跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/02 23:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃正瑋
研究生(外文):Cheng-WeiHuang
論文名稱:高效率電雙層電容器材料─奈米結構電極及膠態電解質
論文名稱(外文):High Performance Materials for Electric Double Layer Capacitors -- Nanostructured Carbon Electrodes and Gel Electrolytes
指導教授:鄧熙聖
指導教授(外文):Hsi-Sheng Teng
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:153
中文關鍵詞:高效能電雙層電容器超級電容器中孔碳碳奈米纖維海膽狀中孔碳材介相瀝青碳奈米管複合電極膠態電解質膠態高分子電解質聚乙二醇聚丙烯腈捲對捲
外文關鍵詞:High performanceElectric double layer capacitorsSupercapacitorsMesoporous carbonCarbon nanofibersSea urchin-like mesoporous carbonActivated mesophase pitchMesophase pitchCarbon nanotubesComposite electrodeGel electrolytesGelled polymer electrolytesPoly(ethylene glycol)Poly(acrylonitrile)Roll-to-Roll
相關次數:
  • 被引用被引用:0
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
超級電容器的電極材料及電解質是決定效能的關鍵。為了提升超高電容器的應用範圍及性能表現,可藉由開發階層性孔洞碳材、發展有機或膠態電解質系統、改良碳電極組成結構等方式,提高電容器的操作電位窗、儲能密度、輸出功率及循環壽命,突破現階段電容元件的能量儲存極限及操作限制。
本論文分為三個部份:(1)中孔碳球(mesoporous carbon, MC)表面成長碳奈米纖維(Carbon nanofibers, CNFs)用於高速電雙層電容器; (2)以活化介相瀝青及碳奈米管製備複合碳電極用於電雙層電容器; (3)聚乙二醇(Poly(ethylene glycol), PEG)摻合聚丙烯腈(Poly(acrylnitrile), PAN)之複合高分子製備膠態電解質用於捲對捲組裝方式之電雙層電容器。
第一部份,我們在MC外成長CNFs,形成海膽狀中孔碳材(Sea urchin-like mesoporous carbon , SUMC),SUMC具有大、中孔隙,因此電解質在電極內部能快速傳遞而不受阻礙,碳球間隙的碳纖維增加碳球間的接觸機會及增加碳球間的孔隙,由此設計方式強化電極材料的電子及離子傳導性,使電極能用於高速、高功率的操作條件。以SUMC做為電極材料,交流阻抗分析顯示,在碳材外表面成長CNFs,有效提升電極內的電子展透及離子傳遞能力,可提高電容器的高速充放能力;在電化學循環伏安掃描3000 mV s-1下仍可維持良好的電容行為。而利用電化學氧化處理,使碳材表面產生含氧官能基增加擬電容,但也同時提高電容器的電阻,經氧化處理後的SUMC可提高約200%的儲存電容量,而阻力增加較少,由此可見表面濃密的CNFs,具有提高碳材的化學穩定性,並保留住電極的導電性及離子傳遞能力。
第二部份,我們發展一種新穎的複合電極材料,並將碳材用於電雙層電容器,此電極材料是以高表面積的活化介相瀝青(activated mesophase pitch, aMP)及碳奈米管(Carbon nanotubes, CNTs)組成。藉由氫氧化鉀活化,使介相瀝青在內部及外部生成大量孔隙,外露石墨邊緣,適合作為高效能電極材料。經過電容器測試,此aMP電極材料具有相當高的儲能表現。此電極在0.125 A g-1放電電流下,具有電容量295 F g-1,而電流提高至100 A g-1時,則電容量下降至180 F g-1。為了提升電容器的功率輸出及高速充放電的操作能力,我們利用研磨的方式,降低電極組成顆粒內部的離子傳遞阻力;而研磨的過程加入CNTs,提供電極顆粒間的孔隙,促進離子進入電極的孔隙,並提高碳電極的電子傳遞。此複合電極材料在0.125 A g-1放電電流下,具有電容量305 F g-1,而電流提高至100 A g-1時,電容量能保持214 F g-1的電容量。複合電極材料在能量及功率密度的表現方面,在功率值10,000 W kg-1下,可具有8.2 Wh kg-1的能量值;而長效測試方面,經過10,000次充放電循環後,仍能保持電容值沒有衰退的現象。
第三部份,我們以PEG及PAN的複合高分子(PAN-b-PEG-b-PAN)製備膠態高分子電解質;電雙層電容器的電解質部份,PAN-b-PEG-b-PAN為主體結構,二甲基甲醯胺為塑化劑,過氯酸鋰為電解質。在膠態電解質中,直線性的PAN-b-PEG-b-PAN具有高離子傳導力,與碳電極搭配則具有絕佳的協調性。本膠態電解質在碳電雙層電容器中,高分子結構可促進離子的移動,進而低降電容器內的串聯阻力及質傳阻力。而膠態電容器在0.125 A g-1放電電流下,具有電容量101 F g-1;以操作電位窗2.1 V進行充放電測試,電容器的比功率10,000 W kg-1下,儲存能量為11.5 Wh kg-1。而穩定性測試方面,經過30,000次充放電循環後,仍能保持良好的電容行為。此膠態電解質的特色在於可調控的機械強度,設計出的電解質膠膜適用於自動化捲對捲組裝,可工業化製備膠態電容器。


This dissertation includes three parts: (1) Mesoporous carbon spheres grafted with carbon nanofibers for high-rate electric double layer capacitors. (2) Electric double layer capacitors based on a composite electrode of activated mesophase pitch and carbon nanotubes. (3) Gel electrolyte derived from poly(ethylene glycol) blending poly(acrylonitrile) applicable to roll-to-roll assembly of electric double layer capacitors.
In the first part, carbon nanofibers were grafted onto mesoporous carbon spheres to produce “sea urchin-like” mesoporous carbon with a nanofiber content of 25 wt%. Because of its combined features of high electronic conductivity and efficient electrolyte transport, the sea urchin-like mesoporous carbon assembled in electric double layer capacitors shows outstanding high-rate performance with a voltammetric scan rate as high as 3000 mV s-1. Ac impedance analysis shows that this method of carbon nanofiber grafting promotes electronic percolation and ionic transportation in the carbon electrode, reducing the capacitive relaxation time to less than one fourth of its original value. Electrochemical oxidation in sea urchin-like mesoporous carbon produces a capacitance increase of ca. 200% while retaining high electronic and ionic conductivities in the electrode.
The second part reports on a novel composite of KOH activated mesophase pitch (aMP) and carbon nanotubes (CNTs) that shows outstanding performance as electrodes for electric double-layer formation in 2 M H2SO4. The aMP powder is highly porous and the KOH activation may produce pores that are populated with graphitic edges. The resulting aMP electrode has a capacitance value of 295 F g-1 at 0.125 A g-1 discharge and decreases to 180 F g-1 at 100 A g-1. With particle milling, the pore diffusion resistance of the aMP electrode decreases significantly because of the elimination of a hindered diffusion mode for the particle interior. CNT addition provides inter-particle spacing and bridging media for the milled aMP and reduces the Warburg diffusion and electrical resistances. The composite of milled aMP and CNTs have capacitance values of 305 F g-1 at 0.125 A g-1 and 214 F g-1 at 100 A g-1. With a small potential widow of 1 V, the resulting symmetric cells can deliver an energy level of 8.2 Wh kg-1 at a high power of 10,000 W kg-1. These cells show superior stability, with no decay of specific capacitance after 10,000 cycles of galvanostatic charge and discharge.
Third part reports the synthesis of a gelled polymer electrolyte (GPE) using poly(ethylene glycol) blending poly(acrylonitrile) (i.e., PAN-b-PEG-b-PAN) as a host, dimethyl formamide (DMF) as a plasticizer, and LiClO4 as an electrolytic salt for electric double layer capacitors (EDLCs). The PAN-b-PEG-b-PAN copolymer in the GPE has a linear configuration for high ionic conductivity and excellent compatibility with carbon electrodes. When assembling the GPE in a carbon-based symmetric EDLC, the copolymer network facilitates ion motion by reducing the equivalent series resistance and Warburg resistance of the capacitor. This symmetric cell has a capacitance value of 101 F g-1 at 0.125 A g-1 and can deliver an energy level of 11.5 Wh kg-1 at a high power of 10,000 W kg-1 over a voltage window of 2.1 V. This cell shows superior stability, with little decay of specific capacitance after 30,000 galvanostatic charge-discharge cycles. The distinctive merit of the GPE film is its adjustable mechanical integrity, which makes the roll-to-roll assembly of GPE-based EDLCs readily scalable to industrial levels.

Chapter 1 Genernal Introduction
1-1 Revewable Energy 1
1-2 Energy storage systems 4
1-3 Supercapacitors 8
1-4 Motive of Study and Scope 10
1-5 Refences 12

Chapter 2 Literature Survey and Principle
2-1 Construction of electric double layer capacitor 13
2-2 Pinciiple of energy storage in EDLC 16
2-2-1 Models of the double layer 16
2-2-2 The energy storage mechanism of EDLCs 19
2-2-3 The performance of EDLCs 20
2-2-4 Porous electrode for EDLCs 22
2-2-5 Cell tests 23
2-2-6 Galvanostatic charge-discharge 24
2-2-7 Cyclic voltammetry 25
2-2-8 Electrochemical impedance spectroscopy 27
2-3 Carbon materials 30
2-3-1 Activated Carbons 32
2-3-2 Mesoporous Carbon 34
2-3-3 Carbon nanotubes 35
2-3-4 Carbon nanofibers 37
2-4 Electrode properties 38
2-4-1 Pore size and surface area 38
2-4-2 Surface functionalities 42
2-4-3 Particle size 44
2-5 Liquid electrolytes 45
2-5-1 Aqueous electrolytes 45
2-5-2 Organic electrolytes 46
2-5-3 Ionic liquids 47
2-6 Polymer electrolytes 48
2-6-1 Solid polymer electrolytes 49
2-6-2 Gelled polymer electrolytes 50
2-7 References 53

Chapter 3 Mesoporous Carbon Spheres Grafted with Carbon Nanofibers for High-rate Electric Double Layer Capacitors
3-1 Introduction 58
3-2 Experimental 60
3-2-1 Material preparation 60
3-2-2 Material characterization 62
3-2-3 Electrochemical measurements 62
3-3 Results and discussion 64
3-4 Conclusions 81
3-5 References 82

Chapter 4 Electric Double Layer Capacitors Based on a Composite Electrode of Activated Mesophase Pitch and Carbon Nanotubes
4-1 Introduction 85
4-2 Experimental 87
4-2-1 Material preparation 87
4-2-2 Material characterization 89
4-2-3 Electrochemical measurements 90
4-3 Results and Discussion 91
4-3-1 Characterization of the electrode materials 91
4-3-2 Evaluation of the electrode charge storage capability 98
4-3-3 Analysis of the cell resistance components 102
4-3-4 Evaluation of the overall capacitive performance 106
4-4 Conclusions 111
4-5 References 113

Chapter 5 Gel Electrolyte Derived from Poly(ethylene glycol) Blending Poly(acrylonitrile) Applicable to Roll-to-Roll Assembly of Electric Double Layer Capacitors
5-1 Introduction 117
5-2 Experimental 119
5-2-1 GPE preparation and characterization 119
5-2-2 EDLCs assembling and electrochemical measurements 121
5-2-3 Viscosity and contact angle measurements 122
5-3 Results and Discussion 123
5-3-1 GPE Structure 123
5-3-2 Electrochemical properties of electrolytes 129
5-3-3 Assembly of symmetric cells 132
5-3-4 Electrochemical capacitive performance of resulting cells 135
5-4 Conclusions 142
5-5 References 143

Chapter 6 Overall Conclusions and Future Prospects 146

Curriculum Vitae 149


Chapter 1
[1]R. D. Griffin, Alternative Energy, Congressional Quarterly, 1992, 573.
[2]F. Díaz-González, A. Sumper, O. Gomis-Bellmunt, R. Villafáfila-Robles, Renewable & Sustainable Energy Reviews, 2012, 16, 2154.
[3]http://energy-goods.com/solar-power/
[4]http://www.folkecenter.net/gb/rd/wave-energy/hydropower/tidalenergy/
[5]H. Ibrahim, A. Ilinca, J. Perron, Renewable & Sustainable Energy Reviews, 2008, 12, 1221.
[6]http://www.zdnet.co.uk/news/emerging-tech/2011/02/08/chilean-power-plant-to-get-giant-battery-40091714
[7]http://www.treehugger.com/cars/5-ways-to-power-the-green-cars-of-the-future.html
[8]J. A. Fernandez, M. Arulepp, J. Leis, F. Stoeckli and T. A. Centeno, Electrochim. Acta, 2008, 53, 7111.
[9]E. Frackowiak, Phys. Chem. Chem. Phys., 2007, 9, 1774.
[10]J. R. Miller, P. Simon, The Eletrochemical Socity Interface, 2008, 1, 32.

Chapter 2
[1]P. Sharma, T. S. Bhatti, Energy Conversion & Management, 2010, 12, 2901
[2]E. Frackowiak, F. Béguin, Carbon, 2001, 39, 937.
[3]B. E. Conway, Electrochemical supercapacitors: scientific fundamentals, technological applications, Kluwer Academic/Plenum, New York, 1999, 105.
[4]H. von Helmholtz, Ann. Phys., 1853, 89, 211.
[5]G. Gouy, Ann. Phys., 1917, 7, 129.
[6]O. Stern, Zeit. Elektrochem., 1924, 30, 508.
[7]L. L. Zhang, X. S. Zhao, Chem. Soc. Rev., 2009, 38, 2520.
[8]K. Kinoshita, Carbon: electrochemical, physicochemical properties, john Wiley & sons, New York, 1988, 293.
[9]P. Simon, Y. Gogotsi, Nature Mater., 2008, 7, 845.
[10]E. Frackowiak, Phys. Chem. Chem. Phys., 2007, 9, 1774.
[11]R. Kötz, M. Carlen, Electrochim. Acta, 2000, 45, 2483.
[12]M. D. Stoller, R. S. Ruoff, Energy Environ. Sci., 2010, 3, 1294.
[13]S. Zhao, F. Wu, L. Yang, L. Gao, A. Burke, Electrochem. Commun., 2010, 12, 242.
[14]H. Teng, T. C. Weng, Microporous, Mesoporous Materials, 2001, 50, 53.
[15]T. C. Weng, H. Teng, J. Electrochem. Soc., 2001, 148, A368.
[16]Y. J. Kim, Y. Horie, Y. Matsuzawa, S. Ozaki, M. Endo, M. S. Dresselhaus, Carbon, 2004, 42, 2423.
[17]R. Xue, Z. Shen, Carbon, 2003, 41, 1862.
[18]H. Teng, S. C. Wang, Carbon, 2000, 38, 817.
[19]H. Teng, S. C. Wang, Ind. Eng. Chem. Res., 2000, 39, 673.
[20]C. Portet, M. Á. Lillo-Ródenas, A. Linares-Solano, Y. Gogotsi, Phys. Chem. Chem. Phys., 2009, 11, 4943.
[21]E. Raymundo-Piñero, P. Azaïs, T. Cacciaguerra, D. Cazorla-Amorós, A. Linares-Solano, F. Béguin, Carbon, 2005, 43, 786.
[22]M. A. Lillo-Ródenas, D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, Carbon, 2001, 39, 751.
[23]S. M. Contreras, C. A. Páez, L. Zubizarreta, A. Léonard, S. Blacher, C. G. Olivera-Fuentes, A. Arenillas, J. Pirard, N. Job, Carbon, 2010, 48, 3157.
[24]M. Molina-Sabio, F. RodRíguez-Reinoso, F. Caturla, M.J. Sellés, Carbon, 1995, 33, 1105.
[25]F. Suárez-Garcı́a, A. Martı́nez-Alonso, J. M.D Tascón, Carbon, 2004, 42, 1419.
[26]F. Caturla, M. Molina-Sabio, F. Rodríguez-Reinoso, Carbon, 1991, 29, 999.
[27]F. Rodríguez-Reinoso, M. Molina-Sabio, Carbon, 1992, 30, 1111.
[28]H. F. Stoeckli, Carbon, 1990, 28, 1.
[29]J. Gambly, P. L. Taberna, P. Simon, J. F. Fauvarque, M.Chesneau, J. Power Sources, 2001, 101, 109.
[30]D. Lozano-Castello, D. Cazorla-Amoros, A. Linares-Solano, S. Shiraishi, H. Kurihara, A. Oya, Carbon, 2003, 41, 1765.
[31]K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz, J.Machnikowski, Electrochim. Acta, 2004, 49, 515.
[32]D. Qu, H. Shi, J. Power Sources, 1998, 74, 99.
[33]M. Endo, Y. J. Kim, H. Ohta, K. Ishii, T. Inoue, T. Hayashi, Y.Nishimura, T. Maeda, M. S. Dresselhaus, Carbon, 2002, 40,2613.
[34]S. Shiraishi, H. Kurihara, H. Tsubota, A. Oya, Y. Soneda, Y.Yamada, Electrochem. Solid-State Lett., 2001, 4, A5.
[35]O. Barbieri, M. Hahn, A. Herzog, R. Kotz, Carbon, 2005, 43,1303.
[36]D. W. Wang, F. Li, M. Liu, G. Q. Lu, H. M. Cheng, Angew. Chem. Int. Ed., 2008, 47, 373.
[37]G. Sun, J. Wang, X. Liu, D. Long, W. Qiao, L. Ling, J. Phys. Chem. C., 2010, 114, 18745.
[38]Y. Lv, F. Zhang, Y. Dou, Y. Zhai, J. Wang H. Liu, Y. Xia, B. Tu, D. Zhao, J. Mater. Chem., 2012, 22, 93.
[39]K. W. Chang, Z. Y. Lim, F. Yi. Du, Y. L. Yang, C. H. Chang, C. C. Hu, H. P. Lin, Diamond and Related Materials, 2009, 18, 448.
[40]C. Moreno-Castilla, Carbon, 2004, 42, 83.
[41]S. Yoon, J. Lee, T. Hyeon, S. M. Oh, J. Electrochem. Soc., 2000, 147, 2507.
[42]X. Qian, Y. Lv, W. Li, Y. Xia, D. Zhao, J. Mater. Chem., 2011, 21, 13025.
[43]C. Portet, G. Yushin, Y. Gogotsi, Carbon, 2007, 45, 2511.
[44]F. Pico, C. Pecharroman, A. Ansón, M. T. Martínez, J. M. Rojo, J. Electrochem. Soc., 2007, 154, A579.
[45]P. L. Taberna, G. Chevallier, P. Simon, D. Plée, T. Aubert, Mater. Res. Bull., 2006, 41, 478.
[46]X. Liu, L. Juan, L. Zhan, L. Tang, Y. Wang, W. Qiao, X. Liang, L. Ling, J. Electroanal. Chem., 2010, 642, 75.
[47]http://coecs.ou.edu/Brian.P.Grady/nanotube.html
[48]J. Jang, J. Bae, M. Choi, S. Yoon, Carbon, 2005, 43, 2730.
[49]Y. Soneda, M. Toyoda, K. Hashiya, J. Yamashita, M. Kodama, H. Hatori, M. Inagaki, Carbon, 2003, 41, 2680.
[50]Y. Piao, K. An, J. Kim, T. Yu, T. Hyeon, J. Mater. Chem., 2006, 16, 2984.
[51]S. Brunauer, P. H. Emmett, E. Teller, J. Am. Chem. Soc., 1938, 60, 309.
[52]A. G. Pandolfo, A. F. Hollenkamp, J. Power Sources, 2006, 157, 11.
[53]H. Yamada, H. Nakamura, F. Nakahara, I. Moriguchi, T. Kudo, J. Phys. Chem. C, 2006, 111, 227.
[54]F. Xu, R. Cai, Q. Zeng, C. Zou, D. Wu, F. Li, X. Lu, Y. Liang, R. Fu, J. Mater. Chem., 2011, 21, 1970.
[55]J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna, Science, 2006, 313, 1760.
[56]J. S. Noh, J. A. Schwarz, Carbon, 1990, 28, 675.
[57]Y. R. Nian, H. Teng, J. Electrochem. Soc., 2002, 149, A1008.
[58]J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas, J. J. M. Órfão, Carbon, 1999, 37, 1379.
[59]T. Momma, X. Liu, T. Osaka, Y. Ushio, Y. Sawada, J. Power Sources, 1996, 60, 249.
[60]C. T. Hsieh, H. Teng, Carbon, 2002, 40, 667.
[61]R. Cabán, T. W. Chapman, J. Electrochem. Soc., 1977, 124, 1371.
[62]R. Pietrzak, K. Jurewicz, P. Nowicki, K. Babel, H. Wachowska, Fuel, 2007, 86, 1086.
[63]T. A. Centeno, M. Hahn, J. A. Fernández, R. Kötz, F. Stoeckli, Electrochem. Commun., 2007, 9, 1242.
[64]C. Protet, G. Yushin, Y. Gogotsi, J. Electrochem. Soc., 2008, 155, A531.
[65]K. Fic, G. Lota, M. Meller, E. Frackowiak, Energy Environ. Sci. 2012, 5, 5842.
[66]J. Dupont, P. A. Z. Suarez, Phys. Chem. Chem. Phys., 2006, 8, 2441.
[67]A. M. Stephan, Eur. Polym. J., 2006, 42, 21.
[68]M. A. Ratner, Chem. Rev., 1988, 88, 109.
[69]M. Armand, Solid State Ionics, 1994, 69, 309.
[70]J. Y. Song, Y. Y. Wang, C. C. Wan, J. Power Sources, 1999, 77, 183.
[71]F. B. Dias, L. Plomp, J. B. J. Veldhuis, J. Power Sources, 2000, 88, 169.
[72]D. E. Fenton, J. M. Parker, P. V. Wright, Polymer, 1973, 14, 589.
[73]K. Xu, S. Ding, T. R. Jow, J. Electrochem. Soc., 2001, 148, A267.
[74]C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno, P. Rigaud, Solid, State Ionics, 1983, 11, 91.
[75]J. Y. Song, Y. Y. Wang, C. C. Wan, J. Power Sources, 1999, 77, 183.
[76]Y. Ito, K. Kanehori, K. Miyauchi, T. Kudo, J. Mater. Sci., 1987, 22, 1845.
[77]G. B. Appetecchi, B. Scrosati, Electrochim. Acta, 1998, 43, 1105.
[78]F. Croce, F. Gerace, G. Dautzenberg, S. Passerini, G. B. Appetecchi, B. Scrosati, Electrochim. Acta, 1994, 39, 2187.

Chapter 3
[1]K. Kinoshita, Carbon: electrochemical, physicochemical properties, john Wiley & sons, New York, 1988, 293.
[2]B. E. Conway, Electrochemical supercapacitors: scientific fundamentals, technological applications, Kluwer Academic/Plenum, New York, 1999, 105.
[3]T. Osaka, X. Liu , M. Nijima, T. Momma, J. Electrochem. Soc., 1999, 146, 1724.
[4]R. Kötz, M. Carlen, Electrochim. Acta, 2000, 45, 2483.
[5]S. Yoon, J. Lee, T. Hyeon, S. M. Oh, J. Electrochem. Soc., 2000, 147, 2507.
[6]C. T. Hsieh, H. Teng, Carbon, 2002, 40, 667.
[7]Y. R. Nian, H. Teng, J. Electrochem. Soc., 2002, 149, A1008.
[8]E. Frackowiak, F. Béguin, Carbon, 2001, 39, 937.
[9]D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, S. Shiraishi, H. Kurihara, A. Oya, Carbon, 2003, 41, 1765.
[10]H. Y. Liu, K. P. Wang, H. Teng, Carbon, 2005, 43, 559.
[11]K. P. Wang, H. Teng, Carbon, 2006, 44, 3218.
[12]R. L. Tseng, S. K. Tseng, F. C. Wu, C. C. Hu, C. C. Wang, J. Chin. Inst. Chem. Eng., 2008, 39, 37.
[13]C. P. Tien, H. Teng, J. Taiwan Inst. Chem. Eng. 2009, 40, 452.
[14]P. Simon, Y. Gogotsi, Nature Mater., 2008, 7, 845.
[15]J. P. Zheng, J. Power Source, 2004, 137, 158.
[16]C. Protet, P. L. Taberna, P. Simon, E. Flahaut, J. Power Source, 2005, 139, 371.
[17]P. L. Taberna, G. Chevallier, P. Simon, D. Plée, T. Aubert, Mater. Res. Bull., 2006, 41, 478.
[18]C. W. Huang, C. M. Chuang, J. M. Ting, H. Teng, J. Power Sources, 2008, 183, 406.
[19]C. W. Huang, H. Teng, J. Electrochem. Soc., 2008, 155, A739.
[20]A. B. Fuertes, F. Pico, J. M. Rojo, J. Power Sources, 2004, 133, 329.
[21]W. Xing, S. Z. Qiao, R. G. Ding, F. Li, G. Q. Liu, Z. F. Yan, H. M. Cheng, Carbon, 2006, 44, 216.
[22]B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, Z. Zhou, Y. Yang, Electrochem. Commun., 2008, 10, 795.
[23]K. W. Chang, Z. Y. Lim, F. Y. Du, Y. L. Yang, C. H. Chang, C. C. Hu, H. P. Lin, Diamond Related Mater., 2009, 18, 448.
[24]W. D. Wang, F. Li, M. Liu, G. Q. Lu, H. M. Cheng, Angew Chem. Int. Ed., 2008, 47, 373.
[25]C. Portet, G. Yushin, Y. Gogotsi, Carbon, 2007, 45, 2511.
[26]S. Lim, S. H. Yoon, Y. Shimizu, H. Jung, I. Mochia, Langmuir, 2004, 20, 5559.
[27]Q. Zhang, H. Yu, J. Q. Huang, L. Hu, W. Z. Qian, D. Z. Wang, F. Wei, Mater. Lett., 2008, 62, 3149.
[28]H. L. Zhang, Y. Zhang, X. G. Zhang, F. Li, C. Liu, J. Tan, H. M. Cheng, Carbon, 2006, 44, 2778.
[29]F. Su, X. Li, L. Lv, X. S. Zhao, Carbon, 2006, 44, 801.
[30]Y. Piao, K. An, J. Kim, T. Yu, T. Hyeon, J. Mater. Chem., 2006, 16, 2984.
[31]N. Sonoyama, M. Ohshita, A. Nijubu, H. Nishikawa, H. Yanase, J. Hayashi, T. Chiba, Carbon, 2006, 44, 1754.
[32]X. W. Chen, D. S. Su, S. B. A. Hamid, R. Schlgöl, Carbon, 2007, 45, 892.
[33]C. H. Wang, H. C. Shih, Y. T. Tsai, H. Y. Du, L. C. Chen, K. H. Chen, Electrochim. Acta, 2006, 52, 1612.
[34]C. S. Li, D. Z. Wang, X. F. Wang, J. Liang, Carbon, 2005, 43, 1557.
[35]K. Okajima, K. Ohta, M. Sudoh, Electrochim. Acta, 2005, 50, 2227.
[36]J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna, Science, 2006, 313, 1760.
[37]J. S. Huang, B. G. Sumpter, V. Meunier, Angew Chem. Int. Ed., 2008, 47, 520.
[38]J. S. Huang, B. G. Sumpter, V. Meunier, Chem. Eur. J., 2008, 14, 6614.
[39]J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, J. Appl. Phys., 1996, 80, 440.
[40]K. H. Lioa, J. M. Ting, Carbon, 2004, 42, 509.
[41]J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas, J. J. M. Órfão, Carbon, 1999, 37, 1379.
[42]H. A. Andreas, B. E. Conway, Electrochim. Acta, 2006, 51, 6510.
[43]V. Khomenko, E. Raymundo-Piñero, F. Béguin, J. Power Sources, 2010, 195, 4234.
[44]P. L. Taberna, P. Simon, J. F. Fauvarque, J. Electrochem. Soc., 2003, 150, A292.
[45]C. Portet, P. L. Taberna, P. Simon, C. Laberty-Robert, Electrochim. Acta, 2004, 49, 905.

Chapter 4
[1]K. Kinoshita, Carbon: electrochemical, physicochemical properties, john Wiley & sons, New York, 1988, 293.
[2]B. E. Conway, Electrochemical supercapacitors: scientific fundamentals, technological applications, Kluwer Academic/Plenum, New York, 1999, 105.
[3]R. Kötz, M. Carlen, Electrochim. Acta, 2000, 45, 2483.
[4]S. Yoon, J. Lee, T. Hyeon, S. M. Oh, J. Electrochem. Soc., 2000, 147, 2507.
[5]C. T. Hsieh, H. Teng, Carbon, 2002, 40, 667.
[6]S. Y. Yang, K. H. Chang, H. W. Tien, Y. F. Lee, S. M. Li, Y. S. Wang, J. Y. Wang, C. C. M. Ma, C. C. Hu, J. Mater. Chem., 2011, 21, 2374.
[7]X. F. Qian, Y. Y. Lv, W. Li, Y. Y. Xia, D. Y. Zhao, J. Mater. Chem., 2011, 21, 13025.
[8]K. P. Wang, H. Teng, Carbon, 2006, 44, 3218.
[9]P. Simon, Y. Gogotsi, Nature Mater., 2008, 7, 845.
[10]H. C. Huang, C. W. Huang, C. T. Hsieh, P. L. Kuo, J. M. Ting, H. Teng, J. Phys. Chem. C, 2011, 115, 20689.
[11]T. C. Weng, H. Teng, J. Electrochem. Soc., 2001, 148, A368.
[12]B. Xu, F. Wu, Y. Su, G. Cao, S. Chen, Z. Zhou, Y. Yang, Electrochim. Acta, 2008, 53, 7730.
[13]D. Pech, M. Brunet, P. L. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Conédéra, H. Durou, J. Power Sources, 2010, 195, 1266.
[14]M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Nano Lett., 2008, 8, 3498.
[15]M. D. Stooler, R. S. Ruoff, Energy Environ. Sci., 2010, 3, 1294.
[16]Y. Soneda, M. Toyoda, K. Hashiya, J. Yamashita, M. Kodama, H. Hatori, M. Inagaki, Carbon, 2003, 41, 2680.
[17]Y. Piao, K. An, J. Kim, T. Yu, T. Hyeon, J. Mater. Chem., 2006, 16, 2984.
[18]C. W. Huang, C. H. Hsu, P. L. Kuo, C. T. Hsieh, H. Teng, Carbon, 2011, 49, 895.
[19]C. Dangler, M. Rane-Fondacaro, T. S. Devarajan, S. Higashiya, J. Snyder, P. Haldar, Mater. Lett., 2011, 65, 300.
[20]Q. Guo, X. Zhou, X. Li, S. Chen, A. Seema, A. Greiner, H. Hou, J. Mater. Chem., 2009, 19, 2810.
[21]H. Marsh, E. A. Heintz, F. Rodríguez-Reinoso, Introduction to Carbon Technologies, Universidad de Alicante, Spain, 1997, p. 573.
[22]P. Haridoss, F. A. Uribe, F. H. Garzon, T. A. Zawodzinski Jr, J. Mater. Res., 1998, 13, 2015.
[23]G. Beatia, R. K. Aggarwal, N. Punjabi, O. P. Bahl, J. Mater. Sci., 1997, 32, 135.
[24]E. Frackowiak, J. Machnikowski, H. Kaczmarska, F. Béguin, J. Power Sources, 2001, 9798, 140.
[25]Y. Ji, T. Li, L. Zhu, X. Wang, Q. Lin, Appl. Surf. Sci., 2007, 254, 506.
[26]H. Teng, T. C. Weng, Microporous, Mesoporous Materials, 2001, 50, 53.
[27]J. Yang, Z. Shen, Z. Hao, Carbon, 2004, 42, 1872.
[28]D. Zhai, B. Li, F. Kang, H. Du, C. Xu, Microporous, Mesoporous Materials, 2010, 130, 224.
[29]K. Kierzek, E. Frachowiak, G. Lota, G. Gryglewicz, J. Machnikowski, Electrochim. Acta, 2004, 49, 515.
[30]D. Cazorla-Amorós, D. Lozano-Castelló, E. Morallón, M. J. Bleda-Martínez, A. Linares-Solano, S. Shiraishi, Carbon, 2010, 48, 1451.
[31]Y. J. Kim, Y. Horie, Y. Matsuzawa, S. Ozaki, M. Endo, M. S. Dresselhaus, Carbon, 2004, 42, 2423.
[32]R. Xue, Z. Shen, Carbon, 2003, 41, 1862.
[33]H. Teng, S. C. Wang, Carbon, 2000, 38, 817.
[34]H. Teng, S. C. Wang, Ind. Eng. Chem. Res., 2000, 39, 673.
[35]C. Portet, M. Á. Lillo-Ródenas, A. Linares-Solano, Y. Gogotsi, Phys. Chem. Chem. Phys., 2009, 11, 4943.
[36]E. Frackowiak, Phys. Chem. Chem. Phys., 2007, 9, 1774.
[37]E. Raymundo-Piñero, K. kierzek, J. Machnikowski, F. Béguin, Carbon, 2006, 44, 2498.
[38]H. Nishihara, H. Itoi, T. Kogure, P. X. Hou, H. Touhara, F. Okino, T. Kyotani, Chem. Eur. J., 2009, 15, 5355.
[39]Y. Kibi, T. Saito, M. Kurata, J. Tabuchi, A. Ochi, J. Power Sources, 1996, 60, 219.
[40]C. Protet, G. Yushin, Y. Gogotsi, J. Electrochem. Soc., 2008, 155, A531.
[41]S. Yoon, S. M. Oh, C. W. Lee, J. W. Lee, J. Electrochem. Soc., 2010, 157, A1229.
[42]F. Pico, C. Pecharroman, A. Ansón, M. T. Martínez, J. M. Rojo, J. Electrochem. Soc., 2007, 154, A579.
[43]Ch. Emmenegger, Ph. Mauron, P. Sudan, P. Wenger, V. Hermann, R. Gallay, A. Züttel, J. Power Sources, 2003, 124, 321.
[44]P. L. Taberna, G. Chevallier, P. Simon, D. Plée, T. Aubert, Mater. Res. Bull., 2006, 41, 478.
[45]M. A. Lillo-Ródenas, D. Cazorla-Amorós, A. Linares-Solano, F. Béguin, C. Clinard, J. N. Rouzaud, Carbon, 2004, 42, 1305.
[46]N. A. Seaton, J. P. R. Walton, N. Quirke, Carbon, 1989, 42, 853.
[47]Z. Ryu, J. Zheng, M. Wang, Carbon, 1998, 36, 427.
[48]Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, , Science, 2011, 332, 1537.
[49]O. Barbieri, M. Hahn, A. Herzog, R. Kötz, Carbon, 2005, 43, 1303.
[50]N. L. Wu, S. Y. Wang, J. Power Source, 2002, 110, 233.
[51]H. Zhang, W. Zhang, J. Cheng, G. Cao, Y. Yang, Solid State Ionics, 2008, 179, 1946.
[52]C. Protet, P. L. Taberna, P. Simon, E. Flahaut, J. Power Source, 2005, 139, 371.
[53]C. W. Huang, C. M. Chuang, J. M. Ting, H. Teng, J. Power Sources, 2008, 183, 406.
[54]C. W. Huang, H. Teng, J. Electrochem. Soc., 2008, 155, A739.
[55]S. Yoon, S. M. Oh, C. W. Lee, J. H. Ryu, J. Electroanal. Chem., 2011, 650, 187.
[56]P. L. Taberna, P. Simon, J. F. Fauvarque, J. Electrochem. Soc., 2003, 150, A292.

Chapter 5
[1]K. Kinoshita, Carbon: electrochemical, physicochemical properties, john Wiley & sons, New York 1988.
[2]B. E. Conway, Electrochemical supercapacitors: Scientific fundamentals, technological applications, Kluwer Academic/Plenum, New York 1999.
[3]S. Yoon, J. Lee, T. Hyeon, S. M. Oh, J. Electrochem. Soc. 2000, 147, 2507.
[4]P. Simon, Y. Gogotsi, Nature Mater. 2008, 7, 845.
[5]M. Heon, S. Lofland, J. Applegate, R. Nolte, E. Cortes, J. D. Hettinger, P. L. Taberna, P. Simon, P. Huang, M. Brunet, Y. Gogotsi, Energy Environ. Sci. 2011, 4, 135.
[6]K. P. Wang, H. Teng, Carbon 2006, 44, 3218.
[7]H. C. Huang, C. W. Huang, C. T. Hsieh, P. L. Kou, J. M. Ting, H. Teng, J. Phys. Chem. C 2011, 115, 20689.
[8]M. D. Strooler, R. S. Ruoff, Energy Environ. Sci. 2010, 3, 1294.
[9]C. W. Huang, C. M. Chuang, J. M. Ting, H. Teng, J. Power Sources 2008, 183, 406.
[10]C. W. Huang, C. T. Hsieh, P. L. Kou, H. Teng, J. Mater. Chem. 2012, 22, 7314.
[11]S. Yoon, S. M. Oh, C. W. Lee, J. W. Lee, J. Electrochem Soc. 2010, 157, A1229.
[12]M. S. Wu, Ya. P. Lin, C. H. Lin, J. T. Lee, J. Mater. Chem. 2012, 22, 2442.
[13]G. Wang, Z. Shao, Z. Yu, Nanotechnology 2007, 18, 205705.
[14]M. Ishikawa, M. Morita, M. Ihara, Y. Matsuda, J. Electrochem. Soc. 1994, 141, 1730.
[15]C. P. Tien, W. J. Liang, P. L. Kuo, H. Teng, Electrochim. Acta 2008, 53, 4505.
[16]C. P. Tien, H. Teng, J. Taiwan Inst. Chem. Eng. 2009, 40, 452.
[17]C. P. Tien, H. Teng, J. Power Sources 2010, 195, 2414.
[18]H. Gao, K. Lian, J. Power Sources 2011, 196, 8855.
[19]Y. Ding, F. H. Meng, Adv. Mater. 2011, 23, 4098.
[20]G. Wee, O. Larsson, M. Srinivasan, M. Berggren, X. Crispin, S. Mhaisalkar, Adv. Funct. Mater. 2010, 20, 4344.
[21]M. Kaempgen, G. K. Chan, J. Ma, Y. Cui, G. Gruner, Nano Lett. 2009, 9, 1872.
[22]C. Meng, C. Liu, L. Chen, C. Hu, S. Fan, Nano Lett. 2010, 10, 4025.
[23]G. P. Pandey, S. A. Hashmi, Y. Kumar, J. Electrochem. Soc. 2010, 157, A105.
[24]M. Morita, J. L. Qiao, N. Yoshimoto, M. Ishikawa, Electrochim. Acta 2004, 50, 837.
[25]N. Wu, Q. Cao, X. Wang, X. Li, H. Deng, J. Power Sources 2011, 196, 8638.
[26]H. Li, X. T. Ma, J. L. Shi, Z. K. Yao, B. K. Zhu, L. P. Zhu, Electrochim. Acta 2011, 56, 2641.
[27]Y. T. Chen, Y. C. Chuang, J. H. Su, H. C. Yu, Y. W. Chen-Yang, J. Power Sources 2011, 196, 2802.
[28]H. R. Jung, W. J. Lee, Electrochim. Acta 2011, 58, 674.
[29]M. Deka, A. Kumar, Electrochim. Acta 2010, 55, 1836.
[30]A. M. Stephan, K. S. Nahm, Polymer 2006, 47, 5952.
[31]J. Y. Song, Y. Y. Wang, C. C. Wan, J. Power Sources 1999, 77, 183.
[32]A. M. Stephan, Eur. Polym. J. 2006, 42, 21.
[33]R. Subadevi, M. Sivakumar, S. Rajendran, H. C. Wu, N. L. Wu, J. Appl. Polym. Sci. 2011, 119, 1.
[34]W. Wieczorek, G. Żukowska, R. Borkowska, S. H. Chung, S. Greenbaum, Electrochim. Acta 2001, 46, 1427.
[35]W. C. Hsu, J. F. Kuo, C. Y. Chen, J. Polym. Sci. Part A: Polym. Chem. 1992, 30, 2459.
[36]W. C. Hsu, C. Y. Chen, J. F. Kuo, E. M. Wu, Polymer 1994, 35, 849.
[37]H. W. Chen, F. C. Chang, J. Polym. Sci. Part B: Polym. Phys. 2001, 39, 2407.
[38]K. V. Ramana, S. Singh, Spectrochim. Acta, Part A 1988, 44, 277.
[39]D. W. James, R. E. Mayes, Aust. J. Chem. 1982, 35, 1775.
[40]R. L. Frost, D. W. James, R. Appleby, R. E. Mayes, J. Phys. Chem. 1982, 86, 3840.
[41]S. Selvasekarapandian, R. Baskaran, Spectrochim Acta Part A 2006, 65, 1234.
[42]D. Battisti, G. A. Nazri, B. Klassen, R. Aroca, J. Phys. Chem. 1993, 97, 5826.
[43]Y. Chatani, S. Okamura, Polymer 1987, 28, 1815.
[44]Z. Wang, B. Huang, S. Wang, R. Xue, X. Huang, L. Chen, J. Electrochem Soc. 1997, 144, 778.
[45]B. K. Choi, Y. W. Kim, K. H. Shin, Electrochim. Acta 2000, 45, 1371.
[46]Y. H. Liang, C. C. Wang, C. Y. Chen, J. Power Sources 2008, 176, 340.
[47]C. W. Huang, C. H. Hsu, P. L. Kuo, C. T. Hsieh, H. Teng, Carbon 2011, 49, 895.
[48]C. W. Huang, H. Teng, J. Electrochem. Soc. 2008, 155, A739.
[49]D. Aurbach, I. Weissman, Nonaqueous Electrochemistry (Ed: D. Aurbach), Marcel Dekker, New York 1999, Ch. 1.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊