|
1.張正華等, “有機與塑膠太陽能電池 , 五華出版社, 民96. 2.陳維新, “能源概論, 高立出版社, 民95. 3.M. Grätzel, “From space to earth: The story of solar electricity, Nature, 403, p363 ,2000. 4.A.E. Becquerel, “Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques, C.R. Acad. Sci., 9, p145 , 1839. 5.M. Grätzel, “Photoelectrochemical cells, Nature, 414, p338 ,2001. 6.黃春輝, 李富友, 黃岩誼, “光電功能超薄膜, 北京大學出版社, 2001. 7.史錦珊, 鄭繩楦, “光電子學及其應用, 機械工業出版社, 1991. 8.姜月順, 李鐵津等著. “光化學, 化學工業出版社, 2005. 9.查丁壬彙編, “認識太陽能電池, 中華太陽能聯誼會, 2003 10.李永龍,國立成功大學電機工程研究所碩士論文, 1999 11.Jain SC, et. al., “Conducting Organic Materials and Devices, SEMICONDUCT SEMIMET, 81, p1, 2007. 12.Dennler C, et. al., “Polymer‐fullerene bulk‐heterojunction solar cells. , Advanced Materials, 21, p1323, 2009. 13.K. Hara, et. al., “Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells, Sol. Energy Mater. Sol. Cells , 64, p115 ,2000. 14.J. R. Durrant, M. Grätzel , “In Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion, Imperial College Press: London, 2008. 15.Y. Suzuki, et al., “Partially nanowire-structured TiO2 electrode for dye-sensitized solar cells Cent. Eur. J. Chem., 4, p476, 2006. 16.A. Fujishima, Honda, K., “ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE, Nature, 37, p238, 1972. 17.G. K. Mor, et al., “A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination, J. Mater. Res., 19, p628,2004. 18.Yang Zhenguo, et al., “Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review, J POWER SOURCES, 192, p588, 2009. 19.R. vandeKrol, et al., “Mott-Schottky analysis of nanometer-scale thin-film anatase TiO2, J Electrochem Soc,144, p1723, 1997. 20.Errera J, Ketelaar H., J Phys Rad, 3, p239, 1932. 21.U. Diebold, “The surface science of titanium dioxide, Surf Sci Rep, 48, 53, 2003. 22.A. C. Pierre, et al., “Chemistry of aerogels and their applications, Chem. ReV., 102, 4243, 2002. 23.W. Li, et al., “Metallorganic chemical vapor deposition and characterization of TiO2 nanoparticles , MAT SCI ENG B-ADV, 96, p247, 2002. 24.W. S. Nam, G. Y. Han, “A Photocatalytic Performance of TiO2 Photocatalyst Prepared by the Hydrothermal Method, Korean J. Chem. Eng., 20, p180, 2002. 25.X. L. Li, et al., “Near Monodisperse TiO2 Nanoparticles and Nanorods, Chem.sEur. J., 12, p2383, 2006. 26.J. M. Wu, “Low-temperature preparation of titania nanorods through direct oxidation of titanium with hydrogen peroxide, J. Cryst. Growth, 269, p347,2004. 27.A. B. Corradi, et al., “Conventional and microwave-hydrothermal synthesis of TiO2 nanopowders, J. Am. Ceram. Soc., 88, 2639, 2005. 28.D. V. Bavykin, et al., “The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes, J. Mater. Chem., 14, p3370, 2004. 29.T. Sasaki, “Two-dimensional diffraction of molecular nanosheet crystallites of titanium oxide, J. Phys. Chem. B, 105, p6116,2001. 30.M. Law, et al., “Nanowire dye-sensitized solar cells, Nature Materials, 4, p455, 2005. 31.Kearns, et al., “Evidence for the participation of 1.SIGMA.g+ and 1.DELTA.g oxygen in dye-sensitized photooxygenation reactions. II,J. Am. Chem. Soc.,89, p5456, 1967. 32.H. Tsubomura, et al., “Dye sensitized zinc oxide/aqueous electrolyte/platinum photocell, Nature, 261, p402, 1976. 33.B. O’Regan, et al., “ A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353, p737, 1991. 34.M. Grätzel, “Photoelectrochemical cells, Nature, 414, p338,2001. 35.J. Nelson, “Organic photovoltaic films, Mater.Today, 5, p20, 2002. 36.P.Wang et al., “A stable quasi-solid-state dye-sensitized solar cell with anamphiphilic ruthenium sensitizer and polymer gel electrolyte, NAT MATER, 2, p402, 2002. 37.SX Tan, et al., “Property influence of polyanilines on photovoltaic behaviors of dye-sensitized solar cells, Langmuir, 20, p2934, 2004. 38.B.Pradhan, A.J.Pal, “Organic heterojunction photovoltaic cells: role of functional groups in electron acceptor materials, solar Energy Mater. &Solar cell, 81, p469, 2004. 39.D.Gebeyehu, et al., “Solid-state organic/inorganic hybrid solar cells based on conjugated polymers and dye-sensitized TiO2 electrodes, Thin Solid Films, 403, p271, 2002. 40.K. Tennakone, et. al.,“A solid state PV cell sensitized with Ru Bipyridyl complex, J.Phys.D:Appl.Phys., 31, p1492, 1998. 41.I. Flores, et al., “ Dye-sensitized solar cells based on TiO2 nanotubes and a solid-state electrolyte, J PHOTOCH PHOTOBIO A, 189, p153, 2007. 42.P.Wang et al., “A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells, J.Phys.Chem.B, 107, p13280, 2003. 43.M. Grätzel, “Mesoporous oxide junctions and nanostructured solar cells, CURR OPIN COLLOID IN., 4, p1314, 1999. 44.K.kalyanasundaram, M. Grätzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices, COORDIN CHEM REV, 177, p347,1998. 45.M. Grätzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells , Inorg. Chem., 44, p6841, 2005. 46.Z.S. Wang, et. al., “Electronic-Insulating Coating of CaCO3 on TiO2 Electrode in Dye-Sensitized Solar Cells: Improvement of Electron Lifetime and Efficiency, Chem. Mater., 18, p2912, 2006. 47.A. Yella, et. al., “Porphyrin-Sensitized Solar Cells with Cobalt (II/III) –Based Redox Electrolyte Exceed 12 Percent Efficiency, Science, 334, p629, 2011. 48.K. Kalyanasundaram, et al., “Applications of functionalized transition metal complexes in photonic and optoelectronic devices, Coord. Chem. Rev., 77, p347, 1998. 49.M. K. Nazeeruddin, et al., “Conversion of light to electricity by cis-X2Bis (2,2’- bipyridyl-4,4’-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X=Cl−, Br−, I−, CN− and SCN−) on nanocrystalline TiO2 electrodes , J. Am. Chem. Soc., 115, p6382, 1993. 50.J. Wienke, et al., “Dye-semsitized nanocrystalline TiO2 solar cells on flexible substrates, ECN contributions 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, Vienna 6 - 10 July 1998. 51.Christophe J. Barbe, et al., “Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications, J. Am. Ceram. Soc., 80, p3157, 1997. 52.K Tennakone, et al., “A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex, J. Phys. D: Appl. Phys., 31, p1492, 1998. 53.M. K. Nazeeruddin, et al., “Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato– ruthenium complex, Chem. Comm., 18, p1705, 1997. 54.K Hara, et al., “A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%, Chem. Comm.,6, p569, 2001. 55.角野裕康, et al., “Dye-sensitized solar cells using solid electrolytes, 東芝レビュー, 56, p7 , 2001. 56.Anders Hagfeldt, et al., “A new method for manufacturing nanostructured electrodes on plastic substrates, Nano Letters, 1, p97, 2001. 57.Wataru Kubo, et al., “Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator, Chem. Comm., p374, 2002. 58.原 浩二郎, “有機色素増感太陽電池で変換効率7.5%の世界最高性能を達成, AIST Today, 12, p14, 2002. 59.Nick Vlachopoulos, et al., “Very Efficient visible light energy harvesting and conversion by spectral sensitization of high surface area poly- crystalline titanium dioxide films, J. Am. Chem. Soc., 110, p1216, 1988. 60.M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye- sensitized solar cells, J Photochem Photobiol A Chem, 164, p3, 2004. 61.T. Matsubara, et al., “The use of xylenol orange in a dye-sensitized solar cell, Sol. Energy Mater. Sol. Cells, 85, p269, 2005. 62.Shi-Woo Rhee, Woosung Kwon, “Key technological elements in dye- sensitized solar cells (DSC), Korean J. Chem. Eng., 28, p1481-1494, 2011. 63.A. J. Frank, et al., “Comparison of dye-sensitized rutile- and anatase- based TiO2 solar cells, J. Phys. Chem. B, 104, p8989, 2000. 64.J. Frank, et al., “Dye-sensitized TiO2 solar cells: structural and photo- electrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4, J. Phys. Chem. B, 103, p3308, 1999. 65.Shozo Yanagida, et al., “Facilefabrication of mesoporous TiO2 electrodes for dye solar cells: chemical modification and repetitive coating, Sol. Energy Mater. Sol. Cells, 76, p3, 2003. 66.S. Nakade, et al., “Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells, J. Phys. Chem. B, 106, p10004, 2002. 67.Frederik C. Krebs, “Fabrication and processing of polymer solar cells: A review of printing and coating techniques, Solar Energy Materials & Solar Cells, 93, p394, 2009. 68.K. Hara, et al., “Molecular Design of Coumarin Dyes for Efficient Dye-Sensitized Solar Cells, J. Phys. Chem. B, 107, 2003. 69.A. F. Nogueira, et al., “ Dye-sensitized nanocrystalline solar cells employing a polymer electrolyte , ADVANCED MATERIALS, 13, p826, 2001. 70.W. Kubo , et al., “Quasi-solid-state dye-sensitized TiO2 solar cells: Effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine , J. Phys. Chem. B, 105, 2001. 71.J. Joseph , K.M. Son , R. Vittal, et al., “Quasi-solid-state dye-sensitized solar cells with siloxane poly(ethylene glycol) hybrid gel electrolyte , Semicond. Sci. Tech. , 21, p697, 2006. 72.H.J. Lee, et al., Effects of Nanocrystalline Porous TiO2 Films on Interface Adsorption of Phthalocyanines and Polymer Electrolytes in Dye-Sensitized Solar Cells, Macromolecular Symposia, 235, p230, 2006. 73.U. Bach, et al., “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature, 395, p583, 1998. 74.Y. J. Kim, et al., “Supramolecular Electrolytes for Use in Highly Efficient Dye-Sensitized Solar Cells, Advanced Materials, 16, p1753-1757, 2004. 75.Kubo W, et al., “Photocurrent-Determining Processes in Quasi-Solid- State Dye-Sensitized Solar Cells Using Ionic Gel Electrolytes, J. Phys. Chem. B, 107, p4374, 2003. 76.Shi Jifu, et al., “Quasi-Solid-State Dye-Sensitized Solar Cells with Polymer Gel Electrolyte and Triphenylamine-Based Organic Dyes, ACS Appl. Mater. Interfaces, 1, p944, 2009. 77.Bin Li, et al., “Review of recent progress in solid-state dye-sensitized solar cells, Solar Energy Materials & Solar Cells, 90, p549, 2006. 78.H. Kusama, H. Arakawa, Influence of pyrimidine additives in electrolytic solution on dye-sensitized solar cell performance, Journal of Photochemistry and Photobiology A: Chemistry, 160, p171, 2003. 79. H. Kusama and H. Arakawa, Influence of aminothiazole additives in I-/I3-redox electrolyte solution on Ru (II)-dye-sensitized nanocrystalline TiO2 solar cell performance,Solar energy materials and solar cells, 82, p457, 2004. 80.T.J. Dines, et al., “The surface acidity of oxides probed by IR spectr- oscopy of adsorbed diazines, Phys. Chem. Chem. Phys., 3, p2676, 2001. 81.K. Imoto, et al., High-performance carbon counter electrode for dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells, 79, p 459, 2003. 82. T. Murakami, et al., Highly efficient dye-sensitized solar cells based on carbon black counter electrodes, J. Electrochem. Soc., 153, p2255, 2006. 83.A. Kay, M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder, Sol. Energy Mater. Sol. Cell, 44, p99, 1996. 84.T. Kitamura, et al., “Improved solid-state dye solar cells with polypyrrole using a carbon-based counter electrode, Chem. Lett., 30, p1054, 2001. 85.Y. Saito, et al., “I-/I-3(-) redox reaction behavior on poly(3,4-ethylene- dioxythiophene) counter electrode in dye-sensitized solar cells, J. Photochem. Photobiol. A. Chem., 164, p153, 2004. 86.K. Suzuki, et al., “Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells, Chem. Lett., 32, p28, 2003. 87.N. Fukuri, et al., “Performance improvement of solid-state dye- sensitized solar cells fabricated using poly(3,4-ethylenedioxythio- phene) and amphiphilic sensitizing dye, J. Electrochem. Soc., 151 , A1745, 2004. 88.T. Ma, et al., “Properties of several types of novel counter electrodes for dye-sensitized solar cells,E. Abe, J. Electroanal. Chem., 574, p77, 2004. 89.R. Senadeera, et al., “Volatile solvent-free solid-state polymer-sensitized TiO2 solar cells with poly(3,4-ethylenedioxythiophene) as a hole- transporting medium,Chem. Commun., 2005, p2259, 2005. 90.N. Ikeda, K. Teshima, T. Miyasaka, “Conductive polymer-carbon- imidazolium composite: a simple means for constructing solid-state dye-sensitized solar cells, Chem. Commun., 2006, p1733, 2006. 91.T.C. Wei, C.C. Wan, Y.Y. Wang, “Poly(N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tin oxide glass as counterelectrode for dye-sensitized solar cells,Appl. Phys. Lett., 88, p103122, 2006. 92.S. Ito, et al., “High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode, Chem. Commun., 38, p4004, 2006. 93.Md. K. Nazeeruddin, et al., “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,J. Am. Chem. Soc., 127, p16837, 2005. 94.S. Huang, et al., Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells, Journal of Physical Chemistry B, 101, p2576 , 1997. 95.Mor GK; Shankar K; Paulose M; et al., “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells, Nano Lett., 6, 2, 2006. 96.Xu Feng, Sun Litao, “Solution- derived ZnO nanostructures for photo- anodes of dye-sensitizedsolar cells, Energy Environ. Sci., 4, 818, 2011. 97.S. Hore, et al., “Influence of scattering layers on efficiency of dye- sensitized solar cells, Solar energy materials and solar cells, vol. 90, p 1176, 2006. 98.Z.-S. Wang, H. Kawauchi, et al., “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell, Coord. Chem. Rev., 248, p1381, 2004. 99.P. V. Kamat, et al., “Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters J. Phys. Chem. C, 112, p18737,2008. 100. P. R. Yu, et al., “Nanocrystalline TiO2 Solar Cells Sensitized with InAs Quantum Dots Phys. Chem. B, 110, 25451,2006. 101. P. Wang, et al., “TiO2 Surface Modification and Characterization with Nanosized PbS in Dye-Sensitized Solar Cells J. Phys. Chem. B, 110, 14406,2006. 102. I. Robel, et al., “Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films, J. Am. Chem. Soc., 128, p2385,2006. 103.Nazeeruddin MK, et al., “Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell, J. Phys. Chem. B, 107, p8981, 2003. 104. S. Brunauer, et al., “On a theory of the van der waals adsorption of gases, J. Am. Chem. Soc., 62, 1723, 1940. 105. S.E. Shaheen, et al., “Fabrication of bulk heterojunction plastic solar cells by screen printing, Appl. Phys. Lett., 79, p2996, 2001. 106. P. M. Sommeling, et al., “Influence of a TiCl4 Post-Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells, J. Phys. Chem. B, 110, p19191, 2006. 107. C. J. Barbe, et al., “Nanocrystalline titanium oxide electrodes for photovoltaic applications, J. Am. Ceram. Soc., 80, p3157, 1997. 108. N. G.Park, et al., “Dye-sensitized TiO2 solar cells: Structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4, J. Phys. Chem. B, 103, p3308, 1999. 109. L. Y. Zeng, et al., “Mechanism of enhanced performance of dye- sensitized solar cell based TiO2 films treated by titanium tetrachloride, Phys. Lett., 21, p1835,2004. 110. M. Adachi, et al., “Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy, J. Phys. Chem. B, ,110, p13872, 2006.
|