跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/14 21:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張清棟
研究生(外文):Ching-TungChang
論文名稱:海膽狀二氧化鈦之合成及其於染料敏化太陽能電池之應用
論文名稱(外文):Preparation of Sea-Urchin Like Titanium Dioxide Applied for Dye-Sensitized Solar Cells
指導教授:郭炳林郭炳林引用關係
指導教授(外文):Ping-Lin Kuo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:83
中文關鍵詞:二氧化鈦染料敏化太陽能電池海膽狀板鈦礦
外文關鍵詞:sea urchin-likebrookitetitanium dioxideDSSCs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用水熱法於鹼性環境下合成出具連續一維結構的海膽狀二氧化鈦,並透過改變溶液中的鹼性濃度,獲得混合晶型比例不同的二氧化鈦。發現在不同鹼性濃度下,皆有銳鈦礦(Anatase)及板鈦礦(Brookite)的訊號出現,板鈦礦比例最高可達40%。

在特定鹼性濃度條件下利用不同時間取樣來觀察其合成機制的實驗中,發現板鈦礦晶型伴隨著海膽狀結構一起出現,故推論海膽狀結構可能因板鈦礦晶型的自身應力所造成。

將海膽狀二氧化鈦做為光電極主層進行光電效率測試發現,海膽狀TiO2與商用品CCIC-400在整體的轉換效率表現相近。由電化學頻譜阻抗分析(EIS)測試可以發現,海膽狀TiO2有較高的τeff 值,此意謂著電子在海膽狀TiO2中具有較長的電子存活時間,但由於其結構並非單一晶型組成,而形成結晶錯位的障礙,不利於電子傳導,故電子在傳遞時具有較高Rw。

In this study, the sea urchin-like titanium dioxide particles were synthesized by hydrothermal treatment with changing the concentration of base, the composites with different ratios of brookite and anatase were obtained. The brookite sea urchin-like morphology in the picture shows high uniformity and a clean surface without any contamination, then they were tested through SEM, TEM, XRD and BET.

In the XRD and BET test, we have the detailed informations about phase composition and specific surface area of the above materials. The titanium dioxide particles with different ratios of brookite in the range of 10% to 40% through changing the concentration of base. To observe the surface morphology and particle size, the SEM and TEM images of some samples were carried out.

To understand the formation mechanism, the samples with different reaction times were sampled. And the TEM images of TiO2 show that nanosheets are the key steps in synthesis.

In order to achieve a improvement in energy conversion efficiency of Dye-sensitized solar cells(DSSCs), One possible solution is to increase the electron diffusion length in the anode. Electron transport in crystalline sea urchin-like titanium dioxide particles is expected to be faster than percolation through a random nanoparticle film.

The photovoltaic characterization results show that the differences of the performances of sea urchin-like particles and CCIC-400 are not remarkable. From EIS measurements under open-circuit voltage conditions, We also confirmed that our particles have the better electron diffusion ability by longer effective lifetime ( τeff ) and better short circuit current ( Jsc ) values of DSSCs.

中文摘要 II
英文摘要 III
致謝 IV
目錄 V
圖目錄 IX
表目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 太陽能電池簡介與種類 3
1-2-1 太陽能電池簡介 3
1-2-2 太陽能電池種類 4
1-3 研究動機與目的 9
第二章 理論說明與文獻回顧 11
2-1 二氧化鈦簡介 11
2-1-1 二氧化鈦晶體特性 11
2-1-2 二氧化鈦的合成方法 13
2-1-3 二氧化鈦的結構 14
2-2 染料敏化太陽能電池 16
2-2-1 染料敏化太陽能電池之簡介 16
2-2-2 染料敏化太陽能電池工作原理 19
2-2-3 染料敏化太陽能電池構造 22
2-2-4 影響光電轉換效率之因素 27
第三章 實驗方法 34
3-1 實驗藥品與設備 34
3-1-1 實驗藥品與器材 34
3-1-2 實驗設備 35
3-2 海膽狀二氧化鈦之製備 36
3-2-1 不同鹼類濃度下海膽狀二氧化鈦之製備 36
3-3 材料特性鑑定 38
3-3-1 穿透式電子顯微鏡(TEM) 38
3-3-2 場發射掃描式電子顯微鏡(FESEM) 38
3-3-3 X-射線繞射光譜(XRD) 38
3-3-4 光電極膜厚量測 40
3-3-5 氮氣等溫吸附與脫附 40
3-4 染料敏化太陽能電池之組成製備、組裝及效能測試 43
3-4-1 染料之配製 43
3-4-2 電解液之配製 43
3-4-3 二氧化鈦漿料製作 44
3-4-4 二氧化鈦光電極製作 44
3-4-5 白金對電極之製作 47
3-5 染料敏化太陽能電池之組裝 47
3-6 染料敏化太陽能電池的光電效能測試 48
第四章 結果與討論 49
4-1 水熱法合成二氧化鈦 49
4-1-1 弱螯合劑條件合成二氧化鈦之分析 49
4-2 海膽狀二氧化鈦 51
4-2-1 不同鹼性濃度下合成之海膽狀二氧化鈦的物性分析 51
4-2-1-1 TEM分析 52
4-2-1-2 XRD分析 54
4-2-1-3 氮氣吸脫附測試 55
4-2-1-4 高溫鍛燒後二氧化鈦的狀態變化 59
4-2-1-5 加入螯合劑對海膽狀結構進行改善 60
4-2-2 固定鹼性濃度不同水熱時間下合成之海膽狀TiO2的物性分析 62
4-2-2-1 鹼性濃度70%下以不同反應時間探討海膽狀二氧化鈦合成機制 63
4-2-2-2 鹼性濃度10%下以不同反應時間探討海膽狀二氧化鈦合成機制 65
4-3 二氧化鈦光電極表面鑑定 67
4-3-1 SEM分析 67
4-3-2 UV穿透度 68
4-4 海膽狀TiO2做為散射層(scattering layer)之光電效率討論 69
4-5 海膽狀TiO2做為光電極主層(main layer)之光電效率討論 70
第五章 結論與建議 74
5-1 結論 74
5-2 建議 75
第六章 參考文獻 76

1.張正華等, “有機與塑膠太陽能電池 , 五華出版社, 民96.
2.陳維新, “能源概論, 高立出版社, 民95.
3.M. Grätzel, “From space to earth: The story of solar electricity, Nature, 403, p363 ,2000.
4.A.E. Becquerel, “Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques, C.R. Acad. Sci., 9, p145 , 1839.
5.M. Grätzel, “Photoelectrochemical cells, Nature, 414, p338 ,2001.
6.黃春輝, 李富友, 黃岩誼, “光電功能超薄膜, 北京大學出版社, 2001.
7.史錦珊, 鄭繩楦, “光電子學及其應用, 機械工業出版社, 1991.
8.姜月順, 李鐵津等著. “光化學, 化學工業出版社, 2005.
9.查丁壬彙編, “認識太陽能電池, 中華太陽能聯誼會, 2003
10.李永龍,國立成功大學電機工程研究所碩士論文, 1999
11.Jain SC, et. al., “Conducting Organic Materials and Devices, SEMICONDUCT SEMIMET, 81, p1, 2007.
12.Dennler C, et. al., “Polymer‐fullerene bulk‐heterojunction solar cells. , Advanced Materials, 21, p1323, 2009.
13.K. Hara, et. al., “Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells, Sol. Energy Mater. Sol. Cells , 64, p115 ,2000.
14.J. R. Durrant, M. Grätzel , “In Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion, Imperial College Press: London, 2008.
15.Y. Suzuki, et al., “Partially nanowire-structured TiO2 electrode for dye-sensitized solar cells Cent. Eur. J. Chem., 4, p476, 2006.
16.A. Fujishima, Honda, K., “ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE, Nature, 37, p238, 1972.
17.G. K. Mor, et al., “A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination, J. Mater. Res., 19, p628,2004.
18.Yang Zhenguo, et al., “Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review, J POWER SOURCES, 192, p588, 2009.
19.R. vandeKrol, et al., “Mott-Schottky analysis of nanometer-scale thin-film anatase TiO2, J Electrochem Soc,144, p1723, 1997.
20.Errera J, Ketelaar H., J Phys Rad, 3, p239, 1932.
21.U. Diebold, “The surface science of titanium dioxide, Surf Sci Rep, 48, 53, 2003.
22.A. C. Pierre, et al., “Chemistry of aerogels and their applications, Chem. ReV., 102, 4243, 2002.
23.W. Li, et al., “Metallorganic chemical vapor deposition and characterization of TiO2 nanoparticles , MAT SCI ENG B-ADV, 96, p247, 2002.
24.W. S. Nam, G. Y. Han, “A Photocatalytic Performance of TiO2 Photocatalyst Prepared by the Hydrothermal Method, Korean J. Chem. Eng., 20, p180, 2002.
25.X. L. Li, et al., “Near Monodisperse TiO2 Nanoparticles and Nanorods, Chem.sEur. J., 12, p2383, 2006.
26.J. M. Wu, “Low-temperature preparation of titania nanorods through direct oxidation of titanium with hydrogen peroxide, J. Cryst. Growth, 269, p347,2004.
27.A. B. Corradi, et al., “Conventional and microwave-hydrothermal synthesis of TiO2 nanopowders, J. Am. Ceram. Soc., 88, 2639, 2005.
28.D. V. Bavykin, et al., “The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes, J. Mater. Chem., 14, p3370, 2004.
29.T. Sasaki, “Two-dimensional diffraction of molecular nanosheet crystallites of titanium oxide, J. Phys. Chem. B, 105, p6116,2001.
30.M. Law, et al., “Nanowire dye-sensitized solar cells, Nature Materials, 4, p455, 2005.
31.Kearns, et al., “Evidence for the participation of 1.SIGMA.g+ and 1.DELTA.g oxygen in dye-sensitized photooxygenation reactions. II,J. Am. Chem. Soc.,89, p5456, 1967.
32.H. Tsubomura, et al., “Dye sensitized zinc oxide/aqueous electrolyte/platinum photocell, Nature, 261, p402, 1976.
33.B. O’Regan, et al., “ A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353, p737, 1991.
34.M. Grätzel, “Photoelectrochemical cells, Nature, 414, p338,2001.
35.J. Nelson, “Organic photovoltaic films, Mater.Today, 5, p20, 2002.
36.P.Wang et al., “A stable quasi-solid-state dye-sensitized solar cell with anamphiphilic ruthenium sensitizer and polymer gel electrolyte, NAT MATER, 2, p402, 2002.
37.SX Tan, et al., “Property influence of polyanilines on photovoltaic behaviors of dye-sensitized solar cells, Langmuir, 20, p2934, 2004.
38.B.Pradhan, A.J.Pal, “Organic heterojunction photovoltaic cells: role of functional groups in electron acceptor materials, solar Energy Mater. &Solar cell, 81, p469, 2004.
39.D.Gebeyehu, et al., “Solid-state organic/inorganic hybrid solar cells based on conjugated polymers and dye-sensitized TiO2 electrodes, Thin Solid Films, 403, p271, 2002.
40.K. Tennakone, et. al.,“A solid state PV cell sensitized with Ru Bipyridyl complex, J.Phys.D:Appl.Phys., 31, p1492, 1998.
41.I. Flores, et al., “ Dye-sensitized solar cells based on TiO2 nanotubes and a solid-state electrolyte, J PHOTOCH PHOTOBIO A, 189, p153, 2007.
42.P.Wang et al., “A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells, J.Phys.Chem.B, 107, p13280, 2003.
43.M. Grätzel, “Mesoporous oxide junctions and nanostructured solar cells, CURR OPIN COLLOID IN., 4, p1314, 1999.
44.K.kalyanasundaram, M. Grätzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices, COORDIN CHEM REV, 177, p347,1998.
45.M. Grätzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells , Inorg. Chem., 44, p6841, 2005.
46.Z.S. Wang, et. al., “Electronic-Insulating Coating of CaCO3 on TiO2
Electrode in Dye-Sensitized Solar Cells: Improvement of Electron Lifetime and Efficiency, Chem. Mater., 18, p2912, 2006.
47.A. Yella, et. al., “Porphyrin-Sensitized Solar Cells with Cobalt (II/III)
–Based Redox Electrolyte Exceed 12 Percent Efficiency, Science, 334, p629, 2011.
48.K. Kalyanasundaram, et al., “Applications of functionalized transition metal complexes in photonic and optoelectronic devices, Coord. Chem. Rev., 77, p347, 1998.
49.M. K. Nazeeruddin, et al., “Conversion of light to electricity by cis-X2Bis (2,2’- bipyridyl-4,4’-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X=Cl−, Br−, I−, CN− and SCN−) on nanocrystalline TiO2 electrodes , J. Am. Chem. Soc., 115, p6382, 1993.
50.J. Wienke, et al., “Dye-semsitized nanocrystalline TiO2 solar cells on
flexible substrates, ECN contributions 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, Vienna 6 - 10 July 1998.
51.Christophe J. Barbe, et al., “Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications, J. Am. Ceram. Soc., 80, p3157, 1997.
52.K Tennakone, et al., “A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex, J. Phys. D: Appl. Phys., 31, p1492, 1998.
53.M. K. Nazeeruddin, et al., “Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato– ruthenium complex, Chem. Comm., 18, p1705, 1997.
54.K Hara, et al., “A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%, Chem. Comm.,6, p569, 2001.
55.角野裕康, et al., “Dye-sensitized solar cells using solid electrolytes, 東芝レビュー, 56, p7 , 2001.
56.Anders Hagfeldt, et al., “A new method for manufacturing nanostructured electrodes on plastic substrates, Nano Letters, 1, p97, 2001.
57.Wataru Kubo, et al., “Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator, Chem. Comm., p374, 2002.
58.原 浩二郎, “有機色素増感太陽電池で変換効率7.5%の世界最高性能を達成, AIST Today, 12, p14, 2002.
59.Nick Vlachopoulos, et al., “Very Efficient visible light energy harvesting and conversion by spectral sensitization of high surface area poly-
crystalline titanium dioxide films, J. Am. Chem. Soc., 110, p1216, 1988.
60.M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye- sensitized solar cells, J Photochem Photobiol A Chem, 164, p3, 2004.
61.T. Matsubara, et al., “The use of xylenol orange in a dye-sensitized solar cell, Sol. Energy Mater. Sol. Cells, 85, p269, 2005.
62.Shi-Woo Rhee, Woosung Kwon, “Key technological elements in dye- sensitized solar cells (DSC), Korean J. Chem. Eng., 28, p1481-1494, 2011.
63.A. J. Frank, et al., “Comparison of dye-sensitized rutile- and anatase- based TiO2 solar cells, J. Phys. Chem. B, 104, p8989, 2000.
64.J. Frank, et al., “Dye-sensitized TiO2 solar cells: structural and photo- electrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4, J. Phys. Chem. B, 103, p3308, 1999.
65.Shozo Yanagida, et al., “Facilefabrication of mesoporous TiO2
electrodes for dye solar cells: chemical modification and repetitive coating, Sol. Energy Mater. Sol. Cells, 76, p3, 2003.
66.S. Nakade, et al., “Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells, J. Phys. Chem. B, 106, p10004, 2002.
67.Frederik C. Krebs, “Fabrication and processing of polymer solar cells: A review of printing and coating techniques, Solar Energy Materials & Solar Cells, 93, p394, 2009.
68.K. Hara, et al., “Molecular Design of Coumarin Dyes for Efficient Dye-Sensitized Solar Cells, J. Phys. Chem. B, 107, 2003.
69.A. F. Nogueira, et al., “ Dye-sensitized nanocrystalline solar cells employing a polymer electrolyte , ADVANCED MATERIALS, 13, p826, 2001.
70.W. Kubo , et al., “Quasi-solid-state dye-sensitized TiO2 solar cells: Effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine , J. Phys. Chem. B, 105, 2001.
71.J. Joseph , K.M. Son , R. Vittal, et al., “Quasi-solid-state dye-sensitized solar cells with siloxane poly(ethylene glycol) hybrid gel electrolyte , Semicond. Sci. Tech. , 21, p697, 2006.
72.H.J. Lee, et al., Effects of Nanocrystalline Porous TiO2 Films on Interface Adsorption of Phthalocyanines and Polymer Electrolytes in Dye-Sensitized Solar Cells, Macromolecular Symposia, 235, p230, 2006.
73.U. Bach, et al., “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature, 395, p583, 1998.
74.Y. J. Kim, et al., “Supramolecular Electrolytes for Use in Highly Efficient Dye-Sensitized Solar Cells, Advanced Materials, 16, p1753-1757, 2004.
75.Kubo W, et al., “Photocurrent-Determining Processes in Quasi-Solid- State Dye-Sensitized Solar Cells Using Ionic Gel Electrolytes, J. Phys. Chem. B, 107, p4374, 2003.
76.Shi Jifu, et al., “Quasi-Solid-State Dye-Sensitized Solar Cells with Polymer Gel Electrolyte and Triphenylamine-Based Organic Dyes, ACS Appl. Mater. Interfaces, 1, p944, 2009.
77.Bin Li, et al., “Review of recent progress in solid-state dye-sensitized solar cells, Solar Energy Materials & Solar Cells, 90, p549, 2006.
78.H. Kusama, H. Arakawa, Influence of pyrimidine additives in electrolytic solution on dye-sensitized solar cell performance, Journal of Photochemistry and Photobiology A: Chemistry, 160, p171, 2003.
79. H. Kusama and H. Arakawa, Influence of aminothiazole additives in
I-/I3-redox electrolyte solution on Ru (II)-dye-sensitized nanocrystalline
TiO2 solar cell performance,Solar energy materials and solar cells, 82,
p457, 2004.
80.T.J. Dines, et al., “The surface acidity of oxides probed by IR spectr- oscopy of adsorbed diazines, Phys. Chem. Chem. Phys., 3, p2676, 2001.
81.K. Imoto, et al., High-performance carbon counter electrode for dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells, 79, p 459, 2003.
82. T. Murakami, et al., Highly efficient dye-sensitized solar cells based on
carbon black counter electrodes, J. Electrochem. Soc., 153, p2255, 2006.
83.A. Kay, M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder, Sol. Energy Mater. Sol. Cell, 44, p99, 1996.
84.T. Kitamura, et al., “Improved solid-state dye solar cells with polypyrrole using a carbon-based counter electrode, Chem. Lett., 30, p1054, 2001.
85.Y. Saito, et al., “I-/I-3(-) redox reaction behavior on poly(3,4-ethylene- dioxythiophene) counter electrode in dye-sensitized solar cells, J. Photochem. Photobiol. A. Chem., 164, p153, 2004.
86.K. Suzuki, et al., “Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells, Chem. Lett., 32, p28, 2003.
87.N. Fukuri, et al., “Performance improvement of solid-state dye- sensitized solar cells fabricated using poly(3,4-ethylenedioxythio- phene) and amphiphilic sensitizing dye, J. Electrochem. Soc., 151 , A1745, 2004.
88.T. Ma, et al., “Properties of several types of novel counter electrodes for dye-sensitized solar cells,E. Abe, J. Electroanal. Chem., 574, p77, 2004.
89.R. Senadeera, et al., “Volatile solvent-free solid-state polymer-sensitized TiO2 solar cells with poly(3,4-ethylenedioxythiophene) as a hole- transporting medium,Chem. Commun., 2005, p2259, 2005.
90.N. Ikeda, K. Teshima, T. Miyasaka, “Conductive polymer-carbon- imidazolium composite: a simple means for constructing solid-state dye-sensitized solar cells, Chem. Commun., 2006, p1733, 2006.
91.T.C. Wei, C.C. Wan, Y.Y. Wang, “Poly(N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tin oxide glass as counterelectrode for dye-sensitized solar cells,Appl. Phys. Lett., 88, p103122, 2006.
92.S. Ito, et al., “High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode, Chem. Commun., 38, p4004, 2006.
93.Md. K. Nazeeruddin, et al., “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,J. Am. Chem. Soc., 127, p16837, 2005.
94.S. Huang, et al., Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells, Journal of Physical Chemistry B, 101, p2576 , 1997.
95.Mor GK; Shankar K; Paulose M; et al., “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells, Nano Lett., 6, 2, 2006.
96.Xu Feng, Sun Litao, “Solution- derived ZnO nanostructures for photo- anodes of dye-sensitizedsolar cells, Energy Environ. Sci., 4, 818, 2011.
97.S. Hore, et al., “Influence of scattering layers on efficiency of dye- sensitized solar cells, Solar energy materials and solar cells, vol. 90, p 1176, 2006.
98.Z.-S. Wang, H. Kawauchi, et al., “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell, Coord. Chem. Rev., 248, p1381, 2004.
99.P. V. Kamat, et al., “Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters J. Phys. Chem. C, 112, p18737,2008.
100. P. R. Yu, et al., “Nanocrystalline TiO2 Solar Cells Sensitized with InAs
Quantum Dots Phys. Chem. B, 110, 25451,2006.
101. P. Wang, et al., “TiO2 Surface Modification and Characterization with
Nanosized PbS in Dye-Sensitized Solar Cells J. Phys. Chem. B, 110, 14406,2006.
102. I. Robel, et al., “Quantum Dot Solar Cells. Harvesting Light Energy with
CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films, J. Am. Chem. Soc., 128, p2385,2006.
103.Nazeeruddin MK, et al., “Investigation of Sensitizer Adsorption and the
Influence of Protons on Current and Voltage of a Dye-Sensitized
Nanocrystalline TiO2 Solar Cell, J. Phys. Chem. B, 107, p8981, 2003.
104. S. Brunauer, et al., “On a theory of the van der waals adsorption of
gases, J. Am. Chem. Soc., 62, 1723, 1940.
105. S.E. Shaheen, et al., “Fabrication of bulk heterojunction plastic solar
cells by screen printing, Appl. Phys. Lett., 79, p2996, 2001.
106. P. M. Sommeling, et al., “Influence of a TiCl4 Post-Treatment on
Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells, J. Phys. Chem. B, 110, p19191, 2006.
107. C. J. Barbe, et al., “Nanocrystalline titanium oxide electrodes for
photovoltaic applications, J. Am. Ceram. Soc., 80, p3157, 1997.
108. N. G.Park, et al., “Dye-sensitized TiO2 solar cells: Structural and
photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4, J. Phys. Chem. B, 103, p3308, 1999.
109. L. Y. Zeng, et al., “Mechanism of enhanced performance of dye-
sensitized solar cell based TiO2 films treated by titanium tetrachloride, Phys. Lett., 21, p1835,2004.
110. M. Adachi, et al., “Determination of parameters of electron transport
in dye-sensitized solar cells using electrochemical impedance
spectroscopy, J. Phys. Chem. B, ,110, p13872, 2006.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊