTO) with water vapor, and the other by RF magnetron sputtering. Furthermore, the carbon doped Ga2O3-CeO2 thin film gas sensor was prepared by plasma enhanced chemical vapor deposition (PECVD). By varying the manufacture process and the dopant thickness of cerium oxide, Ga2O3-CeO2 and C/Ga2O3-CeO2 thin film gas sensors were prepared and the resulting surface morphology, crystalline structure, relative concentration of oxygen vacancies, and sensing properties in response to ethanol were investigated.
The SEM results show that the Ga2O3-CeO2 thin film prepared by using rheotaxial growth and thermal oxidation with water vapor method has granular stacking morphology. With the deposition of carbon film in Ga2O3-CeO2 thin film, the resultant C/Ga2O3-CeO2 thin film has smaller particle stacking morphology. And the sputtered Ga2O3-CeO2 thin film has a smooth morphology with very small particles and dense arrangement. The results of XRD analysis show that the crystalline phase of gallium oxide remains β-Ga2O3 after doping the cerium oxide and depositing the carbon film. Photoluminescence spectrum analysis show that C/Ga2O3-CeO2 thin film has higher concentration of oxygen vacancies than Ga2O3-CeO2 thin film. The sensing experimental results show that the thin film doped with cerium oxide can decrease the operating temperature of the gas sensor, reducing the energy consumption of gas sensor. Furthermore, the deposition of carbon film leads to a higher sensitivity and faster response time.

總目錄
中文摘要 I
英文摘要 II
誌謝 III
目錄 V
表目錄 IX
圖目錄 X
符號說明 XV

目錄
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 6
1.3氧化鎵性質與結構 9
1.4氧化鈰性質與結構 14
第二章 理論基礎與文獻回顧 16
2.1物理氣相沈積 16
2.2真空蒸鍍理論 17
2.2.1真空理論 17
2.2.2蒸鍍理論 18
2.3濺鍍理論 21
2.4 電漿輔助化學氣相沉積 25
2.5薄膜成長機制與模式 26
2.5.1蒸氣原子在基板的表面行為 26
2.5.2薄膜沉積的因素 27
2.5.3薄膜的成長模式 29
2.6金屬氧化物半導體氣體感測器介紹 32
2.6.1氣體感測器工作原理 32
2.6.2氣體感測器感測機制 36
2.6.3影響氣體感測器之重要參數 43
第三章 實驗步驟與研究方法 48
3.1實驗材料 53
3.2系統設計 54
3.2.1真空蒸鍍系統 54
3.2.2高溫氧化系統 56
3.2.3磁控濺鍍系統 57
3.2.4氣體感測系統 59
3.3實驗步驟 60
3.3.1基板清洗 60
3.3.2蒸鍍程序 60
3.3.3高溫氧化 61
3.3.4濺鍍程序 61
3.3.5電漿增強化學氣相沉積( PECVD) 62
3.4分析與鑑定 63
3.4.1掃描式電子顯微鏡分析(SEM) 63
3.4.2 X射線繞射儀(X-ray diffractometer, XRD) 63
3.4.3光致螢光光譜儀(Photoluminescence, PL) 63
第四章 實驗結果與討論 65
4.1不同製程方式對薄膜型態之影響 65
4.1.1以熱蒸鍍法與水蒸氣熱氧化法製備氧化鎵薄膜摻雜氧化鈰對薄膜型態之影響 65
4.1.2以射頻磁控濺鍍法製備氧化鎵薄膜摻雜氧化鈰對薄膜型態之影響 72
4.1.3以電漿化學氣相沉積法鍍碳膜對Ga2O3-CeO2薄膜型態之影響 77
4.2 XRD分析 82
4.2.1以熱蒸鍍法與水蒸氣熱氧化法製備氧化鎵薄膜摻雜氧化鈰之XRD分析 83
4.2.2以射頻磁控濺鍍法製備氧化鎵薄膜摻雜氧化鈰之XRD分析 89
4.2.3以電漿化學氣相沉積法鍍碳膜對Ga2O3-CeO2薄膜之XRD分析 92
4.3 光致螢光光譜分析 95
4.3.1以熱蒸鍍法與水蒸氣熱氧化法製備氧化鎵薄膜摻雜氧化鈰對光致螢光光譜之影響 97
4.3.2以射頻磁控濺鍍法製備氧化鎵薄膜摻雜氧化鈰對光致螢光光譜之影響 105
4.3.3 C/Ga2O3-CeO2薄膜對光致螢光光譜之影響 110
4.4 Ga2O3-CeO2、C/Ga2O3-CeO2薄膜之感測性質探討 114
4.4.1以熱蒸鍍法與水蒸氣熱氧化法製備氧化鎵薄膜摻雜氧化鈰對感測性質之影響 116
4.4.2以射頻磁控濺鍍法製備氧化鎵薄膜摻雜氧化鈰對感測性質之影響 127
4.4.3 C/Ga2O3-CeO2薄膜對感測性質之影響 136
4.4.4 Ga2O3-CeO2、C/Ga2O3-CeO2薄膜之穩定性測試 141
第五章 結論 149
未來展望 152
參考文獻 153


1. 葉陶淵,化學感測器中氣體感測器的新動向,科儀新知,第20卷,第4期,第72-76頁 (1999)
2. P. B. Weise, Effect of electronic charge transfer between adsorbate and solid on chemisorption and catlysis, Journal of Chemical Physics, Vol. 2, pp. 1531-1538 (1953)
3. T. Seiyama, A. Kato, K. Fujiishi and M. Nagatani, A new detector for gaseous components using semiconductive thin films, Analytical Chemistry, Vol. 34, pp. 1502-1503 (1962)
4. N. Taguchi., Japn.Pat.45-38200(1962)
5. N. Taguchi., U.S.Pat.3631436(1971)
6. P. J. Shaver, Activated tungsten oxide gas detectors, Applied Physics Letters, Vol. 11, pp. 255-257 (1967)
7. 朱俊彥,攜帶式氣體分析儀與偵測器市場新趨勢,環保產業雙月刊,第12 期(2002)
8. 蔡嬪嬪,氣體感測器的新動向,工業材料,第150期,第98頁(1999)
9. A. Trinchi, W. Wlodarski1, YX. Li, G. Faglia and G. Sberveglieri, Pt/Ga2O3/SiC MRISiC devices: a study of the hydrogen response, Journal of Physics D-Applied Physics,Vol.38 , pp. 754–763 (2005)
10. A. Trinchi, K. Galatsis, W. Wlodarski, and YX. Li, A Pt/Ga2O3-ZnO/SiC Schottky Diode-Based Hydrocarbon Gas Sensor, IEEE Sensors Journal, VOL. 3, NO. 5, (2003)
11. YX. Li, A. Trinchi, W. Wlodarski, K. Galatsis, K. Kalantar-zadeh, Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants, Sensors and Actuators B-Chemical , Vol.93 , pp.431–434 (2003)
12. J.F. Chang, H.H. Kuo, I.C. Leu, M.H. Hon, The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor, Sensors and Actuators B-Chemical ,Vol.84 , pp. 258–264 (2002)
13. 張希誠,感測器的基礎與應用:工廠與機器人篇,第49-51頁(1986)
14. 邱碧秀,氣體感測器:半導體型氣體感測器,科儀新知,第6卷,第6期,第67-71頁(1985)
15. E. A. Symons, Catalytic gas sensors in gas sensors: principles, operation and development, ed. G. Sberveglieri, Boston: Kluwer Academic Publishers, pp. 169 ( 1992)
16. G. Morel, Method development and quality assurance for the analysis of hydrocarbons in environmental samples, International Journal of Environmental Analytical Chemistry, Vol. 63, pp. 269-288 (1996)
17. U.R. Bernier and R.A. Yost, Vacuum operation of the flameioniza-tion detector for gas chromatography, Journal of Chromatographic Science, Vol. 31, pp. 358-362 (1993)
18. M. Munidasa, A. Mandelis and A. Katz, Purely thermal wave based non-chemical photopyroelectric gas sensor: application to hydrogen, Journal De Physique, Vol. 4, pp. C7-515-518 (1994)
19. W. Gopel, Chemical sensor technologies: Empirical art and systematic research in Sensors: A Comprehensive Survey, Vol2, pp. 61 (1991)
20. D. Rosenfeld, R. Sanjines, W.H. Schreiner, F. Levy, sensors and actuators, Vol. 15, pp.406 (1993).
21. C.S. Rastomjee, R.S. Dale, R.J. Schaffer, An investigation of doping of SnO2 by ion implantation and application of ion-implanted films as gas sensors, Thin solid film, Vol. 279, pp.98-105 (1996).
22. M.R. Mohammadi, D.J. Fray, Semiconductor TiO2–Ga2O3 thin film gas sensors derived from particulate sol–gel route, Acta Materialia , Vol.55, pp.4455–4466 (2007)
23. A. Trinchi, YX. Li, W. Wlodarski, S. Kaciulis, L. Pandolfi, SP. Russo, et al, Investigation of sol–gel prepared Ga–Zn oxide thin films for oxygen gas sensing, Sensors And Actuators A-Physical, Vol.108, pp.263–270 ( 2003)
24. A. Ratko, O. Babushkin, A. Baran, S. Baran, Sorption and Gas Sensitive Properties of In2O3 Based Ceramics Doped with Ga2O3, Journal of The European Ceramic Society, Vol.8, pp.2227–2232 (1998)
25. L. Mazeina, YN. Picard, SI. Maximenko, et al, Growth of Sn-Doped β- Ga2O3 Nanowires and Ga2O3-SnO2 Heterostructures for Gas Sensing Applications, Crystal Growth & Design, Vol. 9,(2009)
26. A. Taurino, et al, Structural and electrical characterisation of molybdenum–titanium mixed oxides for ethanol sensing deposited by RF sputtering, Sensors And Actuators B-Chemical, Vol.92, pp.286–291 (2003)
27. 陳秋岑,真空蒸鍍熱氧化法製備氧化鎵薄膜氣體感測器之研究,碩士論文,國立成功大學化工系 (1999)
28. 陳憶萍,真空蒸鍍熱氧化法製備奈米線氧化鎵薄膜及其氣體感測特性之研究,碩士論文,國立成功大學化工系 (2004)
29. 陳烐培,在不同氧化條件下以真空蒸鍍熱氧化法製備奈米線氧化鎵薄膜及其氣體感測特性之研究,碩士論文,國立成功大學化工系 (2005)
30. 薛永浚,不同升溫條件對真空蒸鍍熱氧化法製備氧化鎵薄膜型態及感測特性之研究,碩士論文, 國立成功大學化工系 (2006)
31. 錢雨純,真空蒸鍍熱氧化法製備摻雜鈦、鉑氧化鎵薄膜及其感測性質之研究,碩士論文,國立成功大學化工系 (2007)
32. 袁士庭,水蒸氣熱氧化製備碳/氧化鎵異質界面薄膜氣體感測器之研究,碩士論文,國立成功大學化工系 (2008)
33. 許嘉豪,碳對氧化鎵薄膜氣體感測器感測特性之影響,碩士論文,國立成功大學化工系 (2009)
34. 陳碩宇,碳膜和鎵膜對真空蒸鍍熱氧化法製備之氧化鎵薄膜氣體感測器感測特性之影響,碩士論文,國立成功大學化工系 (2010)
35. 梁瑜軒,氫氣處理對氧化鎵薄膜氣體感測器特性之影響,碩士論文,國立成功大學化工系(2011)
36. S. Geller, Crystal structure of β-Ga2O3, The Journal of Chemical Physics, Vol. 33, pp. 676-684 (1960)
37. R. Roy, V. G. Hill and E. F. Osborn, Polymorphism of Ga2O3 and the system Ga2O3-H2O, Journal of the American Ceramic Society, Vol. 74, pp. 719-722(1952)
38. H. H. Tippins, Optical absorption and photoconductivity in the band edge of β-Ga2O3 , Physical Review A, Vol. 140, pp. 316-319 (1965)
39. T. Matsumoto, M. Aoki, A. Kinoshita and T. Aono, Absorption and reflection of vapor grown single crystal platelets of β-Ga2O3, Japanese Journal of Applied Physics, Part 1 13, pp. 1578 (1974)
40. N. Ueda, H. Hosono, R. Waseda and H. Kawazoe, Anisotropy of electrical and optical properties in β-Ga2O3 single crystals, Applied Physics Letters, Vol. 71, pp. 933-935 (1997)
41. L. N. Cojocaru and I. D. Alecu, Electrical properties of β-Ga2O3, Zeitschrift fur Physikalische Chemie Neue Folge, Bd. 84, pp. 325-331 (1973)
42. M. Yamaga, E. G. Villora, K. Shimamura, N. Ichinose and M. Honda, Donor structure and electric transport mechanism in β-Ga2O3, Physical Review B, Vol. 68, pp. 155207(2003)
43. M.Fleischer, W.Hanrieder and H.Meixner, Stability of semicon-ducting gallium oxide thin films, Thin Solid Films, Vol. 190, pp. 93-102 (1990)
44. J. A. Kohn, G. Katz and J. D. Broder, Characterization of β-Ga2O3 and its alumina isomorph, θ-Al2O3, The American Mineralogist, Vol. 42, pp. 398-407 (1957)
45. P. Kofstad, “Defect reactions in Nonstoichiometry, diffusion and electrical conductivity in binary metal oxides, New York: Wiley-Interscience, pp. 15 (1972)
46. F. A. Kroger, Detailed description of crystalline solids; imperfections , The Chemistry of Imperfect Crystals, Vol. 2, New York: North-Holland Pub. Co., American Elsevier, pp. 1(1974)
47. J. Geurts, S. Rau, W. Richter and F. J. Schmitte, SnO films and their oxidation to SnO2: Raman scattering, IR reflectivity and X-ray diffraction studies, Thin Solid Films, Vol. 121, pp. 217-225 (1984)
48. H. F. Mark, D. F. Othmer, C. G. Overberger and G. T. Seaborg, Encyclopedia of Chemical Technology, Vol. 5, John Wiley & Sons (1970)
49. E. Steinbeiss, Thin film deposition techniques (PVD), Lecture Notes in Physics, Vol. 569, pp.298-315 (2001)
50. 國家科學研究院儀器科學研究中心,真空技術與應用 (2001)
51. 陳寶清,真空表面處理工學,表面雜誌,第31期 (1992)
52. 賴耿陽,真空蒸鍍應用技術,復漢出版社 (1991)
53. 白木靖寬,吉田貞史編著,金原粲監修,王建義編譯,薄膜工程學,全華出版,第2-42頁 (2006)
54. M.K. Lee and H.S. Kang, Characteristics of TiN Film Deposited on Stellite Using Reactive Magnetron Sputter Ion Plating, Journal of Material Research, Vol.12, pp.1400-2393, (2000)
55. 吳政道,電漿化學氣相沉積氮化鋁薄膜之研究,國立成功大學碩士論文 (1989)
56. J.A. Venables, G.D.T. Spiller and M. Hanbucken, Nucleation and growth of thin film, Reports on Progress in Physics, Vol. 47, pp. 399-459(1984)
57. J.A. Venables and G.L. Price, Nucleation of thin films in epitaxial growth , ed. J. W. Matthews, New York :Academic Press, pp. 381(1975)
58. V.E. Bauer, Phanomenologische theorie der kristallabscheidung an oberflachen, I. Zeitschrift fur Kristallographie, Bd., Vol. 110, pp. 372-394(1958)
59. 林鴻明、曾世杰,奈米半導體材料之特殊氣體感測性質,工業材料,第157期,第163-169頁(2000)
60. Z. Zeleny, Proc.Camb.Phil.Soc., Vol. 18, pp. 71(1915)
61. S.R. Morrision, Chemical sensors in semiconductor sensors , ed.S.M.Sze,New York:John Wiley and Sons, Inc., pp.383(1994)
62. A. Gurlo and R. Riedel, In situ and operando spectroscopy for assessing mechanisms of gas sensing, Angew Chem Int Ed Engl., Vol. 46, pp. 3826-3848 (2007)
63. D. Kohl, Surface processes in the detection of reducing gases with SnO2-based devices, Sensors and Actuators, Vol. 18, pp.71-113 (1989)
64. H. Windischmann and P. Mark, A model for the operation of a thin film SnOx conductance-modulation carbon monoxide sensor, Journal of the electrochemical society, Vol. 126, pp. 627-633 (1979)
65. N. Yamazoe, J. Fuchigami, M. Kishikawa and T.Seiyama, Interactions of tin oxide surface with O2, H2O and H2, Surface Science, Vol. 86, pp. 335-344 (1979)
66. Y. Shimizu and M. Egashira, Basic aspects and challenges of semiconductor gas sensors, MRS Bulletin, Vol. 24, pp. 18-24(1998)
67. H. Ogawan, M. Nishikawa and A. Abe, Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films, Journal of Applied Physics,Vol. 53, pp. 4448(1982)
68. G. Korotcenkov, The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors, Materials Science and Engineering R, Vol. 61, pp. 1-39(2008)
69. G. Korotcenkov, Metal oxides for solid-state gas sensors: what determines our choice?, Materials Science and Engineering: B, Vol. 139, pp. 1-23(2007)
70. L. Binet and D. Gourier, Origin of the blue luminescence of β-Ga2O3, Journal of Physics and Chemistry of Solids, Vol. 59, pp. 1241-1249 (1998)
71. N. Al-Hardan, M.J. Abdullaha and A. Abdul Aziz, The gas response enhancement from ZnO film for H2 gas detection, Applied Surface Science, Vol. 255, pp. 7794-7797(2009)
72. F. Gao, GH. Li, JH. Zhang, FG. Qin, ZY. Yao, and ZK. Liu, Growth and photoluminescence of epitaxial CeO2 film on Si (111) substrate, Chinese Physics Letters, Vol. 18, pp. 443-444(2001)
73. M. Ogita, N. Saika, Y. Nakanishi, Y. Hatanaka, Ga2O3 thin films for high-temperature gas sensors, Applied Surface Science, Vol. 142, pp. 188-191(1999)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top