跳到主要內容

臺灣博碩士論文加值系統

(35.174.62.102) 您好!臺灣時間:2021/07/25 05:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李威群
研究生(外文):Wei-CyunLee
論文名稱:雞尾酒有機染料在膠態染料敏化太陽能電池之應用
論文名稱(外文):Organic Dye-Cocktails for Gel-State Dye-Sensitized Solar Cells
指導教授:楊毓民楊毓民引用關係
指導教授(外文):Yu-Min Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:120
中文關鍵詞:染料敏化太陽能電池膠態電解質熱穩定性共溶劑雞尾酒有機染料共敏化效應填補缺陷機制
外文關鍵詞:Dye-Sensitized Solar CellGel-State ElectrolyteThermal StabilityCo-SolventOrganic Dye CocktailsCo-Sensitized EffectDefects- Filling Mechanism
相關次數:
  • 被引用被引用:1
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
傳統的有機染料敏化太陽能電池利用液態當作電解質,然而液態電解質在應用上有些問題,例如:電解質的洩漏及蒸散、電池穩定低無法長時間使用,因此利用高分子膠化劑膠化液態電解質形成膠態電解質,以解決上述問題。本研究將利用PVDF-HFP此高分子膠化液態電解質,並選擇適當的濃度(10 wt%)。然而此膠態電解質所組成的染料敏化太陽能電池其光電轉換效率低於液態電解質所組染料敏化太陽能電池,因此在膠態電解質裡添加奈米粒子(nano-filler)TiO2而其濃度為12 wt%,藉此提升電流密度(Jsc),以提高光電轉換效率,其效率可以高於液態電解質所組成的染料敏化太陽能電池的效率。然而電池在長時間使用的穩定性上膠態電解質比液態電解質來的穩定,但在高溫之下以acetonitrile (ACN)當作溶劑的膠態電解質其熱穩定性不佳,故利用3-Methoxypropionitrile (MPN)和acetonitrile (ACN)以共溶劑方法(co-solvent)提升在高溫下熱穩定性,當ACN/MPN =7/3重量比例下,其電池在高溫下具有較好熱穩定性,其電池效率與ACN相比並沒有明顯下降。
在此研究裡染料方面將利用D149/SQ2雙成分染料系統以增加吸光範圍,或是染料單分子層填補缺陷機制的作用下可抑制激發電子與電解質的再結合,進而提升光電轉換效率。而在D149/SQ2=10/1時具有較高電流密度(Jsc)及光電轉換效率,可歸因於電池元件可以增加吸光範圍以及有效抑制激發電子與電解質的再結合。

Although classical dye-sensitized solar cells (DSSCs) with liquid-state electrolyte reach relatively high overall efficiency,there are some pratical probiems with liquid-state electrolyte. For example: solvent evaporation and leakage of the liquid electrolyte and poor stability for long-term used. Therefore, the co-polymer—PVDF-HFP was used to gel liquid electrolyte to become gel-stste electrolyte in order to solve the pratical problems. In this study, PVDF-HFP was used to be gelator and found out the optimum concertration (10 wt%). However, the efficiency of gel-state DSSCs are lower than liquid-state DSSCs, the nano-fillers(12 wt%) were added to the gel-state electrolyte to enhance the current density (Jsc) of the cells that could increase the effiency of gel-state DSSCs higher than liquid-state DSSCs. However, the thermal stability of gel-state DSSCs with ACN as the solvent is poor. ACN and MPN were mixed with the different weight ratio to improve the thermal stability by the co-solvent approach. When the weight ratio of ACN/MPN is 7/3,the thermal stability of the gel-state DSSCs are better than ACN and ACN/MPN= 9/1. The efficiency of gel-state DSSCs with co-solvent, ACN/MPN = 7/3,are almost the same with gel-state DSSCs with ACN as the solvent.
In this study, D149/SQ2 dye cocktails were applied in gel-state DSSCs to enhance the light harvest or the defects-filling mechanism of the dye to inhibit the recombination between electron and hole that could enhance the efficiency of gel-state DSSCs. When the ratio of D149 and SQ2 is 10 to1, the current density and efficiency of the gel-state DSSCs have higher value that could attribute to increase the light harvest and inhibit the recombination between excited electron and electrolyte.


摘要 I
Abstract II
誌 謝 III
表目錄 VII
圖目錄 IX
第一章 緒論 1
1-1 前言 1
1-2 太陽能電池發展現況 3
1-2.1 矽晶型太陽能電池 3
1-2.2 薄膜型太陽能電池 4
1-2.3 Ⅲ-Ⅴ族半導體太陽能電池 5
1-2.4 染料敏化太陽能電池 5
1-3 研究目的與動機 7
第二章 文獻回顧 9
2-1 染料敏化太陽能電池 9
2-1.1 染料敏化太陽能電池發展 9
2-1.2 染料敏化太陽能電池工作原理 14
2-1.3 染料敏化太陽能電池結構介紹 16
2-1.4 膠態與固態電解質 22
2-2 染料敏化太陽能電池之光電特性量測及分析 27
2-2.1 太陽能電池之總效率(Overall Efficiency) 27
2-2.2 光電轉換效率 30
(Incident Photo to Current conversion Efficiency, IPCE) 30
2-2.3 電解質電性分析 31
2-2.3.1 循環伏安測試法(cyclic voltammogram,CV) 31
2-2.3.2 導電度分析 33
2-2.4電化學交流阻抗(Electrochemical Impedance Spectroscopy , EIS) 36
2-3 雞尾酒有機染料 42
2-3.1 有機染料 42
2-3.2 共敏化效應(Co-sensitization effect) 46
第三章 實驗儀器與方法 56
3-1 實驗藥品 56
3-2 實驗儀器 59
3-2.1 高溫加熱板 (Hot plate) 59
3-2.2 表面輪廓儀 (Alpha step) 59
3-2.3 紫外光/可見光光譜儀(UV-vis. spectrophotometer) 60
3-2.4 離子濺鍍機(Sputter) 60
3-2.5 太陽光模擬器(Solar simulator) 61
3-2.6 定電位/定電流儀(Potentiostat/Galvanostat) 62
3-2.7 光電轉化效率測定系統(IPCE measurement) 63
3-2.8 Mili-Q超純水系統 64
3-3 實驗方法 66
3-3.1 TiO2漿料製備 66
3-3.2 TiO2光電極製備 66
3-3.3 染料分子吸附 67
3-3.4 吸附動力學分析 67
3-3.5 電解質製備 68
3-3.6 對電極製備 69
3-3.7 電池組裝的程序 69
第四章 結果與討論 72
4-1 PVDF-HFP高分子膠態電解質 72
4-1.1 PVDF-HFP高分子膠態電解質電性分析 73
4-1.1.1 極限擴散電流分析 73
4-1.1.2 導電度分析 75
4-1.1.3 PVDF-HFP高分子膠態電解質光電轉換效率分析 77
4-1.2 高分子膠態電解質混摻奈米粒子之影響 79
4-1.2.1電解質電性分析 82
4-1.3 膠態電解質的熱穩定之探討 84
4-1.3.1 共溶劑膠態電解質相轉換溫度之探討 84
4-1.3.2 共溶劑系統膠態染料敏化太陽電池熱穩定性之探討 86
4-2 雞尾酒有機染料 90
4-2.1 雞尾酒有機染料共敏化—D149/SQ2 90
4-2.1.1 有機染料吸附特性 90
4-2.1.2 光電特性的測量 95
第五章 結論與建議 101
5-1 結論 101
5-2 建議 103
第六章 參考文獻 104
附錄一 118
附錄二 120


[1]M. Grätzel, “Powering the Planet, Nature, 403, 363(2000).
[2]M. Grätzel, B. O'Regan, A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal Films, Nature, 353, 737(1991).
[3]A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M..K. Nazeeruddin, W.-G. Diau, C.-Y. Yeh,S. M Zakeeruddin, M. Grätzel, “Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency, Science,334, 629(2011).
[4]H. Tsubomura, M. Matsumura, Y. Nomura and T.Amamiya, “ Dye sensitized zinc oxide: aqueous electrolyte: platinum photocell, Nature, 261, 402(1976).
[5]Md. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, Christian-H. Fischer, and M. Gra1tzel, “Acid-Base Equilibria of (2,2¢-Bipyridyl-4,4¢-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania, American Chemical Society, 38, 6298(1999)
[6]Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Gra1tzel, “Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell. American Chemical Society, 107, 8981(2003)
[7]M. Grätzel, “Perspectives for Dye-sensitized Nanocrystalline Solar Cells, Progress In Photovoltaics: Research And Applications, 8, 171(2000)
[8]M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, and M. Gra1tzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells, American Chemical Society, 123,1613(2001).
[9]M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers.J. AM. CHEM. SOC., 127 ,16835(2005).
[10]P Wang, S. M. Zakeeruddin, R. Humphry, J. E. Moser, and M. Grätzel, “Molecular-Scale Interface Engineering of TiO2 Nanocrystal: Improving the Efficiency and Stability of Dye-Sensitized Solar Cells.Advanced Materials, 15,. 2101(2003).
[11]K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda, K. G. U. Wijayantha and V. P. S. Perera, “A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex, J. Phys. D: Appl.Phys, 31, 1492(1998)
[12]G.R.A. Kumara, M. Okuya, K. Murakami, S. Kaneko, V.V. Jayaweera, K. Tennakone, “Dye-sensitized solid-state solar cells made from magnesiumoxide-coated nanocrystalline titanium dioxide films: enhancement of the efficiency, Journal of Photochemistry and Photobiology A: Chemistry, 164,183(2004)
[13]K.Hara, M. Kurashige, Dan-oh, Yasufumi, Kasada, Chiaki, Shinpo, Akira, Suga, Sadaharu, Sayama, Kazuhiro, Arakawa, Hironori, “Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells, New Journal of Chemistry, 27, 783(2003).
[14]T. Horiuchi, H. Miura, K. Sumioka, and S. Uchida, “High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes. J. AM. CHEM. SOC.,126,12218(2004).
[15]S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, and M. Grätzel, “High-Efficiency Organic-Dye- Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness. Advanced Materials,18,1202(2006).
[16]S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Péchy and M. Grätzel, “High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chemical Communications, 41,5194 (2008).
[17]R. Plass, S. Pelet, J. Krueger, and M. Grätzel, “Quantum Dot Sensitization of Organic-Inorganic Hybrid Solar Cells. American Chemical Society, 106,7578(2002).
[18]R. Vogel, P. Hoyer, and H. Weller, Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide- Bandgap Semiconductors. American Chemical Society,98, 3183(1994).
[19]Y. L. Lee and Y. S. Lo,Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe., Advanced Functional Materials,19,604(2009)
[20]S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Comte, P. Pechy, and M. Grätzel, “High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye Chem. Commun., 41, 5194(2008)
[21]G. Wolfbauer, A. M. Bond, J. C. Eklund, D. R. MacFarlane “A channel Flow cell system specically designed to test the efficiency of redox shuttles in Dye Sensitized Solar Cells Sol. Energy Mater. & Sol. Cells ,70 ,85(2001)
[22]K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, and H. Arakawa , Molecular Design of Coumarin Dyes for Efficient Dye-Sensitized Solar Cells., J. Phys. Chem. B, 107, 597(2003)
[23]K. Hara,. M. Kurashige,.Y. Dan-oh,.C. Kasada,. A. Shinpo,.S. Suga,. K. Sayama. and H. Arakawa,Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells., New J. Chem., 27, 783(2003)
[24]Z. S. Wang, Y. Cui, Y. Dan-oh, C. Kasada, A. Shinpo, and K. Hara, Thiophene-Functionalized Coumarin Dye for Efficient Dye-Sensitized Solar Cells:Electron Lifetime Improved by Coadsorption of Deoxycholic Acid, J. Phys. Chem. C, 111, 7224(2007)
[25]S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Pe’chy and M. Grätzel High-conversion-efficiency organic dye-sensitized solar cells with a novel ndoline dye Chem. Commun.,41, 5194(2008)
[26]Y. Chen, Z. Zeng, C. Li, W. Wang, X. Wang and B. Zhang, Highly efficient co-sensitization of nanocrystalline TiO2 electrodes with plural organic dyes, New J . Chem., 29 ,773(2005)
[27]A. K. Jana, B. B. Bhowmik., Enhancement in power output of solar cells consisting of mixed dyes Journal of Photochemistry and Photobiology A: Chemistry, 122,53(1999).
[28]T. Yoshida, M. Iwaya, H. Ando, T. Oekermann, K. Nonomura ,D. Schlettwein, D. Wöhrlec and H. Minoura,Improved photoelectrochemical performance of electrodeposited ZnO/EosinY hybrid thin films by dye re-adsorption. Chemical Communications, 4, 400(2004).
[29]M. Guo, P. Diao, Y.-J. Ren, F. Meng, H. Tian, S.-M. Cai, Photoelectrochemical studies of nanocrystalline TiO2 co-sensitized by novel cyanine dyes. Solar Energy Materials and Solar Cells, 88, 23(2005).
[30]G.R.A. Kumara, S. Kaneko, M. Okuya ,B. Onwona-Agyeman, A. Konno, K. Tennakone, Shiso leaf pigments for dye-sensitized solid-state solar cell. Solar Energy Materials and Solar Cells, 90, 1220(2006).
[31]K. Wongcharee, V. Meeyoo, S. Chavadej, Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Solar Energy Materials and Solar Cells, 91,566(2007)
[32]J.-H. Yum, S.-R. Jang, P. Walter, T. Geiger, F. Nüesch, S. Kim, J. Ko, M. Grätzel and M. K. Nazeeruddin, Efficient co-sensitization of nanocrystalline TiO2 films by organic sensitizers. Chemical Communications, 44, 4680(2007).
[33]R. Y. Ogura, S. Nakane, M. Morooka, M. Orihashi,Y. Suzuki, and K. Noda, High-performance dye-sensitized solar cell with a multiple dye system., APPLIED PHYSICS LETTERS, 94, 073308(2009)
[34]K. Sayama, S. Tsukagoshi, T. Mori, K. Hara, Y. Ohga, A. Shinpou,Y. Abe, S. Suga, H. Arakawa, “Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes. Solar Energy Materials and Solar Cells, 80, 47(2003)
[35]M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, and S. Isoda, Determination of Parameters of Electron Transport in Dye-Sensitized Solar Cells Using Electrochemical Impedance Spectroscopy, J. Phys. Chem. B , 110, 13872(2006)
[36]D. Kuang, P. Walter, F. Nüesch, S. Kim, J. Ko, P. Comte, S. M. Zakeeruddin, M. K. Nazeeruddin, and M. Grätzel, Co-sensitization of Organic Dyes for Efficient Ionic Liquid Electrolyte-Based Dye-Sensitized Solar Cells, Langmuir , 23, 10906(2007)
[37]J.-H. Yum, S.-R. Jang, P. Walter, T. Geiger, F. Nüesch, S. Kim, J. Ko,M. Grätzel and M. K. Nazeeruddin, Efficient co-sensitization of nanocrystalline TiO2 films by organic sensitizers., Chemical Communications, 44, 4680 (2007)
[38]J.-J. Cid, J.-H. Yum, S.-R. Jang, M. K. Nazeeruddin, E. Martínez-Ferrero, E. Palomares, J. Ko, M. Grätzel, and T. Torres, Molecular Cosensitization for Efficient Panchromatic Dye-Sensitized Solar Cells., Angew. Chem., 46, 8358(2007)
[39]W. Zhao, Y. J. Hou, X. S. Wang, B. W. Zhang,Y. Cao, R. Yang, W. B. Wang, X. R. Xiao, Study on squarylium cyanine dyes for photoelectric conversion, Solar Energy Materials & Solar Cells ,58 ,173(1999)
[40]D. Zhang, W. Wang , Y. Liu , X. Xiao, W. Zhao, B. Zhang, Y. Cao, Photosensitization of nanocrystalline TiO2 electrodes by squarylium cyanine incorporated with a ruthenium bipyridyl complex, Journal of Photochemistry and Photobiology A: Chemistry ,135, 235 (2000)
[41]P. Zuo, C. Li , Y.-S. Wu , X.-C. Ai , X.-S. Wang ,B.-W. Zhang , J.-P. Zhang, Mechanism of squarylium cyanine and Ru(dcbpy)2(NCS)2 co-sensitization of colloidal TiO2, Journal of Photochemistry and Photobiology A: Chemistry, 183 ,138 (2006)
[42]X.-F. Wang , J. Xiang , P. Wang , Y. Koyama,S. Yanagida , Y. Wada , K. Hamada ,S. Sasaki , H. Tamiaki, Dye-sensitized solar cells using a chlorophyll a derivative as the sensitizer and carotenoids having different conjugation lengths as redox spacers., Chemical Physics Letters ,408, 409(2005)
[43]X.-F. Wang, Y. Kakitani, J. Xiang, Y. Koyama ,F. S. Rondonuwu, H. Nagae, S. Sasaki, H. Tamiaki,Generation of carotenoid radical cation in the vicinity of a chlorophyll derivative bound to titanium oxide, upon excitation of the chlorophyll derivative to the Qy state, as identified by time-resolved absorption spectroscopy., Chemical Physics Letters, 416 , 229(2005)
[44]U. Bach, D. Lupo, P. Comte, J. E. Moser, F.Weissörtel ,J. Salbeck, H. Spreitzer, and M. Grätzel,Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies., Nature, 395, 583(1998)
[45]L. Schmidt-Mende, U.B., R. Humphry-Baker, T. Horiuchi, H. Miura, S. Ito, S. Uchida, and M. Grätzel, “Organic Dye for Highly Efficient Solid-State DSSCAdvanced Materials, 17,813(2005).
[46]H. J. Snaith, A. J. Moule, C. Klein, K. Meerholz, R. H. Friend, and M. Grätzel, Efficiency Enhancements in Solid-State Hybrid Solar Cells via Reduced Charge Recombination and Increased Light Capture, Nano Lett.,7,3372(2007)
[47]N. Cai, S.-J. Moon, L. Cevey-Ha, T. Moehl, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin, and M. Grätzel, An Organic D-π-A Dye for Record Efficiency Solid-State Sensitized Heterojunction Solar Cells, Nano Lett., 11, 1452(2011)
[48]F. Cao, G. Oskam, and P. C. Searson, “A solid state, dye sensitized photoelectrochemical cell, Journal of Physical Chemistry, 99, 17071 (1995)
[49]W. Kubo, K. Murakoshi, T. Kitamura, Y. Wada, K. Hanbusa, H. Shirai, and S. Yanagida, Fabrication of Quasi-solid-state TiO2 Solar Cells Using Low Molecular Weight Gelators, Chemstry Letters,27,1241(1998)
[50]P. Wang, S. M. Zakeeruddin, I. Exnar and M. Grätzel, High efficiency dye-sensitized nanocrystalline solar cells based on ionic
liquid polymer gel electrolyte, CHEM. COMMUN. , 24, 2972(2002)
[51]P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin,T. Sekiguchi and M. Grätzel, A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte, Nature Materials, 2, 402(2003)
[52]R. Komiya, L. Han., R. Yamanaka, A. Islam, T. Mitate, Highly efficient quasi-solid state dye-sensitized solar cell with
ion conducting polymer electrolyte, Journal of Photochemistry and Photobiology A: Chemistry, 164 ,123(2004)
[53]C.-L. Chen, H. Teng and Y.-L. Lee, Preparation of highly efficient gel-state dye-sensitized solar cells using polymer gel electrolytes based on poly(acrylonitrile-co-vinyl acetate), J. Mater. Chem., 21, 628(2011)
[54]T. Stergiopoulos, I. M. Arabatzis, G. Katsaros, and P. Falaras, Binary Polyethylene Oxide/Titania Solid-State Redox Electrolyte for Highly Efficient Nanocrystalline TiO2 Photoelectrochemical Cells, Nano Lett., 2, 1259(2002)
[55]P. Wang, S. M. Zakeeruddin, M. Grätzel, Solidifying liquid electrolytes with fluorine polymer and silica nanoparticles for quasi-solid dye-sensitized solar cells, Journal of Fluorine Chemistry ,125, 1241 (2004)
[56]H. Han, W. Liu ,J. Zhang, X.-Z. Zhao, A hybrid poly(ethylene oxide)/poly(vinylidene fluoride)/TiO2 nanoparticle solide-state redox electrolyte for dye-sensitized nanocrystalline solar cell, Advanced Functional Materials, 15, 1940 (2005)
[57]K. M. Kim, N.-G. Park, M. G. Kang, K. S. Ryu, and S. H. Chang,
Effect of TiO2 Inclusion in the Poly (vinylidenefluoride-co- hexafluoropropylene) -Based Polymer Electrolyte of Dye-Sensitized Solar Cell, Bull. Korean Chem. Soc., 27,322(2006)
[58]Z. Huo, S. Dai, K. Wang, F. Kong ,C. Zhang, X. Pan, X. Fang, Nanocomposite gel electrolyte with large enhanced charge transport properties of an I3-/I- redox couple for quasi-solid-state dye-sensitized solar cells, Solar Energy Materials & Solar Cells ,91 ,1959 (2007)
[59]C.-L. Chen , H. Teng , and Y.-L. Lee, In Situ Gelation of Electrolytes for Highly Effi cient Gel-State Dye-Sensitized Solar Cells, Adv. Mater., 23, 4199(2011)
[60]Y.-L. Lee, Y.-J. Shen and Y.-M. Yang, A hybrid PVDF-HFP/nanoparticle gel electrolyte for dye-sensitized solar cell applications, Nanotechnology ,19, 455201 (2008)
[61]Y. Geng, Y. Shi, L. Wang, B. Ma, R. Gao, Y. Zhu,H. Dong and Y. Qiu, Photovoltage improvements and recombination suppression by montmorillonite addition to PEO gel electrolyte for dye-sensitized solar cells, Phys. Chem. Chem. Phys. , 13, 2417(2011)
[62]K.-C. Huang, P.-Y. Chen, R. Vittal, K-C. Ho, Enhanced performance of a quasi-solid-state dye-sensitized solar cell with aluminum nitride in its gel polymer electrolyte, Sol. Energy Mater. Sol. Cells (2010)
[63]Y. J. Choi, Y. Han, M.-A. Ok, D.-W. Kim, Quasi-Solid-State Dye-Sensitized Solar Cells Using Nanocomposite Gel Polymer Electrolytes Based on Poly(propylene carbonate), Macromol. Chem. Phys., 212, 000(2011)
[64]M.-S. Kang, K.-S. Ahn, J.-W. Lee, Quasi-solid-state dye-sensitized solar cells employing ternary component polymer-gel electrolytes, Journal of Power Sources, 180 ,896(2008)
[65]Saikia1, C.C. Han, Y.W. Chen-Yang, Influence of polymer concentration and dyes on photovoltaic performance of dye-sensitized solar cell with P(VdF-HFP)-based gel polymer electrolyte, Journal of Power Sources, 185,570(2008)
[66]C.-L. Chen, H. Teng and Y.-L. Lee, Preparation of highly efficient gel-state dye-sensitized solar cells using polymer gel electrolytes based on poly(acrylonitrile-co-vinyl acetate), J. Mater. Chem.,21, 628(2011)
[67]M. Wang, X. Pan, X. Fang, L. Guo, C. Zhang, Y. Huang, Z. Huo, S. Dai, “Liquid crystal based electrolyte with light trapping scheme for enhancing photovoltaic performance of quasi-solid-state dye-sensitized solar cells, Journal of Power Sources, 196, 5784(2011)

[68]S. Kim, D. Kim, H. Choi, M.-S. Kang, K. Song, S. O. Kang, J. Ko, “Enhanced photovoltaic performance and long-term stability of quasi-solid-state dye-sensitized solar cells via molecular engineering, Chem. Commun., 4951(2008)
[69]O. A. Ileperuma, G. R. A. Kumara, K. Murakami, “Quasi-solid Polymer Electrolytes Based on Polyacrylonitrile and Plasticizers for Indoline Dye Sensitized Solar Cells of Efficiency 5.3%, Chemistry Letters, 37, 36(2008)
[70]G.D. Sharma, P. Balraju, M. Kumar, M.S. Roy, “Quasi solid state dye sensitized solar cells employing a polymer electrolyte and xanthene dyes, Materials Science and Engineering B, 162, 32(2009)
[71]J. Shi, S. Peng, J. Pei, Y. Liang, F. Cheng, J. Chen, Quasi-Solid-State Dye-Sensitized Solar Cells with Polymer Gel Electrolyte and Triphenylamine-Based Organic Dyes, Applied Material and Interface, 1, 944(2009)
[72]M. Fakis, E. Stathatos, G. Tsigaridas, V. Giannetas, P. Persephonis, Femtosecond Decay and Electron Transfer Dynamics of the Organic Sensitizer D149 and Photovoltaic Performance in Quasi-Solid-State Dye-Sensitized Solar Cells, J. Phys. Chem. C, 115, 13429(2011)
[73]Z, Tan, B. Zhao, P. Shen, S. Jiang, P. Jiang, X. Wang, S. Tan, Low-cost quasi-solid-state dye-sensitized solar cells based on a metal-free organic dye and a carbon aerogel counter electrode, J Mater Sci, 46, 7482(2011)
沈育仁,「CdS量子點敏化劑及高分子/奈米粒子複合膠態電解質在染料敏化太陽能電池應用之研究」成功大學化學工程系博士論文 (2008)

陳政廷,「混合有機色素分子共敏化對色素敏化太陽電池光電轉換效率的影響」成功大學化學工程系碩士論文 (2008)。

林亞秀,「膠態雞尾酒有機染料敏化太陽能電池之研究」成功大學化學工程系碩士論文 (2009)。

葉韋宏,「固態雞尾酒有機染料敏化太陽能電池之研究」成功大學化學工程系碩士論文 (2011)。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊