跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/03 20:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉燊寶
研究生(外文):GunawanIp
論文名稱:鎵鋅氮氧化物及二極體式水分解光觸媒材料之研究
論文名稱(外文):Investigations on GaN-ZnO and Diode-type Photocatalysts for Overall Water Splitting
指導教授:鄧熙聖
指導教授(外文):Hsi-Sheng Teng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:78
外文關鍵詞:solid-statejunctionGaN-ZnOwater splittingphotocatalystphotodepositionWO3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:124
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Developing a new kind of visible light water splitting photocatalyst is a new challenge for the development of renewable energy utilization by employing water splitting process. GaN-ZnO solid solution photocatalyst has been known as a visible light photocatalyst with suitable band position for water splitting reaction. The addition of Zn into Ga2O3 as a starting material for GaN-ZnO is considered as a new way to improve the photocatalytic activity for GaN-ZnO. The main purpose for loading Zn into Ga2O3 is to prevent the photocatalyst to be fully converted into GaN at niridation process. This method has been proved in this experiment to be successful for increasing Zn/Ga ratio in final product and also increasing the H2 and O2 gas evolution rate of GaN-ZnO photocatalyst. GaN-ZnO photocatalyst from 2% Zn loaded Ga2O3 shows higher H2 (181.21 micromol/h) and O2 evolution (49.11 micromol/h) compared with the same photocatalyst from commercial Ga2O3.

In the second part of this study, junction photocatalyst consists of p-type photocatalyst, n-type photocatalyst, and noble metal in between was made. Two different junction photocatalysts have been made which are Cu2O/Au/WO3 and Ag2O/Ag/WO3. For Cu2O/Au/WO3 photocatalyst, Cu2O photodeposition pH is varied to get the junction photocatalyst with the best activity. The result shows that Cu2O/Au/WO3 photocatalyst with the best performance is the photocatalyst which was synthesized at pH = 8.2. Too low photodeposition pH will make Cu2O can’t be well deposited. On the contrary, too high photodeposition pH will cause some of the WO3 to be dissolved and interfere with photodeposition process. For another junction photocatalyst, Ag2O/Ag/WO3, the amount of total Ag loaded into WO3 is varied. The result shows that Ag2O/Ag/WO3 junction photocatalyst with the ratio of Ag to WO3 = 1 : 2 gives the highest activity, even with the termination of O2 evolution after 20 hours of irradiation. Addition of more Ag into WO3 caused Ag overloading which make the photocatalyst quickly covered with Ag and lost its activity. Meanwhile, termination of O2 evolution could be caused by redeposition of Ag which covers WO3 active site.

ABSTRACT I
ACKNOWLEDGEMENT II
TABLE OF CONTENTS III
LIST OF TABLES V
LIST OF FIGURES VI
CHAPTER 1 INTRODUCTION 1
1.1 Overview 1
1.2 Honda-Fujishima Effect 2
1.3 Basic Principle of Photocatalyst 3
1.3.1 Photocatalyst 3
1.3.2 Visible Light Photocatalyst 5
1.4 Research Objective 6
1.5 Thesis Structure 6
CHAPTER 2 LITERATURE REVIEW 7
2.1 Photocatalytic Water Splitting Mechanism 7
2.2 Development of UV Light Responsive Water Splitting Photocatalyst 8
2.2.1 TiO2 Photocatalyst 8
2.2.2 NaTaO3 Photocatalyst 10
2.3 Development of Visible Light Responsive Photocatalyst 13
2.3.1 Metal Oxide Visible Light Photocatalyst 14
2.3.2 Metal Sulfide Visible Light Photocatalyst 15
2.3.3 Metal Nitride Visible Light Photocatalyst 16
2.3.4 NonMetal Visible Light Photocatalyst 16
2.4 Modified System for Achieving Visible Light Water Splitting Photocatalyst 17
2.4.1 Cation Doping for Synthesizing Visible Light Photocatalyst 20
2.4.2 Valence Band Modification for Synthesizing Visible Light Photocatalyst 21
2.4.3 Solid Solution Method for Synthesizing Visible Light Photocatalyst 23
2.4.4 Z-scheme Method for Achieving Overall Water Splitting under Visible Light 24
2.5 Synthesis Method 27
2.5.1 Solid-state Method 27
2.5.2 Hydrothermal Method 28
2.5.3 Photodeposition Method 29
CHAPTER 3 EXPERIMENTAL METHOD 30
3.1 Materials 30
3.2 Experimental Instruments 31
3.3 Photocatalyst Synthesis Process 35
3.3.1. Gallium Zinc Oxynitride Synthesis 35
3.3.2. Cu2O/Au/WO3 Junction Photocatalyst 36
3.3.3. Ag2O/Ag/WO3 Junction Photocatalyst 38
3.4 Water Splitting Process 39
CHAPTER 4 RESEARCH RESULTS 43
4.1 Effect of Zn Doping to Ga2O3 as Starting Materials for GaN-ZnO 43
4.1.1. XRD Result of GaN-ZnO 44
4.1.2. SEM and EDS Result of GaN-ZnO 47
4.1.3. Photocatalytic Water Splitting Result of GaN-ZnO 53
4.2 Cu2O/Au/WO3 Solid State Z-scheme Photocatalyst 56
4.2.1. Effect of Loaded Cocatalyst and Water Splitting Condition 57
4.2.2. Effect of Photodeposition pH 59
4.3 Ag2O/Ag/WO3 Solid State Z-scheme Photocatalyst 63
4.3.1. XRD Result of Ag2O/Ag/WO3 Junction 64
4.3.2. UV-Visible Spectroscopy Result of Ag2O/Ag/WO3 Junction 66
4.3.3. Photocatalytic Water Splitting Result of Ag2O/Ag/WO3 Junction 67
CHAPTER 5 CONCLUSION 71
REFERENCES 73

[1]M. Kitano and M. Hara, Heterogeneous photocatalytic cleavage of water, Journal of Materials Chemistry, vol. 20, pp. 627-641, 2010.
[2]Florida Solar Energy Center, Hydrogen Production Paths, http://www.fsec.ucf.edu/en/consumer/hydrogen/basics/production.htm, 2004.
[3]A. Kudo and Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem Soc Rev, vol. 38, pp. 253-278, 2009.
[4]A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, vol. 238, pp. 37-38, 1972.
[5]G. N. Schrauzer and T. D. Guth, Photolysis of water and photoreduction of nitrogen on titanium dioxide, Journal of the American Chemical Society, vol. 99, pp. 7189-7193, 1977.
[6]R. Abe, Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 11, pp. 179-209, 2010.
[7]B. Sorenson, Renewable Energy, Academic Press, p. 316, 1979.
[8]A.Kudo, Photocatalyst materials for water splitting, Catalysis Surveys from Asia, vol. 7, pp. 31-38, 2003.
[9]K. Maeda and K. Domen, New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light, The Journal of Physical Chemistry C, vol. 111, pp. 7851-7861, 2007.
[10]A. Kudo, H. Kato, and I. Tsuji, Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting, Chemistry Letters, vol. 33, pp. 1534-1539, 2004.
[11]K. Maeda, K. Teramura, and K. Domen, Development of Cocatalysts for Photocatalytic Overall Water Splitting on (Ga1−xZnx)(N1−xOx) Solid Solution, Catalysis Surveys from Asia, vol. 11, pp. 145-157, 2007.
[12]K. Maeda, K. Teramura, N. Saito, Y. Inoue, and K. Domen, Improvement of photocatalytic activity of (Ga1−xZnx)(N1−xOx) solid solution for overall water splitting by co-loading Cr and another transition metal, Journal of Catalysis, vol. 243, pp. 303-308, 2006.
[13]M. Grundmann, The Physics of Semiconductor, Berlin: Springer-Verlag, p. 599, 2010.
[14]H. Van Damme and W. K. Hall, Photoassisted decomposition of water at the gas-solid interface on titanium dioxide, Journal of the American Chemical Society, vol. 101, pp. 4373-4374, 1979.
[15]C.-H. Lu, W.-H. Wu, and R. B. Kale, Synthesis of photocatalytic TiO2 thin films via the high-pressure crystallization process at low temperatures, Journal of Hazardous Materials, vol. 147, pp. 213-218, 2007.
[16]X. Z. Ding, X. H. Liu, and Y. Z. He, Grain size dependence of anatase-to-rutile structural transformation in gel-derived nanocrystalline titania powders, Journal of Materials Science Letters, vol. 15, pp. 1789-1791, 1996.
[17]D. A. H. Hanaor and C. C. Sorrell, Review of the anatase to rutile phase transformation, Journal of Materials Science, vol. 46, pp. 855-874, 2010.
[18]W. H. Baur, Acta Crystallographica B, vol. 27, p. 2133, 1971.
[19]M. Horn, Zeitschrift fuer Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie, vol. 136, p. 273, 1972.
[20]R. Abe, K. Sayama, K. Domen, and H. Arakawa, A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3−/I− shuttle redox mediator, Chemical Physics Letters, vol. 344, pp. 339-344, 2001.
[21]K. Fujihara, T. Ohno, and M. Matsumura, Splitting of water by electrochemical combination of two photocatalytic reactions on TiO2 particles, Journal of the Chemical Society, Faraday Transactions, vol. 94, pp. 3705-3709, 1998.
[22]A. J. Nozik, Photochemical diodes, Applied Physics Letters, vol. 30, pp. 567-569, 1977.
[23]F. E. Osterloh, Inorganic Materials as Catalysts for Photochemical Splitting of Water, Chemistry of Materials, vol. 20, pp. 35-54, 2007.
[24]S. Sato and J. M. White, Photodecomposition of water over Pt/TiO2 catalysts, Chemical Physics Letters, vol. 72, pp. 83-86, 1980.
[25]K. Yamaguti and S. Sato, Photolysis of water over metallized powdered titanium dioxide, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol. 81, pp. 1237-1246, 1985.
[26]K. Sayama and H. Arakawa, Effect of carbonate salt addition on the photocatalytic decomposition of liquid water over Pt/TiO2 catalyst, Journal of the Chemical Society, Faraday Transactions, vol. 93, pp. 1647-1654, 1997.
[27]K. Sayama and H. Arakawa, Significant effect of carbonate addition on stoichiometric photodecomposition of liquid water into hydrogen and oxygen from platinum-titanium(IV) oxide suspension, Journal of the Chemical Society, Chemical Communications, pp. 150-152, 1992.
[28]H. Kato and A. Kudo, New tantalate photocatalysts for water decomposition into H2 and O2, Chemical Physics Letters, vol. 295, pp. 487-492, 1998.
[29]H. Kato and A. Kudo, Water Splitting into H2 and O2 on Alkali Tantalate Photocatalysts ATaO3 (A = Li, Na, and K), The Journal of Physical Chemistry B, vol. 105, pp. 4285-4292, 2001.
[30]H. Kato and A. Kudo, Highly efficient decomposition of pure water into H2 and O2 over NaTaO3 photocatalysts, Catalysis Letters, vol. 58, pp. 153-155, 1999.
[31]C.-C. Hu and H. Teng, Structural features of p-type semiconducting NiO as a co-catalyst for photocatalytic water splitting, Journal of Catalysis, vol. 272, pp. 1-8, 2010.
[32]H. Kato, K. Asakura, and A. Kudo, Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure, Journal of the American Chemical Society, vol. 125, pp. 3082-3089, 2003.
[33]C.-C. Hu and H. Teng, Influence of structural features on the photocatalytic activity of NaTaO3 powders from different synthesis methods, Applied Catalysis A: General, vol. 331, pp. 44-50, 2007.
[34]C.-C. Hu, C.-C. Tsai, and H. Teng, Structure Characterization and Tuning of Perovskite-Like NaTaO3 for Applications in Photoluminescence and Photocatalysis, Journal of the American Ceramic Society, vol. 92, pp. 460-466, 2009.
[35]C.-C. Hu, Y.-L. Lee, and H. Teng, Efficient water splitting over Na1-xKxTaO3 photocatalysts with cubic perovskite structure, Journal of Materials Chemistry, vol. 21, pp. 3824-3830, 2011.
[36]X. Wang, G. Liu, Z.-G. Chen, F. Li, G. Q. Lu, and H.-M. Cheng, Synthesis and Photoelectrochemical Behavior of Nitrogen-doped NaTaO3, Chemistry Letters, vol. 38, pp. 214-215, 2009.
[37]X. Wang, H. Bai, Y. Meng, Y. Zhao, C. Tang, and Y. Gao, Synthesis and Optical Properties of Bi3+ Doped NaTaO3 Nano-Size Photocatalysts, Journal of Nanoscience and Nanotechnology, vol. 10, pp. 1788-1793, 2010.
[38]M. Yang, X. Huang, S. Yan, Z. Li, T. Yu, and Z. Zou, Improved hydrogen evolution activities under visible light irradiation over NaTaO3 codoped with lanthanum and chromium, Materials Chemistry and Physics, vol. 121, pp. 506-510, 2010.
[39]J. R. Darwent and A. Mills, Photo-oxidation of water sensitized by WO3 powder, Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, vol. 78, pp. 359-367, 1982.
[40]W. Erbs, J. Desilvestro, E. Borgarello, and M. Graetzel, Visible-light-induced oxygen generation from aqueous dispersions of tungsten(VI) oxide, The Journal of Physical Chemistry, vol. 88, pp. 4001-4006, 1984.
[41]M. Hara, T. Kondo, M. Komoda, S. Ikeda, J. N. Kondo, K. Domen, K. Shinohara, and A. Tanaka, Cu2O as a photocatalyst for overall water splitting under visible light irradiation, Chemical Communications, pp. 357-358, 1998.
[42]L. H. Tjeng, M. B. J. Meinders, J. van Elp, J. Ghijsen, G. A. Sawatzky, and R. L. Johnson, Electronic structure of Ag2O, Physical Review B, vol. 41, pp. 3190-3199, 1990.
[43]X. Wang, S. Li, H. Yu, J. Yu, and S. Liu, Ag2O as a New Visible-Light Photocatalyst: Self-Stability and High Photocatalytic Activity, Chemistry – A European Journal, vol. 17, pp. 7777-7780, 2011.
[44]K. Lalitha, J. K. Reddy, M. V. Phanikrishna Sharma, V. D. Kumari, and M. Subrahmanyam, Continuous hydrogen production activity over finely dispersed Ag2O/TiO2 catalysts from methanol:water mixtures under solar irradiation: A structure–activity correlation, International Journal of Hydrogen Energy, vol. 35, pp. 3991-4001, 2010.
[45]M. Matsumura, Y. Saho, and H. Tsubomura, Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder, The Journal of Physical Chemistry, vol. 87, pp. 3807-3808, 1983.
[46]N. Bao, L. Shen, T. Takata, and K. Domen, Self-Templated Synthesis of Nanoporous CdS Nanostructures for Highly Efficient Photocatalytic Hydrogen Production under Visible Light, Chemistry of Materials, vol. 20, pp. 110-117, 2007.
[47]J. F. Reber and M. Rusek, Photochemical hydrogen production with platinized suspensions of cadmium sulfide and cadmium zinc sulfide modified by silver sulfide, The Journal of Physical Chemistry, vol. 90, pp. 824-834, 1986.
[48]W.-J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo, M. Hara, M. Kawai, Y. Matsumoto, and K. Domen, Conduction and Valence Band Positions of Ta2O5, TaON, and Ta3N5 by UPS and Electrochemical Methods, The Journal of Physical Chemistry B, vol. 107, pp. 1798-1803, 2003.
[49]G. Hitoki, A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, and K. Domen, Ta3N5 as a Novel Visible Light-Driven Photocatalyst (λ ( 600 nm), ChemInform, vol. 33, pp. 736-737, 2002.
[50]Y. Lee, K. Nukumizu, T. Watanabe, T. Takata, M. Hara, M. Yoshimura, and K. Domen, Effect of 10 MPa Ammonia Treatment on the Activity of Visible Light Responsive Ta3N5 Photocatalyst, ChemInform, vol. 37, pp. 352-353, 2006.
[51]T.-F. Yeh, J.-M. Syu, C. Cheng, T.-H. Chang, and H. Teng, Graphite Oxide as a Photocatalyst for Hydrogen Production from Water, Advanced Functional Materials, vol. 20, pp. 2255-2262, 2010.
[52]V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, Graphene based materials: Past, present and future, Progress in Materials Science, vol. 56, pp. 1178-1271, 2011.
[53]A. Kudo, Z-scheme photocatalyst systems for water splitting under visible light irradiation, MRS Bulletin, vol. 36, pp. 32-38, 2011.
[54]R. M. Navarro, M. C. Alvarez-Galván, J. A. Villoria de la Mano, S. M. Al-Zahrani, and J. L. G. Fierro, A framework for visible-light water splitting, Energy & Environmental Science, vol. 3, p. 1865, 2010.
[55]S.-C. Yu, C.-W. Huang, C.-H. Liao, J. C. S. Wu, S.-T. Chang, and K.-H. Chen, A novel membrane reactor for separating hydrogen and oxygen in photocatalytic water splitting, Journal of Membrane Science, vol. 382, pp. 291-299, 2011.
[56]H. Kato and A. Kudo, Visible Light Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium, The Journal of Physical Chemistry B, vol. 106, pp. 5029-5034, 2002.
[57]T. Ishii, H. Kato, and A. Kudo, H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation, Journal of Photochemistry and Photobiology A: Chemistry, vol. 163, pp. 181-186, 2004.
[58]R. Konta, T. Ishii, H. Kato, and A. Kudo, Photocatalytic Activities of Noble Metal Ion Doped SrTiO3 under Visible Light Irradiation, The Journal of Physical Chemistry B, vol. 108, pp. 8992-8995, 2004.
[59]R. Niishiro, R. Konta, H. Kato, W.-J. Chun, K. Asakura, and A. Kudo, Photocatalytic O2 Evolution of Rhodium and Antimony-Codoped Rutile-Type TiO2 under Visible Light Irradiation, The Journal of Physical Chemistry C, vol. 111, pp. 17420-17426, 2007.
[60]G. Hitoki, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, and K. Domen, An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ ( 500 nm), Chemical Communications, pp. 1698-1699, 2002.
[61]C.-C. Hu and H. Teng, Gallium Oxynitride Photocatalysts Synthesized from Ga(OH)3 for Water Splitting under Visible Light Irradiation, The Journal of Physical Chemistry C, vol. 114, pp. 20100-20106, 2010.
[62]C.-C. Hu, Y.-L. Lee, and H. Teng, Influence of Indium Doping on the Activity of Gallium Oxynitride for Water Splitting under Visible Light Irradiation, The Journal of Physical Chemistry C, vol. 115, pp. 2805-2811, 2011.
[63]K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi, and K. Domen, GaN:ZnO Solid Solution as a Photocatalyst for Visible-Light-Driven Overall Water Splitting, Journal of the American Chemical Society, vol. 127, pp. 8286-8287, 2005.
[64]K. Maeda and K. Domen, Solid Solution of GaN and ZnO as a Stable Photocatalyst for Overall Water Splitting under Visible Light†, Chemistry of Materials, vol. 22, pp. 612-623, 2010.
[65]K. Maeda, K. Teramura, N. Saito, Y. Inoue, H. Kobayashi, and K. Domen, Overall water splitting using (oxy)nitride photocatalysts, Pure and Applied Chemistry, vol. 78, pp. 2267-2276, 2006.
[66]K. Maeda, K. Teramura, H. Masuda, T. Takata, N. Saito, Y. Inoue, and K. Domen, Efficient Overall Water Splitting under Visible-Light Irradiation on (Ga1-xZnx)(N1-xOx) Dispersed with Rh−Cr Mixed-Oxide Nanoparticles:  Effect of Reaction Conditions on Photocatalytic Activity, The Journal of Physical Chemistry B, vol. 110, pp. 13107-13112, 2006.
[67]K. Maeda, K. Teramura, D. Lu, N. Saito, Y. Inoue, and K. Domen, Roles of Rh/Cr2O3 (Core/Shell) Nanoparticles Photodeposited on Visible-Light-Responsive (Ga1-xZnx)(N1-xOx) Solid Solutions in Photocatalytic Overall Water Splitting, The Journal of Physical Chemistry C, vol. 111, pp. 7554-7560, 2007.
[68]K. Maeda and K. Domen, Photocatalytic Water Splitting: Recent Progress and Future Challenges, The Journal of Physical Chemistry Letters, vol. 1, pp. 2655-2661, 2010.
[69]I. Tsuji, H. Kato, and A. Kudo, Photocatalytic Hydrogen Evolution on ZnS−CuInS2−AgInS2 Solid Solution Photocatalysts with Wide Visible Light Absorption Bands, Chemistry of Materials, vol. 18, pp. 1969-1975, 2006.
[70]K. Sayama, K. Mukasa, R. Abe, Y. Abe, and H. Arakawa, Stoichiometric water splitting into H and O using a mixture of two different photocatalysts and an IO3-/I- shuttle redox mediator under visible light irradiation, Chemical Communications, pp. 2416-2417, 2001.
[71]K. Sayama, K. Mukasa, R. Abe, Y. Abe, and H. Arakawa, A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis, Journal of Photochemistry and Photobiology A: Chemistry, vol. 148, pp. 71-77, 2002.
[72]R. Abe, T. Takata, H. Sugihara, and K. Domen, Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3-/I- shuttle redox mediator, Chemical Communications, pp. 3829-3831, 2005.
[73]Y. Sasaki, A. Iwase, H. Kato, and A. Kudo, The effect of co-catalyst for Z-scheme photocatalysis systems with an Fe3+/Fe2+ electron mediator on overall water splitting under visible light irradiation, Journal of Catalysis, vol. 259, pp. 133-137, 2008.
[74]H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, and K. Tanaka, All solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system, Nat Mater, vol. 5, pp. 782-786, 2006.
[75]H. J. Yun, H. Lee, N. D. Kim, D. M. Lee, S. Yu, and J. Yi, A Combination of Two Visible-Light Responsive Photocatalysts for Achieving the Z-Scheme in the Solid State, ACS Nano, vol. 5, pp. 4084-4090, 2011.
[76]K. Maeda, N. Sakamoto, T. Ikeda, H. Ohtsuka, A. Xiong, D. Lu, M. Kanehara, T. Teranishi, and K. Domen, Preparation of core-shell-structured nanoparticles (with a noble-metal or metal oxide core and a chromia shell) and their application in water splitting by means of visible light, Chemistry, vol. 16, pp. 7750-7759, 2010.
[77]Y. Matsumoto, S. Ida, and T. Inoue, Photodeposition of Metal and Metal Oxide at the TiOx Nanosheet to Observe the Photocatalytic Active Site, The Journal of Physical Chemistry C, vol. 112, pp. 11614-11616, 2008.
[78]L. Wen, B. Liu, C. Liu, and X. Zhao, Preparation, characterization and photocatalytic property of Ag-loaded TiO2 powders using photodeposition method, Journal of Wuhan University of Technology-Mater. Sci. Ed., vol. 24, pp. 258-263, 2009.
[79]K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y. Inoue, H. Kobayashi, and K. Domen, Overall Water Splitting on (Ga1-xZnx)(N1-xOx) Solid Solution Photocatalyst:  Relationship between Physical Properties and Photocatalytic Activity, The Journal of Physical Chemistry B, vol. 109, pp. 20504-20510, 2005.
[80]V. Sharma, K. Park, and M. Srinivasarao, Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly, Materials Science and Engineering: R: Reports, vol. 65, pp. 1-38, 2009.
[81]Y. Hou, L. Wu, X. Wang, Z. Ding, Z. Li, and X. Fu, Photocatalytic performance of α-, β-, and γ-Ga2O3 for the destruction of volatile aromatic pollutants in air, Journal of Catalysis, vol. 250, pp. 12-18, 2007.
[82]S. Fujihara, Y. Shibata, and E. Hosono, Chemical Deposition of Rodlike GaOOH and β-Ga2O3 Films Using Simple Aqueous Solutions, ChemInform, vol. 37, pp. C764-C768, 2006.
[83]F. Dionigi, P. C. K. Vesborg, T. Pedersen, O. Hansen, S. Dahl, A. Xiong, K. Maeda, K. Domen, and I. Chorkendorff, Suppression of the water splitting back reaction on GaN:ZnO photocatalysts loaded with core/shell cocatalysts, investigated using a μ-reactor, Journal of Catalysis.
[84]C.-C. Hu, J.-N. Nian, and H. Teng, Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3, Solar Energy Materials and Solar Cells, vol. 92, pp. 1071-1076, 2008.
[85]H. Habazaki, Y. Hayashi, and H. Konno, Characterization of electrodeposited WO3 films and its application to electrochemical wastewater treatment, Electrochimica Acta, vol. 47, pp. 4181-4188, 2002.
[86]J. Tang and J. Ye, Correlation of crystal structures and electronic structures and photocatalytic properties of the W-containing oxides, Journal of Materials Chemistry, vol. 15, pp. 4246-4251, 2005.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊