跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/05 01:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:田瑞浦
研究生(外文):Ruei-PuTian
論文名稱:氮化鋁粉體噴霧造粒與微波燒結製程技術開發
論文名稱(外文):Process development for spray granulation and microwave sintering of aluminum nitride powder
指導教授:鍾賢龍
指導教授(外文):Shyan-Lung Chung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:95
中文關鍵詞:氮化鋁噴霧造粒微波燒結
外文關鍵詞:AlNspray granulationmicrowave sintering
相關次數:
  • 被引用被引用:1
  • 點閱點閱:599
  • 評分評分:
  • 下載下載:91
  • 收藏至我的研究室書目清單書目收藏:0
為了改善粉體之流動性本研究探討氮化鋁粉末之噴霧造粒技術,並因微波具有快速加熱、節省能源等優點,探討氮化鋁粉體之微波燒結。實驗首先探討影響造粒粉體外觀及粒徑大小各種因素,如漿料特性與噴霧造粒之製程參數,之後利用單模腔之微波燒結爐探討不同之造粒粉體在不同燒結時間下的燒結性質,包括收縮行為、燒結體密度、二次相組成、微結構和熱傳導值的探討。研究發現漿料添加部分乙烯纖維素可以使漿料黏度劇烈上升,改善造粒粉體之缺陷問題,此外造粒粉體的粒徑會與黏結劑添加量和固含量成正變關係,與霧化器轉速成反變關係,本研究考慮經濟效應之最佳漿料配方為黏結劑(B-03HX)添加量2wt%,分散劑(TEP)添加量0.4wt%,乙烯纖維素添加量0.75wt%,固含量約60wt%。將完整且球形狀粉體於1750℃氮氣氣氛下燒結180分鐘,熱傳導值可以達到172W/m-K。

In order to improve the flowability of powder, the spray granulation technique of aluminum nitride(AlN) powder was researched. Due to the advantages of microwave fast heating and energy-saving, the study explored the aluminum nitride powder by microwave sintering. At first, the study discussed the factors that the influences on the appearance of the granulation powder and particle size, such as slurry characteristics and spray granulation process parameters. And then using the single-mode microwave furnace investigated the qualities of the different granulation powder in the different soaking time. For example, shrinkage, the bulk density, secondary phase distribution, microstructure, and thermal conductivity.
The results of the experiment showed that adding ethylcellulose increased the slurry viscosity significantly and improved the hollow appearance of granulation powder. Particle size of granulation powder as the addition of binder and solid content to enhance and larger, and is inversely proportional to the rotational speed of atomizer. According to the economic effect, the study showed the results of using 2wt.% binder (B-03HX), 0.4wt.% dispersant(TEP), 0.75wt.% ethylcellulose, and 60wt.% solid content. And the thermal conductivity of the spherical granulation powder was measured 172W/m-K under the nitrogen atmosphere with a sintering temperature of 1750℃, and soaking time of 180 minutes.
中文摘要 I
英文摘要 II
誌謝 III
總目錄 IV
表目錄 VIII
圖目錄 X
第一章 緒論 1
1-1 氮化鋁簡介與應用 1
1-2 噴霧造粒簡介 2
1-3 研究動機 3
第二章 原理與文獻回顧 4
2-1 氮化鋁特性 4
2-2 噴霧造粒原理 5
2-2-1霧化器 7
2-2-2 霧化液珠與熱空氣接觸 7
2-3影響造粒顆粒之大小因素 9
2-4影響噴霧造粒性質之因素 14
2-4-1乾燥速率影響 14
2-4-2分散劑添加量 15
2-4-3固含量影響 17
2-4-4黏結劑添加量 18
2-5 熱傳導機構 18
2-6 液相燒結 20
2-7液相燒結助劑選擇 22
2-8微波加熱概論 24
2-8-1微波簡介 24
2-8-2微波加熱元件 25
2-8-3微波加熱原理 27
2-8-4微波燒結的特點 29
第三章 實驗設備及使用藥品 31
3-1藥品 31
3-2 實驗設備與分析儀器 32
3-2-1實驗設備 32
3-2-2分析儀器 34
3-3儀器分析原理與量測方法 35
第四章 實驗方法 40
4-1 實驗步驟 40
4-2原料 41
4-2-1氮化鋁之起始粉體 41
4-2-2 黏結劑 42
4-3漿料混合 44
4-4噴霧造粒製程 44
4-5生坯體成型 45
4-6去除黏結劑(脫脂) 45
4-7氮化鋁坩堝之製作 45
4-8微波燒結 46
4-9 燒結溫度條件 47
第五章 結果與討論 50
第一部分 噴霧造粒製程開發 50
5-1固含量與黏結劑之選擇 50
5-2影響造粒粉體外觀因素 51
5-2-1黏結劑與分散劑的影響 51
5-2-2進口溫度的影響 56
5-2-3添加乙烯纖維素於漿料內的影響 59
5-3影響造粒粉體之顆粒大小因素 63
5-3-1漿料黏度(黏結劑)的影響 63
5-3-2固含量的影響64
5-3-3霧化器轉速的影響 65
5-4 與市售之氮化鋁造粒粉體比較 67
第二部分 氮化鋁粉體之微波燒結研究 72
5-5 燒結用氮化鋁之造粒粉體性質 72
5-6燒結試片外觀與緻密性 74
5-7 XRD晶相組成分析 78
5-8 微結構分析 82
5-9 熱傳導值分析 85
第六章 結論 90
參考文獻 92
[1] G. A. Slack, R. A. Tanzilli, R. O. Pohl, and J. W. Vandersande, The Intrinsic Thermal-Conductivity of Aln, Journal of Physics and Chemistry of Solids, vol. 48, pp. 641-647, 1987.
[2] T. J. Mroz, Aluminum Nitride, American Ceramic Society Bulletin, vol. 71, pp. 782-&, May 1992.
[3] L. M. Sheppard, Aluminum Nitride - a Versatile but Challenging Material, American Ceramic Society Bulletin, vol. 69, pp. 1801-1812, Nov 1990.
[4] B. H. Mussler, S. Venigalla, and W. C. Johnson, Advanced materials & powders, American Ceramic Society Bulletin, vol. 79, pp. 45-56, Jun 2000.
[5] 謝承佑, 高導熱氮化鋁陶瓷粉體在複合材料與電子基板應用之先導研究, 成功大學博士論文, 2006.
[6] S. J. Lukasiewicz and J. S. Reed, Character and Compaction Response of Spray-Dried Agglomerates, American Ceramic Society Bulletin, vol. 57, pp. 798-&, 1978.
[7] G. L. Messing, S. C. Zhang, and G. V. Jayanthi, Ceramic Powder Synthesis by Spray-Pyrolysis, Journal of the American Ceramic Society, vol. 76, pp. 2707-2726, Nov 1993.
[8] S. J. Lukasiewicz, Spray-Drying Ceramic Powders, Journal of the American Ceramic Society, vol. 72, pp. 617-624, Apr 1989.
[9] 汪建民, 陶瓷技術手冊. 中華民國產業科技發展協進會, 1994.
[10] K. Masters, spray drying handbook. John Wiley & Sons, Inc, 1895.
[11] W. J. Walker, J. S. Reed, and S. K. Verma, Influence of slurry parameters on the characteristics of spray-dried granules, Journal of the American Ceramic Society, vol. 82, pp. 1711-1719, Jul 1999.
[12] W. J. Walker, J. S. Reed, and S. K. Verma, Influence of granule character on strength and Weibull modulus of sintered alumina, Journal of the American Ceramic Society, vol. 82, pp. 50-56, Jan 1999.
[13] R. G. Frey and J. W. Halloran, Compaction Behavior of Spray-Dried Alumina, Journal of the American Ceramic Society, vol. 67, pp.199-203, 1984.
[14] Y. Kurokawa, K. Utsumi, and H. Takamizawa, Development and Microstructural Characterization of High-Thermal-Conductivity Aluminum Nitride Ceramics, Journal of the American Ceramic Society, vol. 71, pp. 588-594, Jul 1988.
[15] B. Champagne and R. Angers, Fabrication of Powders by the Rotating Electrode Process, International Journal of Powder Metallurgy, vol. 16, pp. 359-&, 1980.
[16] X. Q. Cao, R. Vassen, S. Schwartz, W. Jungen, F. Tietz, and D. Stoever, Spray-drying of ceramics for plasma-spray coating, Journal of the European Ceramic Society, vol. 20, pp. 2433-2439, Dec 2000.
[17] M. Farid, A new approach to modelling of single droplet drying, Chemical Engineering Science, vol. 58, pp. 2985-2993, Jul 2003.
[18] F. Iskandar, L. Gradon, and K. Okuyama, Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol, Journal of Colloid and Interface Science, vol. 265, pp. 296-303, Sep 15 2003.
[19] W. Nimmo, D. Hind, N. J. Ali, E. Hampartsoumian, and S. J. Milne, The production of ultrafine zirconium oxide powders by spray pyrolysis, Journal of Materials Science, vol. 37, pp. 3381-3387, Aug 15 2002.
[20] H. Takahashi, N. Shinohara, M. Okumiya, K. Uematsu, T. Junichiro, Y. Iwamoto, and H. Kamiya, Influence of Slurry Flocculation on the Character and Compaction of Spray-Dried Silicon-Nitride Granules, Journal of the American Ceramic Society, vol. 78, pp. 903-908, Apr 1995.
[21] J. S. Reed, Introduction to the Principles of Ceramic Processing. John Wiley & Sons, 1989.
[22] J. W. Harvey and D. W. Johnson, Binder Systems in Ferrites, American Ceramic Society Bulletin, vol. 59, pp. 637-&, 1980.
[23] 黃昌偉, 陶瓷材料之熱性質分析. 精密陶瓷特性及檢測分析.
[24] W. J. Kim, D. K. Kim, and C. H. Kim, Coating of Al2O3 Additive on AlN Powder and Its Effect on the Thermal Conductivity of AlN Ceramics, Journal of Materials Science, vol. 3, p. 37, 1995.
[25] W. Werdecker and F. Aldinger, Aluminum Nitride - an Alternative Ceramic Substrate for High-Power Applications in Microcircuits, Ieee Transactions on Components Hybrids and Manufacturing Technology, vol. 7, pp. 399-404, 1984.
[26] R. M. German, Liquid Phase Sintering. Plenum, 1985.
[27] P. Bowen, J. G. Highfield, A. Mocellin, and T. A. Ring, Degradation of Aluminum Nitride Powder in an Aqueous Environment, Journal of the American Ceramic Society, vol. 73, pp. 724-728, Mar 1990.
[28] K. Watari, H. J. Hwang, M. Toriyama, and S. Kanzaki, Low-temperature sintering and high thermal conductivity of YLiO2-doped AIN ceramics, Journal of the American Ceramic Society, vol. 79, pp. 1979-1981, Jul 1996.
[29] K. Watari, H. J. Hwang, M. Toriyama, and S. Kanzaki, Effective sintering aids for low-temperature sintering of AlN ceramics, Journal of Materials Research, vol. 14, pp. 1409-1417, Apr 1999.
[30] G. Pezzotti, A. Nakahira, and M. Tajika, Effect of extended annealing cycles on the thermal conductivity of AlN/Y2O3 ceramics, Journal of the European Ceramic Society, vol. 20, pp. 1319-1325, Aug 2000.
[31] A. Geith, M. Kulig, T. Hofmann, and C. Russel, Thermal-Conductivity of Calcium-Doped Aluminum Nitride Ceramics .1. Conventionally Produced Ceramics, Journal of Materials Science, vol. 28, pp. 865-869, Feb 15 1993.
[32] T. B. Jackson, A. V. Virkar, K. L. More, R. B. Dinwiddie, and R. A. Cutler, High-thermal-conductivity aluminum nitride ceramics: The effect of thermodynamic, kinetic, and microstructural factors, Journal of the American Ceramic Society, vol. 80, pp. 1421-1435, Jun 1997.
[33] E. T. Thostenson and T.-W. Chou, Microwaveprocessing: fundamentals and applications, Composites Part A, vol. 30, pp. 1055-1071, 1999.
[34] P. O. Risman, T. Ohlsson, and B. Wass, Principles and Models of Power-Density Distribution in Microwave-Oven Loads, Journal of Microwave Power and Electromagnetic Energy, vol. 22, pp. 193-198, 1987.
[35] M. A. Janney, C. L. Calhoun, and H. D. Kimrey, Microwave Sintering of Solid Oxide Fuel-Cell Materials .1. Zirconia-8 Mol-Percent Yttria, Journal of the American Ceramic Society, vol. 75, pp. 341-346, Feb 1992.
[36] M. Mizuno, S. Obata, S. Takayama, S. Ito, N. Kato, T. Hirai, and M. Sato, Sintering of alumina by 2.45 GHz microwave heating, Journal of the European Ceramic Society, vol. 24, pp. 387-391, 2004.
[37] 劉岐山, 微波能應用. 電子工業出版社, 1990.
[38] J. Mijovic and J. Wijaya, Review of Cure of Polymers and Composites by Microwave-Energy, Polymer Composites, vol. 11, pp. 184-191, Jun 1990.
[39] W. H. Sutton, Microwave Processing of Ceramic Materials, American Ceramic Society Bulletin, vol. 68, pp. 376-386, Feb 1989.
[40] 蔡宗益, 氮化鋁粉體在高導熱電子與光電基板應用之微波燒結研究, 成功大學碩士論文, 2009.
[41] P. B. Dunscombe, J. Mclellan, and K. Malaker, Heat-Production in Microwave-Irradiated Thermocouples, Medical Physics, vol. 13, pp. 457-461, Jul-Aug 1986.
[42] W. E. Olmstead and M. E. Brodwin, A model for thermocouple sensitivity during microwave heating, International Journal of Heat and Mass Transfer, vol. 40, pp. 1559-1565, May 1997.
[43] J. R. Johnson, Phase Diagrams for Ceramists, Nuclear Science and Engineering, vol. 22, pp. 275-&, 1965.
[44] Y. C. Liu, Y. Wu, and H. P. Zhou, Microstructure of low-temperature sintered AlN, Materials Letters, vol. 35, pp. 232-235, May 1998.
[45] A. V. Virkar, T. B. Jackson, and R. A. Cutler, Thermodynamic and Kinetic Effects of Oxygen Removal on the Thermal-Conductivity of Aluminum Nitride, Journal of the American Ceramic Society, vol. 72, pp. 2031-2042, Nov 1989.
[46] T. Yagi, K. Shinozaki, M. Kato, Y. Sawada, and N. Mizutani, Migration of Grain-Boundary Phases of Aln Ceramics in Joined Sample of Sintered and Hot-Pressed Body, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi-Journal of the Ceramic Society of Japan, vol. 98, pp. 198-203, 1990.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top