跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/27 01:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林家瑜
研究生(外文):Christine KusumawatiT.
論文名稱:鈦和塑膠基板的可撓式染料敏化太陽能電池之製備
論文名稱(外文):Fabrication of Photoelectrodes on Ti and Plastic Substrates for Flexible Dye-Sensitized Solar Cells
指導教授:楊毓民楊毓民引用關係
指導教授(外文):Yu-Min Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:91
外文關鍵詞:flexible dye-sensitized solar cellTitanium foilBackward illuminationPre-treatmentPost treatment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
The effects of Pt sputter-deposition time on ITO/PET, titanium substrate surface treatment (pre-treatment), and nanocrystalline treatment (post-treatment) have influence on metal based flexible dye-sensitized solar cells (DSSCs) are investigated. Light illuminating for backward illumination was optimized by optimize Pt deposition time on counter electrode substrate. Titanium isopropoxide (TTIP), Heat, Polish, and hydrogen peroxide oxidation were applied as titanium substrate surface treatment (pre-treatment). TTIP and hydrogen peroxide oxidation treatments were fabricated by dipping titanium substrate in precursor or H2O2 solution. Titanium isopropoxide and H2O2 treatments resulted in 15% and 24% overall conversion efficiency enhancement respectively. This result suggested that pre-treatment on metal substrate can improve mechanical contact between substrate and TiO2 nanocrystalline and formed sponge-like TiO2 underlayer which contribute to Jsc. However in this study, heat and polished treatment have negative effect on cell performances which is decreased overall conversion efficiency by 11% and 6% depreciation. Secondary metal oxides as blocking layer was employed on the surface of TiO2 film. Al2O3 was fabricated by dipping mesoporous nanocrystalline TiO2 films in precursor solution. This treatment results revealed that the cells with Al2O3 post-treatment raised the conversion efficiency by 23% enhancement. These effects were investigated by current density-voltage characteristics, ultraviolet-visible spectrum, and dark current measurements.
ABSTRACT i
ACKNOWLEDGEMENT ii
TABLE OF CONTENTS iii
LIST OF TABLES vi
LIST OF FIGURES vii
CHAPTER 1. INTRODUCTION 1
1.1 Background and Motivation of the Study 1
1.2 Objectives of the Study 3
1.3 Outlines of the Thesis 5
CHAPTER 2. THEORITICAL 7
2.1 Historical Background and Development of Dye-Sensitized Sollar Cells (DSSCs) 7
2.2 Composition of Dye-Sensitized Solar Cells 14
2.2.1 Transparent Conducting Oxides (TCO) Substrate 14
2.2.2 Nanoparticles Electrodes 14
2.2.3 Dye Sensitizer 15
2.2.4 Electrolyte 17
2.2.5 Counter electrode catalyst 18
2.3 Operational Principle of Dye-Sensitized Solar Cells 19
2.4 Photoelectrochemical Characterization of Dye-Sensitized Solar Cell 28
2.4.1 Photocurrent/Voltage Curve (I-V Curve) 28
2.5 Flexible Dye-Sensitized Solar Cells 32
CHAPTER 3. EXPERIMENTAL 37
3.1 Chemicals and Materials 37
3.1.1 Chemicals 37
3.1.2 Materials 38
3.2 Instrumentations 40
3.3 Preparation of Dye-Sensitized Solar Cells 44
3.3.1 Substrates 44
3.3.2 Nanoparticle Electrodes 44
3.3.3 Dye Sensitizer 51
3.3.4 Preparation of Titanium Tetrachloride Solution 52
3.3.5 Preparation of Aluminium Isopropoxides Layers 52
3.3.6 Cell Configurations 53
3.3.7 Counter electrode 53
3.3.8 Electrolyte 54
3.3.9 Assembling The Cell 54
3.3.10 Testing Dye Solar Cells 55
CHAPTER 4. RESULTS AND DISCUSSION 56
4.1 The Effect of Pt Sputter Deposition Time 56
4.2 The Effect of Pre-Treatment on Ti-Substrate 63
4.2.1 Effect of thin layer Titanium (IV) Isopropoxide (TTIP) pre-treatment 63
4.2.2 Effect of polished pre-treatment on Ti foil substrate 65
4.2.3 Effect of Hydrogen Peroxide (H2O2) pre-treatment on Ti foil substrate 67
4.2.4 Effect of heat treatment on Ti foil substrate 71
4.2.5 Comparison of different Ti-foil Substrate Pre-treatment on Photovoltaic Performances 74
4.3 The Effect of Post-Treatment on Flexible DSSCs 76
CHAPTER 5. CONCLUSIONS AND SUGGESTIONS 79
5.1 Conclusions 79
5.2 Suggestions 81
REFERENCES 82

[1]B. O'Regan and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, vol. 353, pp. 737-740, 1991.
[2]M. Grätzel, Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells, Inorganic Chemistry, vol. 44, pp. 6841-6851, 2005/10/01 2005.
[3]C. Y. Jiang, X. W. Sun, K. W. Tan, G. Q. Lo, A. K. K. Kyaw, and D. L. Kwong, High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode, Applied Physics Letters, vol. 92, p. 143101, 2008.
[4]K. Onoda, S. Ngamsinlapasathian, T. Fujieda, and S. Yoshikawa, The superiority of Ti plate as the substrate of dye-sensitized solar cells, Solar Energy Materials and Solar Cells, vol. 91, pp. 1176-1181, 2007.
[5]V. Thavasi, V. Renugopalakrishnan, R. Jose, and S. Ramakrishna, Controlled electron injection and transport at materials interfaces in dye sensitized solar cells, Materials Science and Engineering: R: Reports, vol. 63, pp. 81-99, 2009.
[6]B. Ma, R. Gao, L. Wang, Y. Zhu, Y. Shi, Y. Geng, H. Dong, and Y. Qiu, Recent progress in interface modification for dye-sensitized solar cells, SCIENCE CHINA Chemistry, vol. 53, pp. 1669-1678, 2010.
[7]J. H. Park, Y. Jun, H.-G. Yun, S.-Y. Lee, and M. G. Kang, Fabrication of an Efficient Dye-Sensitized Solar Cell with Stainless Steel Substrate, Journal of The Electrochemical Society, vol. 155, pp. F145-F149, 2008.
[8]P. M. Sommeling, B. C. O'Regan, R. R. Haswell, H. J. P. Smit, N. J. Bakker, J. J. T. Smits, J. M. Kroon, and J. A. M. van Roosmalen, Influence of a TiCl4 Post-Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells, The Journal of Physical Chemistry B, vol. 110, pp. 19191-19197, 2006/10/01 2006.
[9]L. Kavan, B. O'Regan, A. Kay, and M. Grätzel, Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3, Journal of Electroanalytical Chemistry, vol. 346, pp. 291-307, 1993.
[10]J. Yamamoto, A. Tan, R. Shiratsuchi, S. Hayase, C. R. Chenthamarakshan, and K. Rajeshwar, A 4 % Efficient Dye-Sensitized Solar Cell Fabricated from Cathodically Electrosynthesized Composite Titania Films, Advanced Materials, vol. 15, pp. 1823-1825, 2003.
[11]R. Grünwald and H. Tributsch, Mechanisms of Instability in Ru-Based Dye Sensitization Solar Cells, The Journal of Physical Chemistry B, vol. 101, pp. 2564-2575, 1997/04/01 1997.
[12]T. N. Murakami and M. Grätzel, Counter electrodes for DSC: Application of functional materials as catalysts, Inorganica Chimica Acta, vol. 361, pp. 572-580, 2008.
[13]M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Grätzel, Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell, The Journal of Physical Chemistry B, vol. 107, pp. 8981-8987, 2003/08/01 2003.
[14]A. Hagfeldt and M. Grätzel, Molecular Photovoltaics, Accounts of Chemical Research, vol. 33, pp. 269-277, 2000/05/01 2000.
[15]M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Graetzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, Journal of the American Chemical Society, vol. 115, pp. 6382-6390, 1993/07/01 1993.
[16]M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers, Journal of the American Chemical Society, vol. 127, pp. 16835-16847, 2005/12/01 2005.
[17]J. Halme, Dye-Sensitized Nanostructured and Organic Photovoltaic Cells: Technical Review and Preliminary Test, Master's thesis submitted in Helsinki University of Technology p. 115, 2002.
[18]K. Kalyanasundaram and M. Grätzel, Applications of functionalized transition metal complexes in photonic and optoelectronic devices, Coordination Chemistry Reviews, vol. 177, pp. 347-414, 1998.
[19]A. Hagfeldt and M. Graetzel, Light-induced redox reactions in nanocrystalline systems, Journal Name: Chemical Reviews; (United States); Journal Volume: 95:1, pp. Medium: X; Size: Pages: 49-68.
[20]G. Wolfbauer, A. M. Bond, J. C. Eklund, and D. R. MacFarlane, A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells, Solar Energy Materials and Solar Cells, vol. 70, pp. 85-101, 2001.
[21]A. Hagfeldt, B. Didriksson, T. Palmqvist, H. Lindström, S. Södergren, H. Rensmo, and S.-E. Lindquist, Verification of high efficiencies for the Grätzel-cell. A 7% efficient solar cell based on dye-sensitized colloidal TiO2 films, Solar Energy Materials and Solar Cells, vol. 31, pp. 481-488, 1994.
[22]S. K. Deb, S. Ferrere, A. J. Frank, B. A. Gregg, S. Y. Huang, A. J. Nozik, G. Schlichthorl, and A. Zaban, Photochemical solar cells based on dye-sensitization of nanocrystalline TiO2 in Photovoltaic Specialists Conference, 1997., Conference Record of the Twenty-Sixth IEEE, 1997, pp. 507-510.
[23]G. Smestad, C. Bignozzi, and R. Argazzi, Testing of dye sensitized TiO2 solar cells I: Experimental photocurrent output and conversion efficiencies, Solar Energy Materials and Solar Cells, vol. 32, pp. 259-272, 1994.
[24]E. Olsen, G. Hagen, and S. Eric Lindquist, Dissolution of platinum in methoxy propionitrile containing LiI/I2, Solar Energy Materials and Solar Cells, vol. 63, pp. 267-273, 2000.
[25]N. Papageorgiou, W. F. Maier, and M. Gratzel, An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media, Journal of The Electrochemical Society, vol. 144, pp. 876-884, 1997.
[26]M. Grätzel, Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells, Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, pp. 3-14, 2004.
[27]M. Grätzel, Dye-sensitized solar cells, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 4, pp. 145-153, 2003.
[28]A. Henglein, Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles, Chemical Reviews, vol. 89, pp. 1861-1873, 1989/12/01 1989.
[29]R. Memming, Electron transfer processs with excited molecules at semiconductor electrodes, Progress in Surface Science, vol. 17, pp. 7-73, 1984.
[30]P. Wang, B. Wenger, R. Humphry-Baker, J.-E. Moser, J. Teuscher, W. Kantlehner, J. Mezger, E. V. Stoyanov, S. M. Zakeeruddin, and M. Grätzel, Charge Separation and Efficient Light Energy Conversion in Sensitized Mesoscopic Solar Cells Based on Binary Ionic Liquids, Journal of the American Chemical Society, vol. 127, pp. 6850-6856, 2005/05/01 2005.
[31]K. Tennakone, K. P. Hewaparakkrama, M. Dewasurendra, A. H. Jayatissa, and L. K. Weerasena, Dye-sensitised solid-state photovoltaic cells, Semiconductor Science and Technology, vol. 3, p. 382, 1988.
[32]K. Hara, M. Kurashige, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, K. Sayama, and H. Arakawa, Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells, New Journal of Chemistry, vol. 27, pp. 783-785, 2003.
[33]S. Ito, N.-L. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. t. P?chy, M. K. Nazeeruddin, and M. Gratzel, High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode, Chemical Communications, p. 4004, 2006.
[34]H. M. Seigo Ito*ab, Satoshi Uchidad, Masakazu Takatae, Koichi Sumiokae, Paul Liskab, Pascal Comteb, Peter Péchyb and Michael Grätzel, High-conversion-efficiency organic dye -sensitized solar cells with a novel indoline dye, Chem. Commun, pp. 5194-5196, 2008.
[35]R. Plass, S. Pelet, J. Krueger, M. Grätzel, and U. Bach, Quantum Dot Sensitization of Organic−Inorganic Hybrid Solar Cells, The Journal of Physical Chemistry B, vol. 106, pp. 7578-7580, 2002/08/01 2002.
[36]Y.-L. Lee and Y.-S. Lo, Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe, Advanced Functional Materials, vol. 19, pp. 604-609, 2009.
[37]D. Zhang, T. Yoshida, and H. Minoura, Low Temperature Synthesis of Porous Nanocrystalline TiO2 Thick Film for Dye-Sensitized Solar cells by Hydrothermal Crystallization, Chemistry Letters, vol. 31, pp. 874-875, 2002.
[38]D. Kuang, J. r. m. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin, and M. Grätzel, Application of Highly Ordered TiO2 Nanotube Arrays in Flexible Dye-Sensitized Solar Cells, ACS Nano, vol. 2, pp. 1113-1116, 2008/06/01 2008.
[39]h. nusbaumer, Alternative redox system for the dye-sensitized solar cell, 2004.
[40]K. Fan, T. Peng, B. Chai, J. Chen, and K. Dai, Fabrication and photoelectrochemical properties of TiO2 films on Ti substrate for flexible dye-sensitized solar cells, Electrochimica Acta, vol. 55, pp. 5239-5244, 2010.
[41]C. Y. Jiang, X. W. Sun, K. W. Tan, G. Q. Lo, A. K. K. Kyaw, and D. L. Kwong, High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode, Applied Physics Letters, vol. 92, pp. 143101-3, 2008.
[42]Y. Saito, S. Uchida, T. Kubo, and H. Segawa, Surface-oxidized tungsten for energy-storable dye-sensitized solar cells, Thin Solid Films, vol. 518, pp. 3033-3036, 2010.
[43]K. Miettunen, J. Halme, M. Toivola, and P. Lund, Initial Performance of Dye Solar Cells on Stainless Steel Substrates, The Journal of Physical Chemistry C, vol. 112, pp. 4011-4017, 2008/03/01 2008.
[44]S. Ito, P. Liska, P. Comte, R. Charvet, P. Pechy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin, and M. Gratzel, Control of dark current in photoelectrochemical (TiO2/I--I3-) and dye-sensitized solar cells, Chemical Communications, pp. 4351-4353, 2005.
[45]T. W. Hamann, O. K. Farha, and J. T. Hupp, Outer-Sphere Redox Couples as Shuttles in Dye-Sensitized Solar Cells. Performance Enhancement Based on Photoelectrode Modification via Atomic Layer Deposition, The Journal of Physical Chemistry C, vol. 112, pp. 19756-19764, 2008/12/11 2008.
[46]B. Yoo, K. Kim, D.-K. Lee, M. J. Ko, H. Lee, Y. H. Kim, W. M. Kim, and N.-G. Park, Enhanced charge collection efficiency by thin-TiO2-film deposition on FTO-coated ITO conductive oxide in dye-sensitized solar cells, Journal of Materials Chemistry, vol. 20, pp. 4392-4398, 2010.
[47]T.-S. Kang, S.-H. Moon, and K.-J. Kim, Enhanced Photocurrent-Voltage Characteristics of Ru(II)-Dye Sensitized TiO2 Solar Cells with TiO2, WO3 Buffer Layers Prepared by a Sol-Gel Method, Journal of The Electrochemical Society, vol. 149, pp. E155-E158, 2002.
[48]B. Yoo, K.-J. Kim, D.-K. Lee, K. Kim, M. J. Ko, Y. H. Kim, W. M. Kim, and N.-G. Park, Method to Protect Charge Recombination in the Back-Contact Dye-Sensitized Solar Cell, Opt. Express, vol. 18, pp. A395-A402, 2010.
[49]P. J. Cameron and L. M. Peter, How Does Back-Reaction at the Conducting Glass Substrate Influence the Dynamic Photovoltage Response of Nanocrystalline Dye-Sensitized Solar Cells?, The Journal of Physical Chemistry B, vol. 109, pp. 7392-7398, 2005/04/01 2005.
[50]W. Tan, X. Yin, X. Zhou, J. Zhang, X. Xiao, and Y. Lin, Electrophoretic deposition of nanocrystalline TiO2 films on Ti substrates for use in flexible dye-sensitized solar cells, Electrochimica Acta, vol. 54, pp. 4467-4472, 2009.
[51]L.-Y. Lin, C.-P. Lee, R. Vittal, and K.-C. Ho, Selective conditions for the fabrication of a flexible dye-sensitized solar cell with Ti/TiO2 photoanode, Journal of Power Sources, vol. 195, pp. 4344-4349, 2010.
[52]L. Chen, W. Tan, J. Zhang, X. Zhou, X. Zhang, and Y. Lin, Fabrication of high performance Pt counter electrodes on conductive plastic substrate for flexible dye-sensitized solar cells, Electrochimica Acta, vol. 55, pp. 3721-3726, 2010.
[53]M. Ikegami, K. Miyoshi, T. Miyasaka, K. Teshima, T. C. Wei, C. C. Wan, and Y. Y. Wang, Platinum/titanium bilayer deposited on polymer film as efficient counter electrodes for plastic dye-sensitized solar cells, Applied Physics Letters, vol. 90, pp. 153122-153122-3, 2007.
[54]X. Fang, T. Ma, M. Akiyama, G. Guan, S. Tsunematsu, and E. Abe, Flexible counter electrodes based on metal sheet and polymer film for dye-sensitized solar cells, Thin Solid Films, vol. 472, pp. 242-245, 2005.
[55]S. G. Chen, S. Chappel, Y. Diamant, and A. Zaban, Preparation of Nb2O5 Coated TiO2 Nanoporous Electrodes and Their Application in Dye-Sensitized Solar Cells, Chemistry of Materials, vol. 13, pp. 4629-4634, 2001/12/01 2001.
[56]H. S. Jung, J.-K. Lee, M. Nastasi, S.-W. Lee, J.-Y. Kim, J.-S. Park, K. S. Hong, and H. Shin, Preparation of Nanoporous MgO-Coated TiO2 Nanoparticles and Their Application to the Electrode of Dye-Sensitized Solar Cells, Langmuir, vol. 21, pp. 10332-10335, 2005/11/01 2005.
[57]P. Zuo, C. Li, Y.-S. Wu, X.-C. Ai, X.-S. Wang, B.-W. Zhang, and J.-P. Zhang, Mechanism of squarylium cyanine and Ru(dcbpy)2(NCS)2 co-sensitization of colloidal TiO2, Journal of Photochemistry and Photobiology A: Chemistry, vol. 183, pp. 138-145, 2006.
[58]Y.-C. Liu, Y.-F. Lu, Y.-Z. Zeng, C.-H. Liao, J.-C. Chung, and T.-Y. Wei, Nanostructured Mesoporous Titanium Dioxide Thin Film Prepared by Sol-Gel Method for Dye-Sensitized Solar Cell, International Journal of Photoenergy, vol. 2011, 2011.
[59]Y. Wang, J. Wu, Z. Lan, Y. Xiao, Q. Li, F. Peng, J. Lin, and M. Huang, Preparation of porous nanoparticle TiO2 films for flexible dye-sensitized solar cells, Chinese Science Bulletin, vol. 56, pp. 2649-2653, 2011.
[60]C.-H. Lee, W.-H. Chiu, K.-M. Lee, W.-F. Hsieh, and J.-M. Wu, Improved performance of flexible dye-sensitized solar cells by introducing an interfacial layer on Ti substrates, Journal of Materials Chemistry, vol. 21, p. 5114, 2011.
[61]T.-Y. Tsai, C.-M. Chen, S.-J. Cherng, and S.-Y. Suen, An efficient titanium-based photoanode for dye-sensitized solar cell under back-side illumination, Progress in Photovoltaics: Research and Applications, pp. n/a-n/a, 2011.
[62]N. K. Allam, K. Shankar, and C. A. Grimes, Photoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes, Journal of Materials Chemistry, vol. 18, pp. 2341-2348, 2008.
[63]E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, and J. R. Durrant, Control of Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Layers, Journal of the American Chemical Society, vol. 125, pp. 475-482, 2003/01/01 2002.
[64]J. N. Clifford, E. Palomares, M. K. Nazeeruddin, R. Thampi, M. Grätzel, and J. R. Durrant, Multistep Electron Transfer Processes on Dye Co-sensitized Nanocrystalline TiO2 Films, Journal of the American Chemical Society, vol. 126, pp. 5670-5671, 2004/05/01 2004.
[65]F. Luo, L. Wang, B. Ma, and Y. Qiu, Post-modification using aluminum isopropoxide after dye-sensitization for improved performance and stability of quasi-solid-state solar cells, Journal of Photochemistry and Photobiology A: Chemistry, vol. 197, pp. 375-381, 2008.
[66]X.-T. Zhang, H.-W. Liu, T. Taguchi, Q.-B. Meng, O. Sato, and A. Fujishima, Slow interfacial charge recombination in solid-state dye-sensitized solar cell using Al2O3-coated nanoporous TiO2 films, Solar Energy Materials and Solar Cells, vol. 81, pp. 197-203, 2004.
[67]J. Kim, S. Lee, J. Noh, H. Jung, and K. Hong, Enhanced photovoltaic properties of overlayer-coated nanocrystalline TiO(sub)2(/sub) dye-sensitized solar cells (DSSCs), Journal of Electroceramics, vol. 23, pp. 422-425, 2009.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top