跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/05 01:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃信傑
研究生(外文):Hsin-ChiehHuang
論文名稱:氧化石墨烯光催化還原製備超級電容器之碳電極材料
論文名稱(外文):Photocatalytically Reduced Graphene Oxides as Carbon Electrode Materials for Supercapacitors
指導教授:鄧熙聖
指導教授(外文):Hsi-Sheng Teng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:155
中文關鍵詞:電化學電容器超級電容器電容氧化石墨石墨烯光催化還原
外文關鍵詞:electrochemical capacitorcapacitancegraphite oxidegraphenephotocatalytically reduction
相關次數:
  • 被引用被引用:5
  • 點閱點閱:804
  • 評分評分:
  • 下載下載:171
  • 收藏至我的研究室書目清單書目收藏:0
石墨烯(graphene sheets)是一個理想碳材,具有高表面積,可被電解質所利用,離子可在石墨烯表面產生作用或反應。使用還原方法還原氧化石墨(graphite oxide, GO)可產生石墨烯碳材。本研究利用內照式反應器,以汞燈為紫外光光源,進行光催化還原(photocatalytic reduction)氧化石墨烯水溶液獲得我們要的石墨烯碳材(irr-GO)。在硫酸水溶液中,其電容值可高達220 F g-1,主要是因為電雙層電容與位於石墨烯片邊緣氧官能基產生可逆的擬電容所造成。隨著光催化還原時間的增加,石墨烯片上的氧官能基逐漸地被去除,改善了充放電的速率行為。在交流阻抗分析中也證實,光催化還原時間越久,可降低碳材的接觸阻力而提升導電度,並且能有效地降低電容行為的遲滯時間(relaxation time)。組成對稱性二極式超級電容器,工作電位1 V,在高功率1000 W kg-1下比能量可達5 Wh kg-1。此石墨烯電容器的穩定性很高,在充放電次數達20,000圈後,比電容量還維持原本的92%。
Graphene sheets are an ideal carbon material with the highest area available for electrolyte interaction and can be obtained by reducing graphite oxide (GO). This study presents the photocatalytic reduction of GO in water with mercurylamp irradiation. The specific capacitance of the reduced GO in an H2SO4 aqueous solution reached levels as high as 220 F g-1. This is because of the double layer formation and the reversible pseudocapacitive processes caused by oxygen functionalities at the sheet periphery. The rate capability for charge storage increases with irradiation time due to the continued reduction of oxygenated sites on the graphene basal plane. AC impedance analysis shows that prolonged light irradiation promotes electronic percolation in the electrode, significantly reducing the capacitive relaxation time. With a potential widow of 1 V, the resulting symmetric cells can deliver an energy level of 5 Wh kg-1 at a high power of 1000 W kg-1. These cells show superior stability, with 92% retention of specific capacitance after 20,000 cycles of galvanostatic charge-discharge.
總 目 錄

中文摘要 ............................................................................................ I
英文摘要 ........................................................................................... II
誌 謝 .......................................................................................... III
本文目錄 .......................................................................................... IV
表目錄 ....................................................................................... VIII
圖目錄 .......................................................................................... IX

本文目錄

第一章 緒論
1-1 電化學電容器的介紹 .......................................................... 1
1-2 電化學電容器的電極材料 .................................................. 6
1-3 電化學電容器的電解液種類及影響 .................................. 8
1-4 組裝電雙層電容器(EDLC)注意事項 ............................... 10
1-5 超級電容器的發展及應用 ................................................ 13
1-6 研究動機 ............................................................................ 14

第二章 文獻回顧與理論說明
2-1 石墨烯材料(graphene-based materials)的分類與特性 ....... 16
2-2 石墨烯材料應用於超級電容器 .......................................... 19
2-2-1 石墨、洋蔥狀碳材和富勒烯 ....................................... 19
2-2-2 奈米碳管(carbon nanotubes)及相關複合物 .............. 22
2-2-3 石墨烯與氧化石墨烯及其複合物 ............................. 24
2-2-3.1 石墨烯與氧化石墨烯的合成 .............................. 25
2-2-3.2 石墨烯應用於超級電容器 .................................. 28
2-3 碳材物性分析方法 ............................................................ 32
2-3-1 吸附基本理論 ........................................................... 32
2-3-1.1 等溫吸附曲線 ...................................................... 32
2-3-1.2 BET等溫吸附模式 .............................................. 36
2-3-1.3 D-R等溫吸附模式 ............................................. 37
2-3-1.4 BJH理論 .......................................................... 37
2-3-1.5 密度泛函理論(density functional theory, DFT) ..... 39
2-3-2 拉曼光譜 ..................................................................... 40
2-3-3 化學分析電子光譜儀 ................................................. 41
2-3-4 程溫脫附 ..................................................................... 42
2-4 電雙層電容器(EDLC) ....................................................... 43
2-4-1 電容器簡介 ................................................................. 43
2-4-2 平行板電容器 ............................................................. 44
2-4-3 電容器串聯 ................................................................. 46
2-4-4 電容器並聯 ................................................................. 47
2-4-5 二極式及三極式電容器 ............................................. 49
2-5 電雙層的概念與結構 ........................................................ 51
2-5-1 電雙層原理 ................................................................. 51
2-5-2 Helmholtz電雙層模型 ................................................ 52
2-5-3 Stern電雙層模型 ........................................................ 54
2-5-4 電雙層結構 ................................................................. 56
2-6 電化學測試方法 ................................................................ 58
2-6-1 循環伏安法 ................................................................. 58
2-6-2 電化學充放電 ............................................................. 59
2-6-3 交流阻抗理論 ............................................................. 61
2-6-3.1 電阻 ...................................................................... 63
2-6-3.2 電容 ...................................................................... 63
2-6-3.3 電阻電容串聯 ...................................................... 64
2-6-3.4 電阻電容並聯 ...................................................... 65

第三章 實驗方法與設備
3-1 藥品、材料與儀器設備 ...................................................... 69
3-1-1 藥品與材料 ................................................................. 69
3-1-2 儀器與實驗設備 ......................................................... 70
3-2 石墨烯碳材製備 ................................................................ 71
3-2-1 氧化石墨烯製備 ......................................................... 71
3-2-2 氧化石墨烯光催化還原方法及裝置 ......................... 74
3-3 分析儀器原理簡介 ............................................................ 76
3-3-1 掃描式電子顯微鏡 ..................................................... 76
3-3-2 穿透式電子顯微鏡 ..................................................... 79
3-3-3 物理吸附分析(Brunauer-Emmett-Teller, BET) .......... 81
3-3-4 X光繞射分析(X-ray Diffraction, XRD) ..................... 84
3-3-5 傅立葉轉換紅外線光譜 ............................................. 87
3-3-6 拉曼光譜分析(Raman Spectrum) ............................... 89
3-3-7 X光光電子能譜分析 .................................................. 92
3-4 電容器組裝及電性測試 .................................................... 95
3-4-1 電容器組裝 ................................................................. 95
3-4-2 循環伏安法 ................................................................. 96
3-4-3 定電流充放電 ............................................................. 96
3-4-4 交流阻抗分析 ............................................................. 96

第四章 結果與討論
4-1 石墨烯之物理化學性質分析 ……………….................... 97
4-1-1 SEM分析 .................................................................. 101
4-1-2 TEM分析 .................................................................. 104
4-1-3 氮氣吸脫附結果分析 ............................................... 106
4-1-4 XRD分析 .................................................................. 110
4-1-5 FTIR分析 .................................................................. 113
4-1-6 Raman分析 ............................................................... 117
4-1-7 XPS分析 ................................................................... 120
4-2 石墨烯電極材料儲存電荷之行為 .................................. 126
4-2-1 循環伏安法測試之分析與討論 ............................... 126
4-2-1.1 三極式循環伏安測試 ........................................ 128
4-2-1.2 二極式循環伏安測試 ........................................ 131
4-2-2 定電流充放電與交流阻抗分析及討論 ................... 134
4-2-2.1 電容器阻力行為分析 ........................................ 134
4-2-2.2 電容器電容行為分析 ........................................ 141
4-3 超級電容器電化學行為表現 .......................................... 143

第五章 結論 .................................................................................. 146

參考文獻 ........................................................................................ 147


1.R. Kötz, M. Carlen, Electrochim. Acta, 45 (2000) 2483.
2.L. Bonnefoi, P. Simon, J.F. Fauvarque, C. Sarrazin, J.F. Sarrau, A. Dugast, J. Power Sources, 80 (1999) 149.
3.J.P. Zheng, T.R. Jow, J. Power Sources, 62 (1996) 155.
4.J.R. Miller, P. Simon, Science, 321 (2008) 651.
5.K. Okajima, A. Ikeda, K. Kamoshita, M. Sudoh, Electrochimica Acta, 51 (2005) 972.
6.B. Xu, F. Wu, S. Chen, C. Zhang, G. Cao, Y. Yang, Electrochimica Acta, 52 (2007) 4595.
7.C.W. Huang, C.M. Chuang, J.M. Ting, H. Teng, J. Power Sources, 183 (2008) 406.
8.C.W. Huang, H. Teng, J. Electrochem. Soc., 155 (2008) A739.
9.C.W. Huang, C.H. Hsu, P.L. Kuo, C.T. Hsieh, H. Teng, Carbon, 49 (2011) 895.
10.B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, Z. Zhou, Electrochem. Commun., 10 (2008) 795.
11.Y. Chen, X. Zhang, P. Yu, Y.W. Ma, J. Power Sources, 195 (2010) 3031.
12.Y.Q. Han, L.A. Hao, X.G. Zhang, Synthetic Met., 160 (2010) 2336.
13.C.P. Tien, H. Teng, J. Power Sources, 195 (2010) 2414.
14.S.Y. Yang, K.H. Chang, Y.F. Lee, C.C.M. Ma, C.C. Hu, Electrochem. Commun., 12 (2010) 1206.
15.D. Yu, L. Dai, J. Phys. Chem. Lett., 1 (2010) 467.
16.T.F. Yeh, J.M. Syu, C. Cheng, T.H. Chang, H. Teng, Adv. Funct. Mater., 20 (2010) 2255.
17.S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature, 442 (2006) 282.
18.R.J.W.E. Lahaye, H.K. Jeong, C.Y. Park, Y.H. Lee, Phys. Rev. B, 79 (2009) 125435.
19.S.J. Park, R.S. Ruoff, Nature Nanotech., 4 (2009) 217.
20.S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon, 45 (2007) 1558.
21.V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, Nature Nanotech., 4 (2008) 25.
22.G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, J. Phys. Chem. C, 112 (2008) 8192.
23.W. Gao, L.B. Alemany, L.J. Ci, P. Ajayan, Nature Chem., 1 (2009) 403.
24.Y. Si, E.T. Samulski, Nano Lett., 8 (2008) 1679.
25.M.J. McAllister, J.L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prud’homme, I.A. Aksay, Chem. Mater., 19 (2007) 4396.
26.G. Williams, B. Serger, P.V. Kamat, ACS Nano, 2 (2008) 1487.
27.A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources, 157 (2006) 11.
28.O. Barbieri, M. Hahn, A. Herzog, R. Kotz, Carbon, 43 (2005) 1303.
29.E. Frackowiak, Phys. Chem. Chem. Phys., 9 (2007) 1774.
30.A special issue on Electrochemical Capacitors, Electrochem. Soc. Interf., 2008, Spring.
31.N.E. Tran, S.G. Lambrakos, J.J. Lagowski, J. Mater. Eng. Perform., 18 (2009) 95.
32.T.L. Makarova, B. Sundqvist, P. Scharff, M.E. Gaevski, E. Olsson, V.A. Davydov, A.V. Rakhmanina, Carbon, 39 (2001) 2203.
33.D. Eder, Chem. Rev., 110 (2010) 1348.
34.M. Pumera, Chem. Rec., 9 (2009) 211.
35.D. Li, R.B. Kaner, Science, 320 (2008) 1170.
36.Y. Wang, Z.Q. Shi, Y. Huang, Y.F. Ma, C.Y. Wang, M.M. Chen, Y.S. Chen, J. Phys. Chem. C, 113 (2009) 13103.
37.M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev., 110 (2010) 132.
38.A.B. Fuertes, S. Alvarez, Carbon, 42 (2004) 3049.
39.A.K. Geim, K.S. Novoselov, Nat. Mater., 6 (2007) 183.
40.C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Angew. Chem., Int. Ed., 48 (2009) 7752.
41.X.J. Liu, T. Osaka, J. Electrochem. Soc., 143 (1996) 3982.
42.S. Mitra, S. Sampath, Electrochem. Solid-State Lett., 7 (2004) A264.
43.B.H. Ka, S.M. Oh, J. Electrochem. Soc., 155 (2008) A685.
44.E.G. Bushueva, P.S. Galkin, A.V. Okotrub, L.G. Bulusheva, N.N. Gavrilov, V.L. Kuznetsov, S.I. Moiseekov, Phys. Status Solidi B, 245 (2008) 2296.
45.C. Portet, G. Yushin, Y. Gogotsi, Carbon, 45 (2007) 2511.
46.F. Zhou, C. Jehoulet, A.J. Bard, J. Am. Chem. Soc., 114 (1992) 11004.
47.H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, Nature, 318 (1985) 162.
48.L. Echegoyen, L.E. Echegoyen, Acc. Chem. Res., 31 (1998) 593.
49.V.V.N. Obreja, Phys. E., 40 (2008) 2596.
50.H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, Z. Gu, Nano Lett., 8 (2008) 2664.
51.M. Pumera, Chem.–Eur. J., 15 (2009) 4970.
52.R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science, 297 (2002) 787.
53.D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Nat. Mater., 5 (2006) 987.
54.T. Bordjiba, L.H.D.M. Mohamedi, Adv. Mater., 20 (2008) 815.
55.J. Chen, A.I. Minett, Y. Liu, C. Lynam, P. Sherrell, C. Wang, G.G. Wallace, Adv. Mater., 20 (2008) 566.
56.J. Yan, H. Zhou, P. Yu, L. Su, L. Mao, Adv. Mater., 20 (2008) 2899.
57.C. Niu, E.K. Sichel, R. Hoch, D. Moy, H. Tennent, Appl. Phys. Lett., 70 (1997) 1480.
58.K.H. An, W.S. Kim, Y.S. Park, J.-M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, Y.H. Lee, Adv. Funct. Mater., 11 (2001) 387.
59.H. Zhang, G. Cao, Y. Yang, Z. Gu, J. Electrochem. Soc., 155 (2008) K19.
60.E. Frackowiak, S. Delpeux, K. Jurewicz, K. Szostak, D. Cazorla-Aoros, F. Beguin, Chem. Phys. Lett., 361 (2002) 35.
61.C. Portet, P.L. Taberna, P. Simon, E. Flahaut, J. Electrochem. Soc., 153 (2006) A649.
62.M.M. Shaijumon, F.S. Ou, L. Ci, P.M. Ajayan, Chem. Commun. (2008) 2373.
63.H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, Z. Gu, Electrochem. Commun., 10 (2008) 1056.
64.C. Meng, C. Liu, S. Fan, Electrochem. Commun., 11 (2009) 186.
65.M.S.P.S.M. Hughes, A.C. Renouf, C. Singh, G.Z. Chen, D.J. Fray, A.H. Windle, Adv. Mater., 14 (2002) 382.
66.K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science, 306 (2004) 666.
67.A.K. Geim, Science, 324 (2009) 1530.
68.X. Wang, L.J. Zhi, K. Mullen, Nano Lett., 8 (2008) 323.
69.T. Yumura, K. Kimura, H. Kobayashi, R. Tanaka, N. Okumura, T. Yamabe, Phys. Chem. Chem. Phys., 11 (2009) 8275.
70.D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Nature, 458 (2009) 872.
71.V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, Nat. Nanotechnol., 4 (2009) 25.
72.M. Choucair, P. Thordarson, J.A. Stride, Nat. Nanotechnol., 4 (2009) 30.
73.K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Rohrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber, T. Seyller, Nat. Mater., 8 (2009) 203.
74.P.W. Sutter, J.-I. Flege, E.A. Sutter, Nat. Mater., 7 (2008) 406.
75.K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Nature, 457 (2009) 706.
76.X. Yang, X. Dou, A. Rouhanipour, L. Zhi, H.J. Rader, K. Mullen, J. Am. Chem. Soc., 130 (2008) 4216.
77.M. Taghioskoui, Mater. Today, 12 (2009) 34.
78.M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z.M. Wang, I.T. McGovern, G.S. Duesberg, J.N. Coleman, J. Am. Chem. Soc., 131 (2009) 3611.
79.J.N. Coleman, Adv. Funct. Mater., 19 (2009) 3680.
80.D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Nat. Nanotechnol., 3 (2008) 101.
81.K.A. Ritter, J.W. Lyding, Nanotechnology, 19 (2008) 015704.
82.W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc., 80 (1958) 1339.
83.N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva, A.D. Gorchinskiy, Chem. Mater., 11 (1999) 771.
84.S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature, 442 (2006) 282.
85.W. Gao, L.B. Alemany, L.J. Ci, P.M. Ajayan, Nat. Chem., 1 (2009) 403.
86.P.K. Ang, S.A. Wang, Q.L. Bao, J.T.L. Thong K.P. Loh, ACS Nano, 3 (2009) 3587.
87.D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Nature, 448 (2007) 457.
88.C.M. Chen, Q.H. Yang, Y.G. Yang, W. Lv, Y.F. Wen, P.X. Hou, M.Z. Wang, H.M. Cheng, Adv. Mater., 21 (2009) 3007.
89.R. Ruoff, Nat. Nanotechnol., 3 (2008) 10.
90.M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nano Lett., 8 (2008) 3498.
91.S.R.C. Vivekchand, C.S. Rout, K.S. Subrahmanyam, A. Govindaraj, C.N.R. Rao, J. Chem. Sci., 120 (2008) 9.
92.X. Zhao, H. Tian, M. Zhu, K. Tian, J.J. Wang, F. Kang, R.A. Outlaw, J. Power Sources, 194 (2009) 1208.
93.J. Xia, F. Chen, J. Li, N. Tao, Nat. Nanotechnol., 4 (2009) 505.
94.L.J. Cote, R. Cruz-Silva, J. Huang, J. Am. Chem. Soc., 131 (2009) 11027.
95.D.W. Wang, F. Li, J. Zhao, W. Ren, Z.G. Chen, J. Tan, Z.S. Wu, I. Gentle, G.Q. Lu, H.M. Cheng, ACS Nano, 3 (2009) 1745.
96.A.V. Murugan, T. Muraliganth, A. Manthiram, Chem. Mater., 21 (2009) 5004.
97.J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, M. Zhang, F. Wei, Carbon, 48 (2010) 487.
98.Y. Zhang, H. Li, L. Pan, T. Lu, Z. Sun, J. Electroanal. Chem., 634 (2009) 68.
99.K. Zhang, L.L. Zhang, J. Wu, X.S. Zhao, Chem. Mater., 22 (2010) 1392.
100.S. Brunauer, The Adsorption of Gases and Vapor. Vol. 1, Physical Adsorption, Princeton University, Princeton, Now York, 1943.
101.J.Y. Ying, C.P. Mehnert, M.S. Wong, Angew. Chem. Int. Ed., 38 (1999) 56.
102.S. Brunaller, P.H. Emmett, E. Teller, J. Am. Chem. Soc., 60 (1938) 390.
103.R. Ryoo, S.H. Joo, S. Jun, J. Phys. Chem. B, 103 (1999) 7743.
104.A.H. Schoen, NASH Technical Note D-5541; NASH: Washington, DC, 1970.
105.P. Tarazona, U.M.B. Marconi, R. Evans, Mol. Phys., 60 (1987) 543.
106.M. Shao, Q. Li, J. Wu, B. Xie, S. Zhang, Y. Qian, Carbon, 40 (2000) 2961.
107.W. Li, H. Zhang, C. Wang, Y. Zhang, L. Xu, K. Zhu, Appl. Phys. Lett., 70 (1997) 2684.
108.L. Liu, Y. Qin, Z.X. Guo, D. Zhu, Carbon, 41 (2003) 331.
109.K.H. Liao, J.M. Ting, Carbon, 42 (2004) 509.
110.C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Handbook of X-Ray photoelectron spectroscopy, Perkin-Elmer, Eden Prairie, Minnesota, 1979.
111.J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. Orfao, Carbon, 37 (1999) 1379.
112.H.D. Young, Physics, Addison-Wesley Publishing Co. :New York, 1992.
113.A.J. Bard, L.R. Faulkner, Electrochemical Principles, Methods, and Applications, Oxford University, Britain, 1996.
114.D. Qu, H. Shi, J. Power Sources 74 (1998) 99.
115.C.H. Hamann, A. Hamnett, W. Vielstich, Electrochemistry, Wiley-Vch :New York, (1998).
116.J.S. Mattson, Jr. H.B. Mark, Activated Carbon : Surface Chemistry and Adsorption from Solution, Wiley-Vch :New York, 1998.
117.A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamental and Application, John Wiley & Sons, Canada, 1980.
118.B.E. Conway, Electrochemical supercapacitors scientific fundamentals and technological applications, Kluwer Academic, New York, 1999, 105.
119.B.D. Cullity, S.R. Stock, 3rd ed., Prentice Hall, 2001.
120.M. Yan, F. Chem, J. Zhang, M. Anpo, J. Phys. Chem. B, 109 (2005) 8673.
121.J.I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascón, Langmuir, 24 (2008) 10560.
122.T. Szabó, O. Berkesi, I. Dékány, Carbon, 43 (2005) 3181.
123.Y.H. Ding, P. Zhang, Q. Zhuo, H.M. Ren, Z.M. Yang, Y. Jiang, Nanotechnology, 22 (2011) 215601.
124.O. Akhavan, ACS Nano, 4 (2010) 4174.
125.Y.R. Nian, H.J.Teng, Electrochem. Soc., 149 (2002) A1008.
126.H.A. Andreas, B.E. Conway, Electrochimica Acta, 51 (2006) 6510.
127.A. Mills, P.A. Duckmanton, J. Reglinski, Chem. Commun., 46 (2010) 2397.
128.Y. Zhou, Q. Bao, L.A.L. Tang, Y. Zhong, K.P. Loh, Chem. Mater., 21 (2009) 2950.
129.D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice, R.S. Ruoff, Carbon,47 (2009) 145.
130.X.B. Fan, W.C. Peng, Y. Li, X.Y. Li, S.L. Wang, G.L. Zhang, F.B. Zhang, Adv. Mater.,20 (2008) 4490.
131.J.H. Zhou, Z.J. Sui, J. Zhu, P. Li, D. Chen, Y.C. Dai, W.K. Yuan, Carbon, 45 (2007) 785.
132.H. Yamada, H. Nakamura, F. Nakahara, I. Moriguchi, T. Kudo, J. Phys. Chem. C, 111 (2007) 227.
133.M. Kruk, M. Jaroniec, Chem. Mater., 13 (2001) 3169.
134.J.C. Arnell, H.L. McDermott, Proceedings of The Second International Congress on Surface Activity, II, Butterworths, London, pp.113 (1957).
135.R.D. Levie, Electrochim. Acta, 8 (1963) 751.
136.L.G. Austin, E.G. Gagnon, J. Electrochem. Soc., 120 (1973) 251.
137.Y.R. Nian, H. Teng, J. Electroanal. Chem., 540 (2003) 119.
138.Y. Leon, C.A. Leon, L.R. Radovic, Interfacial chemistry and electrochemistry of carbon surfaces. Chemistry and Physics of Carbon, Vol 24, New York: Marcel Dekker, (1994) 213.
139.M.A. Montes-Moran, D. Suarez, J.A. Menendez, E. Fuente, Carbon 42 (2004) 1219.
140.A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources, 157 (2006) 11.
141.V.V. Panic, R.M. Stevanovic, V.M. Jovanovic, A.B. Dekanski, J. Power Sources, 181 (2008) 186.
142.Y. Chen, X. Zhang, D. Zhang, P. Yu, Y. Ma, Carbon, 49 (2011) 573.
143.Y.H. Ding, P. Zhang, Q. Zhuo, H.M. Ren, Z.M. Yang, Y. Jiang, Nanotechnology, 22 (2011) 215601.
144.K.P. Wang, H. Teng, Carbon, 44 (2006) 3218.
145.S. Yoon, J. Lee, T. Hyeon, S.M. Oh, J. Electrochem. Soc., 147 (2000) 2507.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊