跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:7358:9a99:61b8:7c06) 您好!臺灣時間:2025/01/19 07:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡承達
研究生(外文):Cheng-DaTsai
論文名稱:鎵化合物光觸媒在分解水產氧之應用
論文名稱(外文):Gallium-Containing Compounds as Photocatalysts for Oxygen Production from Water
指導教授:鄧熙聖
指導教授(外文):Hsi-Sheng Teng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:97
中文關鍵詞:GaONCuGaO2分解水光觸媒產氧
外文關鍵詞:GaONCuGaO2water splittingphotocatalystoxygen production
相關次數:
  • 被引用被引用:3
  • 點閱點閱:586
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用摻雜不同的離子進去氧化鎵內,來合成出不同的光觸媒。包括摻雜氮得到GaON以及摻雜亞銅得到的CuGaO2。吸收光譜顯示,摻入不同的離子所得到的光觸媒,其能隙也有所改變。藉由電化學分析,得知不管是摻雜氮或是亞銅都有助於價帶能階位置往負電位方向移動,而導帶能階位置往正電位方向移動。導帶及價帶的位置分別適合水的還原及氧化。導入氮後形成的GaON相較於導入亞銅形成的CuGaO2有著較窄的能隙,因此可括 更長波長的光,當半導體的吸光效率增加時,更可以有效的促進半導體的光催化活性。
在本研究中,我們發現GaON在搭配共觸媒Rh-Cr mixed oxide,可以得到比一般商用產氧觸媒,WO3搭配共觸媒RuO2,更好的效果。因此預期未來可將此觸媒應用在Z-Scheme複合式光觸媒系統的產氧端,進而得到更好的全分解水效果。

We use doping different ions into gallium oxide for forming different photocatalysts. We get GaON by doping nitrogen and CuGaO2 by doping copper(I). From the UV-vis absorption, different photocatalysts have different bandgaps. By electrochemical analysis, we can know no matter nitrogen or copper(I) doping all help valence band shifts to negative electric potential and conduction band shifts to positive electric potential. The band position of conduction band can be suitable for reducing water and the band position of valence band can be suitable for oxidizing water. The bandgap of GaON is smaller than the bandgap of CuGaO2, so the GaON can absorb longer wavelength. When the absorption efficiency increases, the activity of semiconductor will increase.
We find GaON loading Rh-Cr mixed oxide can get better result than commercial WO3 loading RuO2. In the future, we will use the GaON in Z-Scheme system as oxygen production catalyst. We hope it can get a better overall water splitting.
總目錄
中文摘要 …………………………………………………………………... I
Abstract …………………………………………………………………... II
誌謝 …………………………………………………………………... III
本文目錄 …………………………………………………………………... V
圖目錄 …………………………………………………………………... VIII
表目錄 …………………………………………………………………... XI

本文目錄
第一章 緒論............................................ 1
1-1 前言...................................................................................................... 1
1-2 Honda-Fujishima effect........................................................................ 2
1-3 光觸媒原理.......................................................................................... 3
1-3-1 光觸媒的催化原理.......................................................................... 3
1-3-2 光分解水的原理.............................................................................. 4
1-3-3 光觸媒分解水反應程序.................................................................. 7
1-4 犧牲試劑工作原理.............................................................................. 9
1-5 光觸媒分解水裝置.............................................................................. 10
1-6 研究目標.............................................................................................. 12
第二章 文獻回顧....................................... 13
2-1 金屬氧化物半導體光觸媒的發展...................................................... 13
2-2 合成方法簡述...................................................................................... 19
2-2-1導論................................................................................................... 19
2-2-2固相反應法....................................................................................... 20
2-2-3水熱合成法....................................................................................... 21
2-3 氮氧化物光觸媒.................................................................................. 22
2-4 氮氧化(GaON)..................................................................................... 23
2-5 氧鎵化亞銅(CuGaO2).......................................................................... 25
2-6 共觸媒的負載與功用.......................................................................... 25
2-7 半導體電化學理論簡介...................................................................... 27
第三章 實驗方法與儀器原理介紹........................ 31
3-1 藥品、材料與儀器設備...................................................................... 31
3-1-1 藥品與材料...................................................................................... 31
3-1-2 儀器與實驗設備.............................................................................. 32
3-2 光觸媒製備.......................................................................................... 33
3-2-1 氮氧化鎵之製備.............................................................................. 33
3-2-2 氧鎵化亞銅之製備.......................................................................... 34
3-2-3 三氧化鎢之製備.............................................................................. 35
3-2-4 共觸媒之製備.................................................................................. 35
3-3 光觸媒反應裝置與分析...................................................................... 36
3-3-1 懸浮式光照反應器.......................................................................... 36
3-3-2 量子產率之計算與分析.................................................................. 39
3-3-3 光源強度之測定.............................................................................. 40
3-3-4 光源頻譜之掃描.............................................................................. 42
3-4 分析儀器原理簡介.............................................................................. 46
3-4-1 X光繞射分析.................................................................................... 46
3-4-2 紫外-可見光分光光度計................................................................. 49
3-4-3 穿透式電子顯微鏡.......................................................................... 51
3-4-4 掃描式電子顯微鏡.......................................................................... 53
3-4-5 氣相層析儀...................................................................................... 55
第四章 結果與討論.................................... 57
4-1 X光繞射(XRD)圖譜及結構分析....................................................... 57
4-2 紫外-可見光(UV-vis)吸收光譜圖譜分析.......................................... 60
4-3 觸媒能階位置分析.............................................................................. 66
4-3-1 循環伏安法求能階置...................................................................... 66
4-3-2 觸媒能階位置討論.......................................................................... 69
4-4 掃描式電子顯微鏡(SEM)表面分析................................................... 72
4-5 穿透式電子顯微鏡(TEM)分析........................................................... 75
4-6 光觸媒反應活性探討與分析.............................................................. 79
4-6-1 分解水產氫活性之測試.................................................................. 79
4-6-2 分解水產氧活性之測試.................................................................. 82
4-6-3 光觸媒反應活性之探討.................................................................. 86
第五章 結論與建議...................................... 88
參考文獻............................................. 89
自述................................................... 97

圖目錄
第一章 緒論
圖1-1 Honda-Fujishima Effect實驗裝置圖..................................... 2
圖1-2 Honda-Fujishima Effect實驗反應示意圖............................. 3
圖1-3 光觸媒反應類型..................................................................... 6
圖1-4 常見的半導體光觸媒的能帶結構圖……………………... 6
圖1-5 半導體光觸媒分解水的原理……………………………... 6
圖1-6 光觸媒效率受塊材性質的影響…………………………... 7
圖1-7 光分解水的兩步(two-step)反應機制示意圖.…………….. 7
圖1-8 光觸媒反應程序…………………………………………… 8
圖1-9 犧牲試劑的工作原理……………………………………... 9
圖1-10 常見的光分解水反應器 (a)內照式反應器 (b)側照式反應器 (c) 上照式反應器………………………………….. 11
圖1-11 氣密式氣體循環光觸媒反應系統………………………... 11
第二章 文獻回顧
圖2-1 太陽光波長與能量分佈圖……...………………………… 16
圖2-2 三種不同形式增加光吸收之半導體能隙示意圖 (a)過渡金屬摻入型光觸媒 (b)價帶控制型光觸媒 (c)固相溶液型光觸媒……...……………………………………………. 16
圖2-3 光催化水分解之一步驟(One-step)與二步驟(Two-step)光觸媒系統……………..………………………………….…. 17
圖2-4 內部含水之層狀鈣鈦礦(Layered perovskite)結構分解水機制圖..................................................................................... 17
圖2-5 氧化鉭(Ta2O5)、氮氧化鉭(TaON)與氮化鉭(Ta3N5)之能帶結構示意圖.............................................................................
23
圖2-6 氧化鎵(Ga2O3)、氮氧化鎵(GaON)與氮化鎵(GaN)之能帶結構示意圖............................................................................. 24
圖2-7 氮氧化鋅鎵(Ga1-xZnx)(N1-xOx)負載Rh/Cr2O3核殼結構共觸媒應用於分解水反應示意圖............................................. 27
圖2-8 半導體/電解質界面之電位降及能帶彎曲圖....................... 29
圖2-9 能帶彎曲和施加電位的關係。其中Vfb為半導體平帶電位 29
圖2-10 n型和p型半導體施加正偏壓及負偏壓後,其能帶彎曲圖形............................................................................................. 30
第三章 實驗方法與儀器原理介紹
圖3-1 氮氧化鎵(GaON)製備流程圖............................................... 34
圖3-2 氧鎵化亞銅(CuGaO2)製備流程圖........................................ 35
圖3-3 內照式懸浮法反應器............................................................. 37
圖3-4 光分解水系統之裝置圖......................................................... 38
圖3-5 以光源偵測器量測真實情況之光源強度之示意圖............ 41
圖3-6 以單光器分光並以偵測器掃描光源頻譜之示意圖............ 43
圖3-7 450W高壓汞燈之能量分佈圖 (a)石英反應器通入去離子水冷卻液 (b)石英反應器通1M NaNO2冷卻液...................
45
圖3-8 X光對原子散射圖…............................................................. 48
圖3-9 X光對晶體繞射圖…............................................................. 48
圖3-10 基本穿透式電子顯微鏡 (TEM) 之結構圖......................... 52
圖3-11 電子彈性與非彈性碰撞的結果示意圖................................. 54
圖3-12 GC 外觀裝置圖..................................................................... 56
第四章 結果與討論
圖4-1 X光繞射圖譜:三氧化鎢及標準WO3之JCPDS圖譜........... 58
圖4-2 (a) 商用氧化鎵(Ga2O3);(b) 氮氧化鎵(GaON);(c) 氧鎵化亞銅(CuGaO2);及標準Ga2O3、GaN、CuGaO2之JCPDS圖譜。....................................................................................... 59
圖4-3 紫外可見光光譜圖 (a) Ga2O3、CuGaO2、GaON、WO3
之光學吸收光譜;(b) Ga2O3、CuGaO2、GaON之直接能隙圖;(c) Ga2O3、CuGaO2、GaON之間接能隙圖....................... 64
圖4-4 觸媒的顏色。(a) Ga2O3; (b) CuGaO2; (c) GaON.................... 65
圖4-5 循環伏安法決定半導體能階,掃描速率: 5 mV/s。(a) Ga2O3; (b) CuGaO2; (c) GaON。............................................. 68
圖4-6 Ga2O3、CuGaO2、GaON之能量能階圖,包含水的還原電位及氧化電位。....................................................................... 71
圖4-7 不同觸媒之掃描式電子顯微鏡圖 (a) Ga2O3 (b) CuGaO2 (c)GaON.................................................................................. 74
圖4-8 (a) RuO2-WO3之低倍率TEM圖;(b)(c)(d) RuO2-WO3之HRTEM圖.............................................................................. 77
圖4-9 (a) Rh2-yCryO3-GaON之低倍率TEM圖;(b)(c)(d) Rh2-yCryO3-GaON之HRTEM圖............................................ 78
圖4-10 觸媒在可見光照射下於20vol%甲醇溶液的光分解水產氫測試(a) 光沉積1wt % Pt (b)含浸2wt % Rh,2.5wt % Cr..... 81
圖4-11 觸媒在可見光照射下於0.02M硝酸銀溶液的光分解水產氧測試(a) 含浸1wt % RuO2 (b)含浸2wt % Rh,2.5wt % Cr.............................................................................................
84


表目錄
第二章 文獻回顧
-表2-1 Z-Scheme複合式光觸媒在可見光下分解水之文獻回顧 18
-表2-2 不同合成方法之比較.......................................................... 20
第三章 實驗方法與儀器原理介紹
表 3-1 石英反應器通入去離子水及NaNO2之光源強度................ 41
表 3-2 450W高壓汞燈在不同波長下所佔之能量表...................... 44
第四章 結果與討論
表 4-1 各觸媒之能隙......................................................................... 64
表 4-2 Ga2O3、CuGaO2、GaON,由UV-vis圖計算所得的能隙(band gap),以及及由循環伏安法推得的導帶(VCB)及價帶(VVB)位置。............................................................................. 70
表 4-3 光觸媒產氫活性..................................................................... 81
表4-4 光觸媒產氧活性..................................................................... 85

參考文獻
1.張立群譯, “光清淨革命-活躍的二氧化鈦光觸媒, 協志工業叢書印行, 2000
2.藤嶋昭, 本多健一, 菊池真一, “工業化學, 1969, 72, 108.
3.A. Fujishima, K. Honda, Nature, 1972, 238, 37.
4.A. Kudo, H. Kato, I. Tsuji, Chem. Lett., 2004, 33, 1534.
5.A. Kudo, Catal. Surv. Asia, 2003, 31, 7.
6.A. Mills, S. L. Hnute, J. Photochem. Photobiol. A:Chem., 1997, 108, 1.
7.M. Cratzel, Nature, 2001, 414, 338.
8.A. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253.
9.F. E. Osterloh, Chem. Mater., 2008, 20, 35.
10.K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, Chem. Commun. 2001, 2416.
11.H. Kato, M. Hori, R. Konta, Y. Shimodaira, A. Kudo, Chem. Lett. 2004, 33, 1348.
12.R. Abe, K. Sayama, H. Sugihara, J. Phys. Chem. B 2005, 109, 16052.
13.K. Maeda, K. Domen, J. Phys. Chem. C, 2007, 111, 7851.
14.A. Kudo, Inter. J. Hydrogen Energy., 2006, 31, 197.
15.M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo, J. Thomas, Catal. Today, 2007, 122, 51.
16.Y. Matsumoto, U. Unal, N. Tanaka, A. Kudo, H. Kato, J. Solid State Chem., 2004, 177, 4205.
17.J. N. Nian, C. C. Hu, H. Teng, Inter. J. Hydrogen Ener., 2008, 33, 2897.
18.Y. Matsumoto, A. Funatsu, D. Matsuo, U. Unal, K. Ozawa, J. Phys. Chem. B, 2001, 105, 10893.
19.H. Kato, A. kudo, J. Phys. Chem. B, 2001, 105, 4285.
20.T. Ishihara, H. Nishiguchi, K. Fukamachi, Y. Takita, J. Phys. Chem. B, 1999, 103, 1.
21.H. Kato, H. Kobayashi, A. Kudo, J. Phys. Chem. B, 2002, 106, 12441.
22.A. Kudo, H. Kato, Chem. Phys. Lett., 2000, 331, 373.
23.S. Licht, J. Phys. Chem. B, 2003, 107, 4253.
24.A. Galinska, J. Walendziewski, Energy & Fuels, 2005, 19, 1143.
25.H. Kato, M. Hori, R.Konda, Y. Shimodaira, A. Kudo, Chem. Lett., 2004, 33, 1348.
26.K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, Chem. Commum., 2001, 23, 2416.
27.K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, J. Photochem. Photobiol. A, 2002, 148, 71.
28.D. A. Tryk, A. Fujishima, K. Honda, Electro. Acta., 2000, 45, 2363.
29.M. Machida, J. Yabunaka, T. Kihima, Chem. Commun. 1999, 1939.
30.H. Kato, A. Kudo, Chem. Lett. 1999, 1207.
31.A. Kudo, H. Kato, S. Nakagawa, J. Phys. Chem. B 2000, 104, 571.
32.32.M. Machida, J. Yabunaka, T. Kijima, Chem. Mater. 2000, 12, 812.
33.33.H. Kato, A. Kudo, J. Photochem. Photobio. A: Chem. 2001, 145, 129.
34.34.K. Shimizu, Y. Tsuji, M. Kawakami, K. Toda, T. Kodama, M. Sato, Y. Kitayama, Chem. Lett. 2002, 1158.
35.35.M. Yoshino, M. Kakihana, Chem. Mater. 2002, 14, 3369.
36.M. Machida, K. Miyazaki, S. Matsushima, M. Arai, J. Mater. Chem. 2003, 13, 1433.
37.J. Ye, Z. Zou, A. Matsushita, Int. J. Hydrogen Energ. 2003, 28, 651.
38.T. Ishihara, N. S. Baik, N. Ono, H. Nishiguchi, Y. Takita, J. Photochem. Photobio. A: Chem. 2004, 167, 149.
39.D. F. Li, N. Xu, Y. F. Chen, Z. G. Zou, Res. Chem. Intermed. 2005, 31, 521.
40.K. I. Shimizu, S. Itoh, T. Hatamachi, T. Kodama, M. Sato, K. Toda, Chem. Mater. 2005, 17, 5161.
41.S. Ikeda, M. Fubuki, Y. K. Takahara, M. Matsumura, Appl. Catal. A: General 2006, 300, 186.
42.R. Abe, M. Higashi, K. Sayama, Y. Abe, H. Sugihara, J. Phys. Chem. B 2006, 110, 2219.
43.H. Kato, A. Kudo, Chem. Phys. Lett. 1998, 295, 487.
44.Z. Zou, H. Arakawa, J. Photochem. Photobio. A: Chem. 2003, 158, 145.
45.V. M. Aroutiounian, V. M. Arakelyan, G. E. hahnazaryan, Solar Energy, 2005, 78, 581.
46.A. Kudo, Int. J. Hydrogen Energ. 2006, 31, 197.
47.D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature Commun. 2006, 440, 295.
48.Z. Zou, J. Ye, H. Arakawa, Chem. Phys. Lett. 2000, 332, 271.
49.Z. Zou, J. Ye, K. Sayama, H. Arakawa, Nature Lett. 2001, 414, 625.
50.M. Machida, S. Murakami, T. Kijima, J. Phys. Chem. B 2001, 105, 3289.
51.K. Sayama, H. Arakawa, K. Domen, Catal. Today 1996, 28, 175.
52.A. Kudo, H. Kato, Chem. Lett. 1997, 867.
53.H. Kato, A. Kudo, Chem. Lett. 1999, 1207.
54.A. Kudo, H. Okutomi, H. Kato, Chem. Lett. 2000, 1212.
55.Y. Takahara, J. N. Kondo, D. Lu, K. Domen, Solid State Ionics 2002, 151, 305.
56.G. Hitoki, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen, Chem. Commun. 2002, 1698.
57.H. Kato, A. Kudo, Phys. Chem. Chem. Phys. 2002, 4, 2833.
58.M. Machida, T. Mitsuyama, K. Ikeue, J. Phys. Chem. B 2005, 109, 7801.
59.K. Yoshioka, V. Petrykin, M. Kakihana, H. Kato, A. Kudo, J. Catal. 2005, 232, 102.
60.T. Ikeda, S. Fujiyoshi, H. Kato, A. Kudo, H. Onishi, J. Phys. Chem. B 2006, 110, 7883.
61.T. Kurihara, H. Okutomi, Y. Miseki, H. Kato, A. Kudo, Chem. Lett. 2006, 35, 274.
62.M. Yashima, Y. Lee, K. Domen, Chem. Mater. 2007, 19, 588.
63.H. Kato, A. Kudo, Catal. Today, 2003, 78, 561.
64.A. Kudo, R.Niishiro, A. Iwase, H. Kato, Chem. Phys., 2007, 339, 104.
65.A. Kudo, H. Kato, I. Tsuji, Chem. Lett., 2004, 33, 1534.
66.R. Abe, K. Sayama, K. Domen, H. Arakawa, Chem. Phys. Lett., 2002, 362, 441.
67.M. Higashi, R. Abe, K. Teramura, T.Takato, B. Ohtani, K. Domen, Chem. Phys. Lett., 2008, 452, 120.
68.K. Maeda, K. Teramura, N. Saito, Y. Inoue, K. Domen, Bull. Chem. Soc. Jpn. 2007, 80, 1004.
69.K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y.Inoue, H. Kobayashi, K. Domen, J. Phys. Chem. B, 2005, 109, 20504.
70.K. Maeda, H. Terashima, K. Kase, K. Domen, Appl. Catal. A:Gener., 2009, 357, 206.
71.M. Hara, G. Hitoki, T. Takata, J. N. Kondo, H. Kobayashi, K.Domen, Catal. Today, 2003, 518, 555.
72.X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li, J. Am. Chem. Soc., 2008, 130, 7176.
73.X. Wang, K. Maeda, Y. Lee, K. Domen, Chem. Phys. Lett., 2008, 457, 134.
74.A. Kudo, I. Mikami, J. Chem. Soc., 1998, 94, 2929.
75.I. Tsuji, H. Kato, A. Kudo, Angew. Chem. Int. Ed., 2005, 44, 3565.
76.T. Takata, K. Shinohara, A. Tanaka, M. Hara, J. N. Kondo, K. Domen, J. Photochem. Photobio. A: Chem. 1997, 106, 45.
77.K. Sayama, K. Mukasa, R. Abe, Y. Abe and H. Arakawa,J. Photochem. Photobiol., A, 2002, 148, 71.
78.R. Abe, T. Takata, H. Sugihara and K. Domen, Chem. Commun., 2005, 3829.
79.M. Higashi, R. Abe, A. Ishikawa, T. Takata, B. Ohtani and K. Domen, Chem. Lett., 2008, 37, 138.
80.M. Higashi, R. Abe, K. Teramura, T. Takata, B. Ohtani and K. Domen, Chem. Phys. Lett., 2008, 452, 120.
81.V. Leute, “Solid state reactions in semiconductor systems, Solid State Ionics., 1985, 17, 185.
82.W. J. Daw son, “Hydrothermal Synthwsis of Asvanced Ceramic Powders, Cerm. Bull, 1988, 10, 67.
83.B. Jirhennsons, M. E. Staumanis, “Colloid Chemistry, McMillan Co., New York, 1962.
84.M. Hara, T. Takata, J. N. Konda, K. Domen, Catal. Today, 2004, 313.
85.K. Maeda, H. Terashima, K. Kase, M. Higashi, M. Tabata, K. Domen, , Bull, Chem. Soc. Jpn., 2008, 81, 927.86
86.K. Maeda, K. Teramura, H. Masuda, T. Takata, N. Saito, Y. Inoue, K. Domen, J. Phys. Chem. B, 2006, 110, 13107.88
87.K. Maeda, K. Teramura, K. Domen, J. Catal., 2008, 254, 198.90
88.K. Maeda, H Hashiguchi, H. Masuda, R. Abe, K. Domen, J. Phys. Chem. C, 2008, 112, 3447.
89.K. Kamata, K. Maeda, D. Lu, Y. Kako, K. Domen, Chem. Phys. Lett., 2009, 470, 90.
90.Che-Chia Hu, Hsisheng Teng, J. Phys. Chem. C 2010, 114, 20100–20106
91.Roland Gillen, John Robertson R. Bruce Gall, Nathan Ashmore, Meagen A. Marquardt, Xiaoli Tan, David P. Cann, Journal of Alloys and Compounds 391 (2005) 262–266
92.K. sayama, H. Arakawa, J. Chem. Soc. Farady Trans., 1997, 93, 1647.
93.K. Domen, A. Kudo, T. Onishi, N. Kosugi, H. Kuroda, J. Phys. Chem., 1986, 90, 2921
94.K. Maeda, K. Terumura, D. Lu, N. Saito, Y. Inoue, K. Domen, Angew. Chem. Int. Ed., 2006, 45, 7806.
95.H. Kato, K. Asakura, A. Kudo, J. Am. Chem. Soc. 2003, 125, 3082.
96.Che-Chia Hu and Hsisheng Teng, J. Phys. Chem. C 2010, 114, 20100–20106
97.Che-Chia Hu, Yuh-Lang Lee, and Hsisheng Teng, J. Phys. Chem. C 2011, 115, 2805–2811
98.J. Pellicer-Porres, A. Segura, Ch. Ferrer-Roca, D. Martı´nez-Garcı´a, J. A. Sans, and E. Martı´nez, PHYSICAL REVIEW B 69, 024109 (2004)
99.R. Bruce Gall, Nathan Ashmore, Meagen A. Marquardt, Xiaoli Tan, David P. Cann, Journal of Alloys and Compounds 391 (2005) 262–266
100.K. Gurunathan b, Jin-Ook Baeg, Sang Mi Lee,E. Subramanian, Sang-Jin Moon a, Ki-Jeong Kong, Catalysis Communications 9 (2008) 395–402
101.Jonathan W. Lekse, M. Kylee Underwood, James P. Lewis, and Christopher Matranga, J. Phys. Chem. C 2012, 116, 1865–1872
102.Masaaki Kitano and Michikazu Hara,J. Mater. Chem., 2010, 20, 627–641
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊