跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 21:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賈羅米
研究生(外文):M. J. Niknam.Jahromi
論文名稱:光學材料與自組裝材料之製備及特性探討
論文名稱(外文):Fabrication and Characterization of Optical and Supramolecular Materials
指導教授:劉瑞祥
指導教授(外文):Jui-Hsiang Liu
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:232
外文關鍵詞:Optical materialsself-assemblySupramolecular chemistrynano materials
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
Abstract
In this thesis, three main research topics of gradient lens, supramolecular gels and inclusion complexes were included. In the first part, a novel UV energy-controlled method for the fabrication of gradient refractive index lenses was developed, and a significant gel effect was observed during the fabrication of GRIN rods. The concentration of diphenyl sulfide and photo-initiator affected the optical properties of GRIN lenses, and the lenses displayed thermally stable properties at 60.8 °C for 24 hrs. Practical examples of inverted and erected images through GRIN lenses fabricated in the current investigation were demonstrated.
In the second part, creation of self-assembled constructions was demonstrated. cholesteryl-4-(6-acryloyloxyhexyloxy)benzoate liquid crystal (CAHB-LC) was synthesized. Nano morphology transitions from bulk solutions to the solid state were studied via low concentration in various solvents under slow evaporation conditions. Switching between solvents and concentrations caused obvious aggregation dependent UV-Vis absorption shifts. Significant self-assembled properties of CAHB-LC were observed. Interesting nano silver-silver oxide spheres, rings and cubes were fabricated in the solvent of DMSO and DMF via thermal reduction of silver nitrate and (1,5-Cyclooctadiene) (hexafluoroacetylacetonato) silver reagents, respectively.
As another approach for creation of self assembled constructions, a highly conjugated thermotropic liquid crystalline ester (TLCE) containing 2-(6-oxide-6H-dibenz, (1,2)oxaphosphorin-6-yl)-1,4-dihydroxy phenylene (ODOPB) with photochromic azobenzene and [1,2,3]-triazole ring at the terminal positions was synthesized and characterized. Thermal and optical characteristics of TLCE were studied as well as the synthesis of TLCE/β-CD inclusion complex.
LC/β-CD inclusion complex was found to exhibit drastic optical, chemical and molecular rearrangement changes before and after complex formations. Furthermore, due to the importance of controlling the molecular ordering and creation of multi-stimulus materials, a multifunctional (p-(2, hydroxyl-4-aldehydeazo) benzonitrile) (HAABN) was synthesized, which exhibited strong fluorochromic and solvatochromic properties. UV-Vis excitations of HAABN at λex= 254 nm could drastically change trans-assembled morphologies into smaller cis- constructions. Morphology switching and transitions were also observed by varying solvents from dimethylformamide (DMF) to ethanol. Trans-cis isomerizations of β-CD/HAABN inclusion complex reveals drastically changes of structures in both DMF and ethanol. UV irradiation of inclusion complex at λex= 254 nm in DMF causes occurrence of deformation from micelle like morphologies to uniform nano fibers.
β-CD reveals strong chelating and inclusion complex formation ability which has been used for generating a new class of hybrid material and controlling the inorganic-organic crystal growth. Among many different minerals, we observed that calcium sulfate dihydrates exhibit a very strong and effective ability of highly ordered anisotropic hybrids formations. These novel hybrids were fully characterized by SEM, TEM, POM, TGA, WAXRD and 1H-NMR. Sintering and N-methylpyrrolidone(NMP) solvent wash resulted in different nano gypsum morphologies. These observations lead to a suggestive hybrid formation mechanism.
In addition, gelators as molecules which possess strong molecular interactions were chosen as a very good class of candidate for supramolecular formation and their relevant optical variation analysis. As few studies have been carried out on A(LS)2 cholestrylorganogelators; therefore, by attaching choletrsylforlate to the benzidine core segment benzidindicholestrylformate (BDCF) as a novel A(LS)2 organogelator was synthesized. The molecule exhibited solvatochromic properties, solvent polarity dependent red shifts, reversible sol-gel transitions and entangled molecular network formations, capable of trapping large amounts of solvents. The gel in chloroform solvent displays strong helical twisting arrays. BDCF gelator was also used as an efficient stabilizer for fabrication of silica hybrids through TEOS (tetraethyl orthosilicate) sol-gel reactions in different solvents. Sintering of the fabricated silica hybrids gives very small size nano silica particles (~ less than 10 nm). In order to expand the inherent applicability of the organogelator and also due to the importance of banana shape liquid crystals, an efficient toluen2,4-diisourea bis( benzdinecholestrylformate) (TDIUBC) A(LS)2 banana shape liquid crystal organogelator was synthesized. The LC-gel can entrap large amounts of organic solvents up to 0.1 wt/v%. In contrast to normal situation, the gel excitation follows a strong aggregation induced fluorescent emission increased via sol to gel transitions. UV excitation of TDIUBC in DMSO at λex= 254 nm and 365 nm was carried out. Both cases exhibit concentration dependent aggregation red shifts that were further confirmed by TEM analysis. Gel optical properties were further investigated via freeze process. TDIUBC/DMSO solutions were frozen at 10 °C, interestingly, significant emission quenching and emission promotions were observed at λex= 254 nm and 365 nm, respectively.
In brief, an investigation over supramoelcualr self-assembly and their chemo-physical related properties has been carried out. The synthesized compounds and physical properties were identified using POM, SEM, TEM, UV-Vis, TGA, WXRD, DLS and 1H-NMR.

Chapter 1 General Introduction
1.1. Lens--------------------------------------------------------------------------------------------------------1
1.1.2. Homogenous lens-----------------------------------------------------------------------------------1
1.1.3. Refractive index-------------------------------------------------------------------------------------1
1.1.4. Gradient refractive index (GRIN) lens-----------------------------------------------------------2
1.1.4.1. GRIN lens Fabrication methods-------------------------------------------------------------2
1.1.4.2. GRIN lens applications-----------------------------------------------------------------------2
1.2. Self assembly and supramolecular self assembly----------------------------------------------------3
1.2.1. Supramolecular formations in bulk---------------------------------------------------------------3
1.2.2. Self assembly transcription at the solid state----------------------------------------------------4
1.2.3. Self assembly and optical properties-------------------------------------------------------------5
1.2.3.1. J-type and H-type aggregations---------------------------------------------------------------5
1.2.3.2. Aggregation induced enhanced emissions and quenching--------------------------------5
1.2.4. Stimulus for self assembly and optical properties control------------------------------------7
1.2.4.1. Solvent effect and solvatochroism----------------------------------------------------------7
1.2.4.2. Solvatofluorochroism-------------------------------------------------------------------------7
1.2.4.3. Solvent and self assembly variation--------------------------------------------------------8
1.2.4.4. Thermochromism------------------------------------------------------------------------------9
1.2.4.5. Concentration, absorbance shifts and molecular aggregations-------------------------10
1.2.4.6. Light switching self assembly-------------------------------------------------------------11
1.2.4.6.1. The mechanism of trans-cis photo-isomerization----------------------------------11
1.2.4.6.2. Light switching supramolecular self assembly control--------------------------- 12
1.2.4.7. Sample excitation wavelength change----------------------------------------------------14
1.2.5. β-Cyclodextrin-----------------------------------------------------------------------------------14
1.2.5.1. β-cyclodextrin and inclusion complex----------------------------------------------------15
1.2.5.2. β-CD threading and supramolecualr self assembly-------------------------------------15
1.2.5.3. β-CD and inorganic hybrid supramolecules---------------------------------------------15
1.2.5.3.1. β-CD/CaSO4.2H2O---------------------------------------------------------------------17
1.2.6. Liquid crystals (LCs)----------------------------------------------------------------------------17
1.2.6.1. Thermotropic liquid crystals---------------------------------------------------------------17
1.2.6.2. Lyotropic liquid crystals--------------------------------------------------------------------17
1.2.7. Supramolecular assisted synthesis of nano particles----------------------------------------18
1.2.7.1. Solvent and thermal reduction of silver ions--------------------------------------------19
1.2.7.1.1. Solvent reduction of silver nitrates--------------------------------------------------19
1.2.7.1.2. Thermal Reduction of (1,5 Cyclooctadiene)(Hexafluoroacetylacetonato) Silver(I)-------------------------------------------------------------------------------------------------------21
1.2.7.2. Sol-gel reaction synthesis of silica-------------------------------------------------------21
1.2.7.2.1. Gel assisted fabrication of silica-----------------------------------------------------22
1.2.8. Low molecular weight gelators (LMWG)---------------------------------------------------23
1.2.8.1. Cholestryl containing organogelators---------------------------------------------------25
1.2.8.1.1. ALS low molecular weight organogelators----------------------------------------26
1.2.8.1.2. A(LS)2 low molecular weight organogelators-------------------------------------27
1.2.9. Liquid crystal gels------------------------------------------------------------------------------28
1.3. Research motivation------------------------------------------------------------------------------------29
1.4. References-----------------------------------------------------------------------------------------------30
Part I
Chapter 2 Gel effects on the fabrication of gradient refractive index plastic rods via energy-controlled polymerization
2.1. Introduction-----------------------------------------------------------------------------------------------34
2.2. Experimental section------------------------------------------------------------------------------------36
2.2.1. Measurements----------------------------------------------------------------------------------------36
2.2.2. Preparation of GRIN plastic optical rods---------------------------------------------------------36
2.3. Results and discussion-----------------------------------------------------------------------------------37
2.3.1. Fabrication of GRIN rods---------------------------------------------------------------------------37
2.3.2. Gel effect on the fabrication process--------------------------------------------------------------39
2.3.3. Theoretically equivalent equipment for GRIN lens fabrication-------------------------------40
2.3.4. Optical properties of the fabricated GRIN rods--------------------------------------------------41
2.4. Conclusion------------------------------------------------------------------------------------------------46
2.5. References-------------------------------------------------------------------------------------------------46
Part II
Chapter 3 Induction of supramolecular self-assemblies at the solid state, and their solution nano morphology
3.1. Introduction----------------------------------------------------------------------------------------------49
3.2. Experimental section-----------------------------------------------------------------------------------52
3.2.1. Measurements---------------------------------------------------------------------------------------52
3.2.2. Monomer preparation------------------------------------------------------------------------------52
3.2.2.1. Synthesis of 4-(6-Hydroxyhexyloxy)benzoic acid (HBA)--------------------------------52
3.2.2.3. Synthesis of Cholesteryl-4-(6-acryloyloxyhexyloxy)benzoate (CAHB)----------------53
3.3. Results and discussion---------------------------------------------------------------------------------54
3.4. Conclusion----------------------------------------------------------------------------------------------65
3.5. References----------------------------------------------------------------------------------------------67
Chapter 4 Self-assembly and solid state morphology in MEK and Pyridine and the solution Nano Formation Mechanism
4.1. Introduction----------------------------------------------------------------------------------------------73
4.2. Experimental section-----------------------------------------------------------------------------------74
4.2.1. Measurements---------------------------------------------------------------------------------------75
4.2.2. Monomer preparation--------------------------------------------------------------------------------75
4.3. Results and Discussion--------------------------------------------------------------------------------75
4.3.1. CAHB supramolecular formation at the solid state--------------------------------------------75
4.3.1.1. POM and SEM study---------------------------------------------------------------------------75
4.3.1.2. POM aggregation transition------------------------------=------------------------------------77
4.3.1.3. Wide angle X-ray diffraction measurements------------------------------------------------79
4.3.2. CAHB molecules self assembling in pyridine and methylethylketon solvents-----------80
4.3.2.1. TEM and UV measurements--------- ---------------------------------------------------------80
4.3.2.2. Nano worms and fibrous formation mechanism--------------------------------------------82
4.3.2.2.1. Nano micelles as starting building blocks--------------------------------------------------83
4.4. Conclusion-----------------------------------------------------------------------------------------------86
4.5. References-----------------------------------------------------------------------------------------------87
Chapter 5 Silver lyotropic shape and size control, fabrication of nano Ag cubes, spheres and Ag/Ag2O rings
5.1. Introduction---------------------------------------------------------------------------------------------89
5.2. Experimental section-----------------------------------------------------------------------------------91
5.2.1. Measurements---------------------------------------------------------------------------------------91
5.2.2. CAHB assisted nano synthesis--------------------------------------------------------------------91
5.3. Results and Discussion--------------------------------------------------------------------------------92
5.3.1. Control experiment---------------------------------------------------------------------------------92
5.3.2. Lyotropic behavior of Cholesteryl-4-(6-acryloyloxyhexyloxy)benzote -------------------94
5.3.3. Solvent assisted and thermal reduction of silver ions in the presence of CAHB---------95
5.3.3.1. UV-Vis measurements-------------------------------------------------------------------------95
5.3.4. Wide angle X-ray diffraction analysis-----------------------------------------------------------97
5.3.5. Tunneling electron microscope (TEM) and dynamic light scattering (DLS) analysis--98
5.4. Conclusion---------------------------------------------------------------------------------------------103
5.5. References----------------------------------------------------------------------------------------------104
Chapter 6 Self-Assembly of hydrogen bonding assisted highly conjugated inclusion complexes threaded with β-Cyclodextrins
6.1. Introduction--------------------------------------------------------------------------------------------108
6.2. Experimental section ---------------------------------------------------------------------------------108
6.2.1. Measurements--------------------------------------------------------------------------------------108
6.2.2. Monomer preparation-----------------------------------------------------------------------------111
6.2.2.1. Synthesis of 4-((4-hydroxyphenyl)diazenyl)benzonitrile------------------------------112
6.2.2.2. Synthesis of 4-((4-(hexyloxy) phenyl)diazenyl)benzoyl chloride--------------------113
6.2.2.3. Synthesis of 4-azidobenzoic acid----------------------------------------------------------114
6.2.2.4. Synthesis of 3-methoxyprop-1-yne--------------------------------------------------------114
6.2.2.5. Synthesis of 4-[(4-methoxymethyl)-1H-[1,2,3]triazole-1yl]benzoyl chloride-----114
6.2.2.6. Synthesis of LC------------------------------------------------------------------------------115
6.2.2.7. Fabrication of inclusion complex---------------------------------------------------------116
6.3. Results and discussions------------------------------------------------------------------------------116
6.3.1. Synthesis and characterization of liquid crystal (LC)-----------------------------------------116
6.3.2. Synthesis and characterization of inclusion complex (IC)----------------------------------119
6.3.2.1. Self-assembly of inclusion complexes (ICs)-----------------------------------------------124
6.4. Conclusion---------------------------------------------------------------------------------------------126
6.5. References----------------------------------------------------------------------------------------------126
Chapter 7 Optical switching of a multi responsive solvato-fluorochromic dye compound and the morphology transitions of the respective Dye/β-CD Inclusion Complex
7.1. Introduction--------------------------------------------------------------------------------------------131
7.2. Experimental section---------------------------------------------------------------------------------133
7.2.1. Measurements--------------------------------------------------------------------------------------133
7.2.2. Monomer preparation-----------------------------------------------------------------------------133
7.2.3. HAABN/β-CD inclusion complex preparation procedure----------------------------------134
7.4. Results and discussions------------------------------------------------------------------------------134
7.4.1. Synthesis and characterization of dye----------------------------------------------------------134
7.4.2. HAABN inclusion complex----------------------------------------------------------------------142
7.5. Conclusion---------------------------------------------------------------------------------------------149
7.6. References----------------------------------------------------------------------------------------------150
Chapter 8 Fabrication of highly ordered anisotropic β-CD/CaSO4.2H2O hybrids; β-CD exclusion and calcium sulfate nano blocks
8.1. Introduction--------------------------------------------------------------------------------------------156
8.2. Experimental section---------------------------------------------------------------------------------158
8.2.1. Measurements--------------------------------------------------------------------------------------158
8.2.2. Hybrids’ preparation------------------------------------------------------------------------------158
8.3. Results and discussions------------------------------------------------------------------------------159
8.3.1. Hybrid characterization and properties---------------------------------------------------------159
8.3.3. Fabrication of calsium sulfate by hybrids' sintering------------------------------------------171
8.3.3. NMP solvent removal of hybrid’s beta-cyclodextrins----------------------------------------172
8.4. Conclusion---------------------------------------------------------------------------------------------176
8.5. References----------------------------------------------------------------------------------------------176
Chapter 9 A solvatofluorochromic A(LS)2 organogelator with helical array morphology and gel-assisted synthesis of nano hybrids silica particles
9.1. Introduction--------------------------------------------------------------------------------------------181
9.2. Experimental Section---------------------------------------------------------------------------------183
9.2.1. Measurements--------------------------------------------------------------------------------------183
9.2.2. Synthesis of cholestrylformate benzidine based gelator-------------------------------------184
9.2.3. Gel assisted Synthesis of nano silica -----------------------------------------------------------184
9.3. Results and discussion -------------------------------------------------------------------------------185
9.3.1. Characterization of the A(LS)2 organogelator ------------------------------------------------185
9.3.2. Fabrication of Silica nano particles -----------------------------------------------------------196
9.4. Conclusion---------------------------------------------------------------------------------------------204
9.5. References----------------------------------------------------------------------------------------------205
Chapter 10 A multi-responsive, Toluene 1,4 diisourea bis(benzdinecholestrylformate) cholestryl, banana shape liquid crystal organogelator
10.1. Introduction-------------------------------------------------------------------------------------------209
10.2. Experimental section--------------------------------------------------------------------------------210
10.2.1. Measurements------------------------------------------------------------------------------------210
10.2.2. Preparation of the bend core liquid crystal gelator------------------------------------------210
10.3. Results and discussion------------------------------------------------------------------------------211
10.3.1. Characterization of the bend core LC gel-----------------------------------------------------211
10.4. Conclusion--------------------------------------------------------------------------------------------224
10.5. References--------------------------------------------------------------------------------------------224
Chapter 11 Conclusions---------------------------------------------------------------------------------226
Appendix---------------------------------------------------------------------------------------------------229
Curriculum Vitae-----------------------------------------------------------------------------------------229
Publications and seminars-------------------------------------------------------------------------------230

1.4. References
1)Flores-Arias. M. T, Bao. C, Castelo. A, Perez. M. V, Gomez-Reino C, Optics Communications, 2006, 266, 490.
2)Eugene. H, Optics, 2nd ed., Addison Wesley, 1987.
3)Moore. D. T, Applied optics (review), 1980, 19, 1035.
4)Jiao. H, Goh. S. H, Valiyaveettil. S. Macromolecules, 2002, 35, 3997.
5) Nakashima. N, Asakuma. S, Kunitake T. J, Am. Chem. Soc, 1985 , 107, 509.
6)Fuhrhop. J. H, Helfrich W Chem. Rev, 1993, 93, 1565.
7)Schnur. J. M, Science, 1993, 262 1669.
8)Ariga. K, Yamada. N, Naito. M, Koyama. E, Okahata. Y, Chem. Lett, 1998, 2, 493.
9)Yamada. N, Ariga. K, Naito. M, Matsubara. K , Koyama. E. J. Am. Chem. Soc. 1998, 120, 2192.
10)Ariga. K, Kikuchi. J, Narumi. K, Koyama. E, Yamada. N, Chem. Lett, 1999, 6, 787.
11)Ariga. K, Kikuchi. J, Naito. M, Koyama. E, Yamada. N, Langmuir, 2000, 16, 4929.
12)Ariga. K, Kikuchi. J, Naito. M, Yamada. N, Polym. Adv. Technol, 2000, 11, 856.
13)Yamada. N, Ariga. K, Synlett, 2000, 12, 575.
14)Yamada. N, Matsubara. K, Narumi. K, Sato. Y, Koyama. E, Ariga. K, Colloid Surf. A, 2000, 169, 271.
15)Ariga. K, Hill. J. P, Lee M, Vinu. A. V, Charvet. R. C, Acharya. S, Sci. Technol. Adv. Mater. 2008, 9, 1.
16)Mishra. A, Behera. R. K. A, Behera. P. K, Mishra. B. K, Behera. G. B, Chem. Rev. 2000, 100, 1973.
17)Babu. S. S, Kartha. K. K, Ajayaghosh. A, J. Phys. Chem. Lett, 2010, 1, 3413.
18)Luo. J, Xie. Z, Lam. J.W.Y, Cheng. L., Chen. H, Qiu. C, Kwok. H. S, Zhan. X, Liu Y, Zhu. D, Tang. B. Z, Chem. Commun, 2001, 1, 1740.
19)Reichardt. C, Solvents and Solvent Effects in Organic Chemistry, Third Edition. WILEY-VCH Verlag, 2003.
20)Tyutyulkov. N, Fabian. J, Mehlhorn. A, Dietz. F, Tadjer. A, Polymethine Dyes – Structure and Properties, St. Kliment Ohridski University Press, Sofia-Bulgaria, 1991.
21)Ishchenko. A. A, Stroenie. I, Spektral’no-Luminescentnye Svojstva Polimethinovych Krasitelei (Constitution and Spectral-Luminescent Properties of Polymethine Dyes), Naukova Dumka, Kiev-Ukraine, 1994.
22)Fernandez. G, Garcia. F, Sanchez. L, Chem. Commun., 2008, 3, 6567.
23)Liu. J, Lam. J. W. Y, Tang. B. Z, J.Inorg.Organomet.Polym, 2009, 19, 249.
24)Paasch. S, Schambil. F, Schwuger. M. J, Langmuir, 1989, 5, 1344.
25)a) Wendorff. J. H., Eich. M, Reck. B, Ringsdorf. H, Macromol. Rapid Commun, 1987, 8, 59. b) Lansac. Y, Glaser. M. A, Clark. N. A, Lavrentovich. O. D, Nature 1999, 398, 54. c) chimuraK. I, Chem. Rev, 2000, 100, 1847. d) Finkelmann. H, Nishikawa. E, Phys. Rev. Lett. 2001, 87, 15501. e) Natansohn. A, Rochon. P, Chem. Rev. 2002, 102, 4139. f) Langhoff. A, Giesselmann. F, ChemPhysChem, 2002, 3, 424. g) Ikeda. T, J. Mater. Chem, 2003, 13, 2037.
26)Yagai. S, Karatsu. T, Kitamura. A, Chem. Eur. J, 2005, 11, 4054.
27)Fletcher. A. N, The Journal of Physical Chemistry, 1968, 78, 2742.
28)Bender. M. L, Komiyama. M, Cyclodextrin Chemistry, Springer Verlag, Berlin 1978.
29)Szejtli J, Cyclodextrins and their Inclusion Complexes, Akademiai Kiado, Budapest, 1982.
30)Ramamurthy. V, Tetrahedron, 1986, 42, 3753.
31)Ilanchelian. M, Raj. C. Retna, Ramaraj. R, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2000, 36, 9.
32)Bertrand. A, Stenzel. M, Fleury. E, Bernard. J, Polym. Chem, 2012, 3, 377.
33)(a) Nicolis. I, Coleman. A. W, Selkti. M, Villain. F, Charpin. P, Rango C. J. Phys. Org. Chem. 2001, 14, 35. (b) Nicolis. I, Coleman. A. W, Charpin. P, De Rango C, Angew. Chem, Int. Ed. Engl. 1995, 34, 2381. (c) Nicolis. I, Coleman. A. W, Charpin. P, Rango. D. C, Acta Crystallogr, Sect. B 1996, 52, 122. (d) Russell. N. R, Mcnamara. M. J. Inclusion Phenom. Macrocyclic Chem, 1989, 7, 455. (e) Charpin. P, Nicolis. I, Villain. F, Rango. De C, Coleman. A. W, Acta Crystallogr, Sect. C, 1991, 47, 1829.
34)Chung. J. V, Kwak. S. Y, Langmuir, 2010, 26, 2418.
35)Nicolis. I, Coleman. A. W, Charpin. P, Rango. C. D, Acta Cryst, 1996, B52, 122.
36)Demus. D, Goodby. J, Gray. G, Spiess. H, Vill. V, Handbook of Liquid Crystals Berlin, Germany: Wiley-VCH Wenham, 1998.
37)Collins. P. J, In Liquid Crystals: Nature’s Delicate State of Matter; Princeton University Press: Princeton, NJ, 1990.
38)Gin. d, Gu w, Pindzola. B. A, Zhouacc. W. J, Chem. Res, 2001, 34, 973.
39)Wang. C, Chen. Dairong, Jiao. X, Sci. Technol. Adv. Mater, 2009, 10, 11.
40)Wang. L, Chen. X, Zhan. J, Sui. Z, Zhao. J, Sun. Z, Chem. Lett, 2004, 33, 720
41)Wang. L, Chen. X, Zhan. J, Chai. Y, Yang. C, Xu. L, Zhuang. W, Jing. B, J. Phys. Chem. B 2005,109, 3189.
42)Creigton. J, Blatchford. C, Albrecht. M. J, Chem. Soc., Faraday Trans, 1979, 75, 790.
43)Shirtcliffe. N, Nickel. U, Schneider. S, J. Colloid Interface Sci, 1999, 211, 122.
44)Gattorno. G. R, Diaz. D, Rendon. L, Segura. G. O. H, J. Phys. Chem, B, 2002, 106, 2482.
45)Santos. I. P, Marzán. L. M. L, Pure Appl. Chem, 2000, 72, 83.
46)Zhang Y, Erkey C, J. of Supercritical Fluids, 2006, 38, 252.
47)Buckley. A. M, Greenblatt. M. J, Chem. Ed, 1994, 71, 599.
48)a) Otsuni. E., Kamaras. P, Weiss. R. G., Angew. Chem, Int. Ed. Engl, 1996, 35, 1324. B) Sohna. J. E., Fages. F, Chem. Commun, 1997, 12, 327.
49)Brenzinger. K. Z, Physiol Chem, 1892, 16, 552.
50)Terech. P, Weiss. R. G, Chem Rev, 1997, 97, 3133.
51)Abdallah. D. J, Weiss. R.G , Adv Mater, 2000, 12,1237.
52)Kawano. S, Fujita. N, van Bommel K. J. C, Shinkai. S, Chem Lett, 2003, 32, 12.
53)Xue. M, Gao. D, Liu. K, Peng. J, Fang. Y, Tetrahedron, 2009, 65, 3369.
54)Guan. L, Zhao. Y. J. Mater. Chem, 2001, 11, 1339.
2.5. References
1)Siedlecki. D, Pierscionek. B, Ophthal Physiol Opt, 2008, 28, 101.
2)Wu. M, Park. C, Langmuir, 2002, 18, 9312.
3)Uozu. Y, Hirota. N, Horie. K, Macromol. Mater. Eng, 2004, 1, 56.
4)Leverette. C, Dluhy. R, Langmuir, 2000, 16, 3977.
5)Koike. K, Mike. F, Okamoto. Y, Koike. Y, J. Polym. Sci. Part A. Polym Chem 2009, 47, 3352.
6)Konig. K, Weinigel. M, Hoppert. D, Buckle. R, Schubert. H, Kohler. M, J. Biophotonics, 2008, 1, 506.
7)Lin. Y, Microw. Opt. Technol. Lett, 2009, 51, 1137.
8)Aramendia. E, Barandiaran. M, Grade. J, Blease. T, Asua. J, J. Polym. Sci. Part. A. Polym. Chem, 2002, 40, 1552.
9)Gomez-Reino. C, Perez. M, Bao. C, Laser Photonics Rev, 2008, 2, 203.
10)Liu. J, Wang. HY, Hsieh. C, Macromol. Chem. Phys, 2001, 202, 2980.
11)Zanten. J, Amin. S, Abdala. A, Macromolecules, 2004, 37, 3874.
12)Okay. O, Oppermann. W, Macromolecules, 2007, 40, 3378.
13)Gravano. S, Dumas. R, Liu. K, Patten. T, J. Polym. Sci. Part A. Polym. Chem, 2005, 43, 3675.
14)Wu. X, Tsuji. Y, Teramae. N, React. Funct. Polym, 2007, 67, 113.
15)Zoppi. R, Neves. S, Polymer, 2000, 41, 5461.
16)Nova. V, Krol. S, Lasa. H, Ind. Eng. Chem. Res, 2004, 43, 5620.
17)Liu. J, Wu. D, Tseng. K, Macromol. Chem. Phys, 2004, 205, 2205.
18)Jin. Y, Hiltner. A, Baer. E, Shirk. J, J. Appl. Polym. Sci, 2007, 103, 1834.
19)Liu. J, Yang. P, Chiu. Y, J. Polym. Sci. Part. A, Polym. Chem, 2006, 44, 5933.
20)Garcia. F, Garcia. J. M, Rubio. F, Delapena. J, Guzman. J, Riande. E, J. Polym Sci Part. A. Polym. Chem, 2002, 40, 3987.
21)Cioffi. M, Hoffmann. A. C, Jansenn. L, Chem. Eng. Sci, 2001, 56, 911.
22)Hong. G, Maeda. T, Li. Y, Sadamori. S, Hamada. T, Murata. H, Mater. J, 2010, 29, 374.
23)Liou. H, Suyambrakasam. G, Tsai. T, Wu. R, Chavali. M, J. Taiwan. Inst. Chem Engrs, 2011, 301, 6.
24)Liou. Y, Tsay. R, Taiwan. Inst. Chem. Engrs, 2011, 42, 533.
25)Hsieh. W, Wada. Y, Mitobe. T, Mitomo. H, Seko. N, Tamada. M, J. Taiwan. Inst. Chem. Engrs, 2009, 40, 413.
26)Zeng. Z, Yu. J, Guo. Z, J. Polym. Sci. Part. A. Polym. Chem, 2005, 43, 2826.
27)Soto. C, Martin. B, Sapsford. K, Blum. A, Ratna. B, Anal. Chem, 2008, 80, 5433.
28)Ohtsuka Y, Terao Y, J Appl Polym Sci, 1981, 26, 2907.
29)Ohtsuka. Y, Sugaho. T, Appl. Opt, 1983, 22, 413.
30)Ho. B, Chen. J, Chen. W, Chang. Y, Polym. J, 1995, 27, 310.
31)Louvros. S, Kougias. I, Contemp. Eng. Sci, 2009, 2, 47.
32)Liu. J, Wang. J, Chu. M, Angew Macromol Chem, 1990, 174, 1.
33)Liu. J, Chiu. Y, Optics Letters, 2009, 34, 139.
34)Liu. J, Liu. H, Preparation Polymer, 1997, 38, 1251.
3.5. References
1) a) Huie. J. C, Smart Mater. Struct, 2003, 12, 264 b) Nikoobakh. B,Chem. Mater, 2007, 19, 5279 c) Balzani. V, Pez. M. G. M, Stoddart. J F. S, Acc. Chem. Res, 1998, 31, 405.
2) a) Zeng. F, Zimmerman. S. C, Chem. Rev, 1997, 97, 1681.b) Romano. F, Sciortino. F, Nature Materials, 2011, 10, 171.
3) Ghadiri. M. R, Granja. J. R, Milligan. R. A, McRee. D. E, Khazanovich. N, Nature 1993, 366, 324.
4) a) Menger. F. M, PNAS. 2002, 99, 4818.b) Wan. Y; Shi. Y; Zhao. D. Chem. Mater. 2008, 20, 932 a) Zhang. S. Nature Biotechnoligy 2003, 21, 1171.b) Fendler, J. H. Chem. Mater. 1996, 8, 1616.
5) a) Lawrence. D. S, Jiang. T, Levett. M. Chem. Rev, 1995, 95, 2229. b) Greenall. M. J, Schuetz. P, Furzeland. S, Atkins. D, Buzza. D. M. A, Butler. M. F, McLeish. T. C. B, Macromolecules, 2011, 44, 5510.
6) Whitesides. G. M, Grzybowski. B, Science, 2002, 295, 2418.
7) a) Fang. J, Böhringer. K. F, Comprehensive Microsystems, 2008. b) Kato. T.; Science 2002, 295, 2414. c) Guan. L, Zhao. Y. Chem. Mater. 2000, 12, 3667. d) Fitié. C F. C, Tomatsu. I, Byelov. D, De Jeu. W. H, Sijbesma. R. P. Chem. Mater. 2008, 20, 2394. c) Diao, Y, Whaley,K. E, Helgeson, M.E, Woldeyes, M. A, Doyle. P.S, Myerson. A. S, Hatton, T. A, Trout. B. L, J. Am. Chem.Soc, 2012, 134, 673.
8) a) Kato. T. Science, 2002, 295, 2414. b) Samitsu. S, Takanishi. Y, Yamamoto. J, Macromolecules, 2009, 42, 4366 b) Du. J, Yu. J, Tang. J, Wang. J, Zhang. W, Thiel. W. R, Jia. M, Eur. J. Inorg. Chem, 2011, 12, 2361.
9) a) Samitsu. S, Takanishi. Y, Yamamoto. J, Macromolecules, 2009, 42, 4366. b) Leeuwen.T. V,Pijper. T. C, Areephong. A.J, Feringa.B. L, Browne. W. R, Katsonis. K. N, J. Mater. Chem, 2011, 21, 3142.
10)a) Ungar. G, Liu. Y, Zeng. X, Percec. V, Cho. W. D, Science, 2003, 11, 299. b) Attard. S. G, Goltner. C. G, Corker. J. M, Henke. S, Templer. R. H, Angept. Chem. Int. Ed. Engl. 1997, 36, 1315, c) Koltover. I, Salditt. T, RaÈdler. J. O, Safinya. C. R, Science 1998, 281, 78, d) Saez. I. M, Goodby. J. W, Structure & Bonding, 2008, 128, 1.
11) a) Muthukumar. M, Ober. C. K, Thomas. E. L, Science, 1997, 277, 1225. b) Smalyukh. I, Nature, 2011, 478, 330.
12) Mamdouh. W, Uji. H, Ladislaw. J. S, Dulcey. A. E, Percec. V, Schryver. F. C. D, Feyter. S. D, J. Am. Chem. Soc, 2006, 128, 317.
13) a) Kuroiwa. K, Oda. N, Kimizuka. N, Science and Technology of Advanced Materials 2006, 7, 629. b) Dawn. A, Shiraki. T, Ichikawa. H, Takada. A, Takahashi. Y, Tsuchiya.Y, Lien. L. T. N, Shinkai. S, J. Am. Chem.Soc, 2012, 134, 2161.
14) a) Niknam jahromi. M. J, Liu. J. H, accepted in Soft Materials, 2011, DOI: 10.1080/1539445X. 2011.633149 b) Liu. J. H, Chiu. Y. H, Chiu. T. H, Macromolecules 2009, 42, 3715.
15) a) Zhou. Y, biand. V. A, Sharma. N, Ahn, S. K, Kas. R. M, Materials, 2009, 2, 636 b) Yusa. S, Kamachi. M, Morshima. Y. Journal of Polymer Science. Part A. Polymer Chemistry, 1999, 37, 47 c) Yusa. S. I, Kamachi. M, Morishima. Y. Langmuir, 1998, 14, 6059 d) Yusa. S. I, Hashidzume. A, Morishima. Y. Langmuir, 1999, 15, 8826.
16) a) Hwang. J. J, Iyer. S. n, Li. L. S, Claussen. R, Harrington. D. A, Stupp. S. I, PNAS 2002, 99, 9662. b) Leclere. P, Viville. M. S. P, Lazzaroni. R, Kilbinger. A. F. M, Henze. O., Feast. W. J, Cavallini. M, Biscarini. F, Schenning. A. P. H. J, Meijer. E. W, Chem. Mater, 2004, 16, 4452. c) Si. R, Zhang. Y. W, Zhou. H. P, Sun. L. D, Yan. C. H. Chem. Mater. 2007, 19, 18.
17) a) Hudson. S. D, Jung. H. I, Percec. V, Cho. W. D, Johansson. G, Ungar. G, Balagurusamy. V. S. K, Science, 1997, 278, 449.b) Son. J. G.; Hannon. A. F, Gotric. K. W, Katz. A. A, Ross. C. A, Adv. Mater,. 2011, 23, 634.
18) Haino. T, Fujii. T, Watanabe. A, Takayanagi. U, PNAS, 2009, 106, 10477.
19) Kudernac. T, Lei. S, Elemans. J. A. A. W, Feyter. S. D, Chem. Soc. Rev, 2009, 38, 402.
20) Akutagawa. T, Ohta. T, Hasegawa. T, Nakamura. T, Christensen. C. A, Becher. J, PNAS, 2002, 99, 5028.
21) (a) Lindström. U. M, Chem. Rev, 2002, 102, 2751 ; (b) Li C. J, Chem. Rev. 2005, 105, 3095 ; (c) Li C. J, Chem. Soc. Rev, 2006, 35, 68 ; (d) Dallinger D, Kappe O, Chem. Rev, 2007, 107, 2563 (e) Oshovsky. G, Reinhoudt. D. N, Verboom. W, Angew. Chem, 2007, 119, 2418 ; (f) Rehm. T, Schmuck. C, Chem. Commun, 2008, 1, 801.
22) (a) Breslow. R, Acc. Chem. Res, 1991, 24, 159 (b) Breslow. R, Acc. Chem. Res. 2004, 37, 471 (c) Pirrung. M, Chem. Eur. J, 2006, 12, 1312. d) Rodekirch. G, Riibner. J, Zschuppe. V, Wolff. D, Springer. J, Makromol. Chern, 1993, 194, 1135.
23) Virtanen. E, Kolehmainen. E, Eur, Org. Chem, 2004, 5, 3385.
24) James. T, Kawabata. H, Ludwig. R, Murata. K, Shinkai. S ,1995, 11, 36.
25) Lu. L., Cocker. T. M, Bachman. R. E, Weiss. R. G, Langmuir, 2000, 16, 20.
26) a) Caspar, D. L. D. Biophys. J. 1980, 10, 103.b) Hormoz..S.; Brenner. M. P.; PNAS 2011, 108, 5193.
27) (a) Jelly. E. E, Nature, 1936, 138, 1009. (b) Scheibe. G, Angew. Chem, 1936, 49, 563. C) Brooker. L. G. S, White. F. L, Heseltine. D. W, Keyes. G. H, Dent. S. G, VanLare. E. J. J. Photogr. Sci, 1953, 1, 173. d) Cho. Y, Lee . J. H, Jaworski. J, Park. S, Lee, S. S, Jung. J. H, New. J. Chem, 2010, 36, 32.e) Kumar. A, George. S. J, Chem. Eur. J, 2011, 17, 11102.
28) a) McRae. E. G, Kasha. M. J, Chem. Phys, 1958, 28, 721. (b) Kasha. M, Rawis, H. R, El, Bayoumi. M. A, Pure Appl. Chem, 1965, 11, 371.
29) a) Leng. J, Egelhaaf. S. U, Kate. M. E, Europhys. Lett, 2002, 59, 311. b) Hoang. T. K. N, La. V. B, Deriemaeker. L, Finsy. R. Langmuir, 2001, 17, 5166 c) Weiss. J, Herrmann. N, McClements. D. J, Langmuir, 1999, 15, 6652.
30) a) Leng . J, Egelhaaf. S. U, Kate. M. E, Europhys. Lett, 2002, 59, 311.b) Hoang. T. K. N. La. V. B, Deriemaeker. L, Finsy. R, Langmuir, 2001, 17, 5166 c) Weiss, J., Herrmann, N, McClements. D. J, Langmuir, 1999, 15, 6652.
31)a)Voorhees. P. W, Journal of Statistical Physics, 1985, 38, 231. b) Tcholakova. S, Mitrinova. Z, Golemanov. K, Denkov. N. D, Vethamuthu. M, Ananthapadmanabha. K. P, Langmuir, 2011, 27, 14807.
32) a) Zhang. J. Z, Self Assembled NanoStructures, Springer, 2003. b) Makinson. J. D, Lee. J. S, Magner. S. H Angelis. R. J. D, Weins. W. N, Hieronymus. A. S. Advances in X-ray Analysis, 2000, 42, 407. c) Ungar. T, Scripta, Materialia, 2004, 51, 777.
33) Park. M. H, Ryu. J. H, Lee. E, Han. K. H, Chung. Y. W, Cho. B. K, Lee. M. Macromol. Rapid Commun, 2006, 27, 1684.
4.5. References
1)Lv. C, Chen. X, Jing. B, Zhao. Y, Ma. F, Journal of Colloid and Interface Science 2010, 351, 63.
2)(a) Jelly. E. E., Nature, 1936, 138, 1009. (b) Scheibe. G, Angew. Chem, 1936, 49, 563. C) Brooker. L. G. S, White. F. L, Heseltine D. W, Keyes. G. H, Dent. S. G, VanLare E. J, J. Photogr. Sci, 1953, 1, 173.
3)a) McRae. E. G.; Kasha. M. J. Chem. Phys, 1958, 28, 721. (b) Kasha. M, Rawis. H. R. E, Bayoumi. M. A, Pure Appl. Chem, 1965, 11, 371.
4)Liu. Y, Chen. G. S, Chen. Y, Zhang. Z, Chen. J, Zhao. Y. L, Nano letters, 2006, 6, 2196.
5)Leng. J, Egelhaaf. S. U, Kate. M. E, Europhys. Lett, 2002, 59, 311.
6)a) Rose. G. D, Teot. A. S, Viscoelastic Surfactants: Rheology Control without Polymers or Particulates. In Structure and Flow in Surfactant Solutions, American Chemical Society: Washington, DC, 1994. b) Rose. G. D, Foster. K. L, J. Non- Newtonian Fluid Mech, 1989, 31, 59. c) Sylvester. N. D, Smith. P. S, Ind. Eng. Chem. Prod. Res. Dev, 1979, 18, 47. d) Maitland. G. C, Curr. Opin. Colloid Interface Sci, 2000, 5, 301. e) Samuel M. M, SPE Drilling Completion, 1999, 14, 240. f) Hoffmann. H, Tenside Deterg,1985, 22, 290. g) Raghavan. S. R, Kaler. E. W, Langmuir, 2001, 17, 300. h) Candau. S. J, J. Phys. IV, 1993, 3,197. i) Cates. M. E, Candau. S. J, J. Phys, Condens. Matter, 1990, 2, 6869.
5.5. References:
1)Sladkova. M, J. Mol. Struct, 2009, 567, 924.
2)Lochner. N, Eur. J. Pharm. Biopharm, 2003, 56, 469. b) Dastjerdi. R, Montazer. M, Colloids and Surfaces B: Biointerfaces, 2010, 79, 5.
3)Fang. C, Ellis. A.V, Voelcker. N. H, Electrochimica Acta, 2012, 59, 346 b) Li Y.S, J. Raman Spectrosc, 1994, 25, 795.
4)Mou. C, Chen. D, Wang. X, Zhang. B, He. T, Xin. H, Liu. F. C, Chem. Phys. Lett, 1991, 179, 237.
5)Wang. X, He. T, Wen. H, Xu. C, Zuo. J, Liu. F. C, Spectrochim. Acta Part A, 1997, 53, 1411.
6)Wang. X, Wen. H, He. T, Zuo. J, Xu. C, Liu. F. C, Spectrochim. Acta. Part A, 1997, 53, 2495.
7)Pan. J, Sun. Y, Wang. Z, Wan. P, Liu. X, Fan. M, J. Mater. Chem, 2007, 17, 4820.
8)Peyser. L. A, Vinson. A. E, Bartko. A. P, Dickson R. M., Science, 2001, 29, 103.
9)Zhang. X. Y, Pan. X. Y, Zhang. Q. F, Xu. B. X, Jiang. H. B, Liu. C. L., Gong. Q. H, Wu. J. L, Acta. Phys. Chim. Sin, 2003, 19, 203.
10)Huang. M. H, Lin, P. H, Adv. Funct. Mater, 2012, 22, 14.
11)Cao. C. Y, Hao. E, Metraux. G, Schatz. G, Mirkin. C, Nature, 2003, 425, 487.
12)Sun. X, Dong. S, Wang. E. Langmuir, 2005, 21, 4710.
13)Bakshi. M, Possmayer. F, Petersen. N, J. Phys. Chem. C, 2008, 112, 8259.
14)Lu. J, Yang. L, Xie. A, Shen. Y, Biophys. Chem, 2009, 145, 91.
15)a) Aiken. J. D, Finke. R. G, J. Mol. Catal. A, 1999, 145,1. b) Lewis. L. N, Chem. Rev, 1993, 93, 2693.
16)Xia. Y, Yang. P, Sun. Y, Wu. Y, Mayers. B, Gates. B, Adv. Mater, 2003, 15, 353.
17)a) Rosi. N. L, Mirkin. C. A, Chem. Rev, 2005, 105, 1547. b) Daniel. M. C, Astruc D, Chem. Rev, 2004, 104, 293. c) Hu. M, Chen J, Li. Z. Y, Au L, Hartland. G. V, Li X, Marquez. M, Xia. Y, Chem. Soc. Rev, 2006, 35, 1084 b) West. J. L, Halas. N. J, Annu. Rev. Biomed. Eng, 2003, 5, 285.
18)a) Nie. S, Emory. S, Science, 1997, 275, 1102 b) Haynes. C. L, Van. Duyne. R. P, J. Phys. Chem. B, 2001, 105, 5599.
19)Cho. W. J, Kim. Y, Kim. J. K, Small, 2012, 6, 249.
20)a) Boneberg. J, Burmeister. F, Schafle. C, Leiderer. P, Langmuir, 1997, 13, 7080. b) Xia. Y, Sun. Y, Adv. Mater, 2003, 15, 9 c) Zinchenko. A. A, Yoshikawa. K, Adv. Mater, 2005, 17, 2820
21)Qi. L, Gao. Y, J. Ma, Colloid. Surf. A, 1999, 157, 285.
22)Lee. M. H, OH. S. G, Suh. K. D, Kim. D. G, Sohn. D, Colloid. Surf. A, 2002, 210, 49.
23)Andersson. M, Alfredsson. V, Kjellin. P, Palmqvist. A. E. C, Nano Lett, 2002, 2, 1403.
24) Liu. J. H, Chiu. Y. H, Chiu. T. H, Macromolecules, 2009, 42, 3715.
25)Ringsdorf. H, Schlarb. B, Venzmer. I, J. Angew Chem, 1988, 27, 113.
26)James. T. D, Kawabata. H, Ludwig. R, Murata. K, Shinkai. S, Tetrahedron, 1995, 51, 555.
27)Berru. S. R, J. Raman Spectrosc, 2009, 40, 376.
28)Courrol. L.C, Colloids Surf. A, 2007, 305, 54.
29)Marzan. L.M. L, Mater. Today, 2004, 7, 26.
30)Chou. K. S, Lai. Y.S, Mater. Chem. Phys, 2004, 83, 82.
31)Huang. H, Yang. X, Carbohyd. Res, 2004, 339, 2627.
32)Sun. Y, Xia Y, Science, 2002, 298, 2176.
33)Sastry. M, Mayya. K.S, Patil. V, Paranjape. D.V, Hegde. S.G, Phys. Chem. B, 1997, 101 4954.
34)Wiley. B, Sun Y, Mayers. B, Xia. Y, Chem. Eur. J, 2005, 11, 454.
35)Murphy. C. J, Sau. T.K, Gole. A, Orendorff. C. J, MRS Bull, 2005, 30, 349.
36)Evanoff. D. D, Chumanov. G, J. Phys. Chem. B, 2004, 108, 13, 948.
37)Xiong. Y, Washio. I, Chen. J, Cai. H, Li. Z.Y, Xia Y, Langmuir, 2006, 22, 8563.
38)Weast. R.C, CRC Handbook of Chemistry and Physics, 70th ed., CRC, Boca Raton, FL, 1989.
39)Bi. H, Cai. W, Kan. C, Zhang. L, Martin. D, Trager. F, J. Appl. Phys, 2002, 92, 7491.
6.5. References
1)Kent. S.L, Geil. P.H. J, Macromol. Sci. Part A, 1992, 29, 315.
2)Liu. J, Wei. X. L, Yin. B.L., Sun. D. Z, Wang. Z.N, Li. G.Z, Soft Materials, 2007, 5, 197.
3)Yoshino. K, Nakayama K, Kawagishi Y, Tatsuhara S, Ozaki. M, Zakhidov. A, 1999. Properties of liquid crystals in photonic crystal, synthetic opal. Molecular Crystals and Liquid Crystals Science and Technology, Section A, Molecular Crystals and Liquid Crystals, 1999.
4)Desbat. B, Brunet. M, Nguyen. H.T, Soft Materials, 2002, 1, 75.
5)Ha. S.T, Koh. T.M, Lin. H.C, Yeap. G.W, Win, Y.F, Ong. S.T, Sivasothy. Y, Ong, L.K. Liquid Crystals, 2009, 36, 917.
6)Lapointe. C.P, Mason. T.G, Smalyukh. I.I, Science, 2009, 326, 1083.
7)Wu. L.H, Lee. W.C, Hsu. C.S, Wu. S.T, Liquid Crystals, 2001, 28, 317.
8)Suzuki. D, Koide. N, Molecular Crystals and Liquid Crystals Science and Technology, Section A, Molecular Crystals and Liquid Crystals, 2001, 364, 635.
9)Chen. H.M, Zhao. K.Q, Wang L, Hu P, Wang. B.Q, Soft Materials, 2011, 9, 359.
10)Han. J, Chang. X.Y, Cao. B.N, Wang. Q.C, Soft Materials, 2009, 7, 342.
11)Akiba I, Masunaga. H.M, Sasaki. K, Soft Materials, 2004, 2, 57.
12)Albunia. A.R, Graf. R, Soft Materials, 2011, 9, 183.
13)Liu. X.Y, Jiang. Y, Wang. W.G, Pu. J.L, Advanced Materials Research, 2011, 239, 3358.
14)Wang. C, Wang. T, Wang. Q, Polymer, 2010, 51, 4896.
15)Huang. M.R, Lu. H.J, Song. W.D, Li. X.G, Soft Materials, 2010, 8, 149.
16)Zhu. X, Chen. L, Yan. D, Chen. Q, Yao. Y, Xiao. Y, Hou. J, Li. J, Langmuir, 2004, 20, 484.
17)Johnson. K.T, Fath. K.R, Henricus. M.M, Banerjee. I.A, Soft Materials, 2009, 7, 21.
18)Yasuda. T, Ooi H, Morita. J, Akama. Y, Minoura. K, Funahashi. M, Shimomura T, Kato. T, Adv. Funct. Mater, 2009, 19, 411.
19)Chiu. Y.H, Liu. J.H, J. Polym. Sci. Part A: Polym. Chem, 2010, 48, 3368.
20)Liu. Y, Kang. S.Z, Li. L, Supramolecular Chemistry, 2002, 14, 329.
21)Ganapathya. H.S, Woob. M.H, Galc. Y.S, Lim. K, Key Engineering Materials, 2007, 42 , 489.
22)Wang. Y, Zhang. M, Moers. C, Chen. S, Xu. H, Wang. Z, Zhang. X, Li. Z, Polymer, 2009, 50, 4821.
23)Li. S.J, Wu. F.P, Li. M.Z, Wang. E.J, Polymer, 2005, 46, 11934.
24)Murthy. C.N, Geckeler, K.E, Fullerenes, Nanotubes and Carbon Nanostructures, 2002, 10, 91.
25)Li. S, Wu. F, Wang. E, Polymer, 2009, 50, 3932.
26)Berret. J.F, Yokota. K, Morvan. M, Soft Materials, 2004, 2, 71.
27)Kawasaki. J, Satou. D, Takagaki. T, Nemoto. T, Kawaguchi. A, Polymer, 2007, 48, 1127.
28)Kaneko. F, Sasaki. K, Kashihara. N, Okuyama. K, Soft Materials, 2011, 9, 107.
29)Li. J, Yan. D, Jiang. X, Chen. Q, Polymer, 2002, 43, 2625.
30)Oertel. U, Komber. H, Tenkovtsev. A, Dudkina. M, Trofimov. A, Böhme. F, Polymer, 2009, 50, 5876.
31)Busche. B, Tonelli. A, Balik. C, Polymer, 2010, 51, 454
32)Busche. B.J, Tonelli. A.E, Balik. C.M, Polymer, 2010, 51, 6013.
33)Osman. S.K, Brandl. F.P, Zayed. G.M, Teßmar. J.K, Göpferich. A.M, Polymer, 2011, 52, 4806.
6.5. References
7.6. Rerences
1)a) Robinson. A. L, Science, 1984, 223, 267. b) Romano. F, Sciortino. F, Nature Materials, 2011, 10, 171.
2)a) Feynman. R. P, Sat. Rev, 1960, 43, 45. b) a) Fang. J, Böhringer. K. F, Comprehensive Microsystems 2008.
3)a) Lehn. J. M, Supramolecular Chemistry, VCH: Weinheim, Germany, 1995. b) Fitié. C F. C, Tomatsu. I, Byelov. D, de Jeu. W. H, Sijbesma. R. P. Chem. Mater, 2008, 20, 2394.
4)a) Lindsey. J. S, New J. Chem. 1991, 15, 180. b) Lawrence. D. S, Jiang. T, Levett. M, Chem. Rev, 1995, 95, 2229. c) Philp. D, Stoddart. J. F, Angew. Chem. Int. Ed. Engl, 1996, 35, 1154 d) Fredericks, J. R.; Hamilton, A. D. In Comprehensive Supramolecular Chemistry; Atwood, J. L., Davies. J. E. D, MacNicol. D. D, Vogtle F, Eds. Pergamon/Elsevier: Oxford, 1996, 9, 565. d) Samitsu. S, Takanishi. Y, J. Macromolecules 2009, 42, 4366
5)a) Ringsdorf. H, Schlalb. B, J. Angew. Chem, Int. Ed. Engl. 1988, 27, 115 b) Lupo D, Ringsdorf. H, Schuster. A, Seitz. M, J. Am. Chem.Soc, 1994, 116, 10498. c) Kimizika. N, Handa. T, Ichinose. I, Kunitake. T, Angew. Chem., Int. Ed. Engl, 1994, 33, 2483. d) Imrie, C. T, Trends Polym. Sci. 1995, 3, 22. e) Du. J, Yu. J, Tang. J, Wang. J, Zhang. W, Thiel. W. R, Jia. M, Eur. J. Inorg. Chem, 2011, 3, 2361.
6)a) Balzani. V, Credi. A, Raymo. F. M, Stoddardt. J. F, Angew. Chem. Int. Ed, 2000, 39, 3348 .b) Balzani. V, Credi. A, Venturi. M, Chem. Soc. Rev, 2009, 38, 1542.
7)a) Zhang. C, Phys. Rev. Lett, 2004, 92, 158301 b) Abid. J. P, Frigoli. M, Pansu. R, Szeftel. J, Zyss. J, Larpent. C, Brasselet. S, Langmuir, 2011, 27, 7967.
8)a) Rau. H, Photochromism: Molecules and Systems, edited by H. Durr and H. Bouas-Laurent .Elsevier, Amsterdam, 1990. b) Nicoletta. F. P, Cupelli. C. D, Formoso. P, Filpo. J. D, Colella. C. V, Gugliuzza. G. A, Membranes, 2012, 2, 134.
9)a) Shinkai. S, Matsuo. K, Harada. A, Manabe. O, J. Chem. Soc. Perkin Trans, 1982, 2, 1261. b) Eastoe. J, Vesperinas. A, Soft Matter, 2005, 1, 338. c) Hai. C, Jian. J, Zhu. X, Duan. P, Liu. M, Soft Matter, 2011, 7, 4654. d) Fomina. N, Sankaranarayanan. J, Almutairi. A, Advanced Drug Delivery Reviews, 2012, doi:10.1016/j.addr.2012.02.006.
10)a) Dürr. H, Bouas-Laurent H. (ed.), Photochromism: molecules and systems, Elsevier, Amsterdam, 1990 b) Irie. M, Chem. Rev, 2000, 100, 1685. c) Tian. H, Yang. S, Recent progresses on diarylethene based photochromic switches, Chem. Soc. Rev, 2004, 33, 85. d) Dong. H, Zhu. H, Meng.C, Gong. X, Hu.W, Chem. Soc. Rev, 2012, 41, 1754.
11)a) Ichimura. K, Photochromic materials and photoresists, in Photochromism: molecules and systems, ed. H. Dürr and H. Bouas-Laurent, Elsevier, Amsterdam, 1990 b) Raymo. F. M, Tomasulo. M, J. Phys. Chem. A, 2005, 109, 7343. c) White. T. J, Zhao. A. D, Cazzell. S. A, Bunning. T. J, Kosa. T, Sukhomlinova. L, Smith. T. J, Taheri. B, J. Mater. Chem, 2012, 22, 5751. d) Li. Q, Li. Y, Ma. J, Yang. D. K, White. T. J, Bunning. T. J, Adv. Mater, 2011, 23, 5069.
12)Giepmans. B. N. G, Adams. S. R, Ellisman. M. H, Tsien. R. Y, Science, 2006, 312, 217.
13)Lavis. L. D, Raines. R. T, ACS Chem. Biol, 2008, 3, 142.
14)Zhang. J, Campbel.l R. E, Ting. A. Y, Tsien. R. Y, Nat. Rev. Mol. Cell Biol, 2002, 3, 906.
15)Yan. P, Xie. A, Wei. M, Loew. L. M, J. Org. Chem, 2008, 73, 6587.
16)Lu. Z, Liu. N, Lord. S. J, Bunge. S. D, Moerner. W. E, Twieg. R. J, Chem. Mater, 2009, 21, 797.
17)Font-Sanchis. E, Galian. R. E, Cespedes-Guirao. F. J, Sastre-Santos. A, Domingo. L. R, Fernandez-Lazaro. F, Perez-Prieto. J, Phys. Chem. Chem. Phys, 2010, 12, 7768.
18)Demchenko. A. P, Mely. Y, Duportail. G, Klymchenko. A. S, Biophys. J, 2009, 96, 3461.
19)Loving. G. S, Sainlos. M, Imperiali. B, Trends Biotechnol, 2010, 28, 73.
20)Postupalenko. V. Y, Shvadchak. V. V, Duportail. G, Pivovarenko. V. G, Klymchenko. A. S, Mely. Y, Biochim. Biophys. Acta, 2010, 1808, 424.
21)Shvadchak. V. V, Klymchenko. A. S, De. Rocquigny. H, Mely. Y, Nucl. Acids Res, 2009, 37, 25.
22)Rosenthal. J, Hodgkiss. J. M, Young. E. R, Nocera. D. G, J. Am. Chem. Soc. 2006, 128, 10474.
23)Liu. Y, You. C. C, Zhang. H. Y, Kang. S. Z, Zhu. C. F, Wang. C, Nano Lett, 2001, 1, 613.
24)Karino. T, Okumura. Y, Zhao. C, Kataoka. T, Ito. K, Shibayama. M, Macromolecules, 2005, 38, 6161.
25)Sanji. T, Kato. N, Tanaka. M, Macromolecules, 2006, 39, 7508.
26)a) Beltran. E, Serrano. J. L, Sierra. T, Gimenez. R, J. Mater. Chem, 2012, DOI: 10.1039/c2jm15648b;b) Lee. H. S, Kim. H. J, Kang. J. G, Photochem. Photobiol. Sci, 2011, 10, 1338.
27)a) Chen.C. J, Liu. G. Y, Liu. X. S, Li. D. D, Ji. J, NewJ. Chem, 2012, 36, 694.b) Liu. Y, Zhao. D. Y, Ma. R. J, Xiong. D. A, An. Y. L, Shi. L. Q, Polymer, 2009, 50, 855.c) Yuen. F, Tam. K. C, Soft Matter, 2010, 6, 4613.
28)a) Chen. G, Jiang. M, Chem. Soc. Rev, 2011, 40, 2254. b) Q. Yan, J. Yuan, Z. Cai, Y. Xin, Y. Kang, Yin. Y, J. Am. Chem. Soc, 2010, 132, 9268.
29)Furniss. BS, Hannaford. AJ, Rogers. V, Smith. PWG, Tatchell. AR Vogel's textbook of Practical Organic Chemistry.Longmans: Londonand New York,fifth edition. 1989.
30)Gough. T. E, Irish. D. E, Lantzke. I. R, Spectroscopic Measurements (electron absorption, infrared and Raman, ESR and NMR spectroscopy), in A. K. Covington and T. Dickinson (eds.): Physical Chemistry of Organic Solvent Systems, Plenum Press, London, New York, 1973.
31)Bayliss. N. S, McRae. E. G, J. Phys. Chem. 1954, 58, 1006.
32)Reichardt. C, Chem. Rev, 1998, 94, 23119.
33)a) Quast. H, Seefelder. M, Angew. Chem, 1999, 111, 1132. b) Miyazaki. E, Okanishi. T, Suzuki. Y, Ishine. N, Mori. H, Takimiya. K, Harima. Y, Bull. Chem. Soc. Jpn.201, 84, 459.
34)a) Lippert. E, Elektrochem. Z, Ber. Bunsenges. Phys. Chem, 1957, 61, 962. b) Saroj. M. K, Sharma. N, Rastogi. R. C, J Fluoresc, 2011, 21, 2213.
35)a) Brooker. L. G. S, Keyes. G. H, Heseltine. D. W, J. Am. Chem. Soc,1951, 73, 5350.b) Petrozza. A, Laquai. F, Howard. I. A, Kim. J. S, Friend. R. H, Physical Review B, 2010, 81, 205421.
36)Thiault. G, Mellouki. A, Le Bras. G, Chakir. A, Gomez. N. S, Daumont. D, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 162, 273. 38) Zhao. X, Hu. X, Polymer Engineering And Science, 2000, 40, 72.
39)Min. S, Risheng. Y, Yahua. Y, Shengsong. D, Wenxia. G, Front. Environ. Sci. Engin. China, 2007, 1, 95.
40)Schmidt. W, Optische Spektroskopie – Eine Einfu¨hrung, Wiley-VCH, Weinheim, 2000.
41)Sharma. A. K, Schulman. S. G, Introduction to Fluorescence Spectroscopy, Wiley, Chichester, 1999.
42)Wolfbeis. O. S. (ed.): Fluorescence Spectroscopy – New Methods and Applications, Springer, Berlin, 1992.
43)Rettig. W, Top.Curr. Chem. 1994, 169, 253.
44)a) Zwan. G, Hynes. J. T, J. Phys. Chem, 1985, 89, 4181. b) Kosower. E. M, J. Am. Chem. Soc, 1985, 107, 1114 c) Kosower. E. M, J. Phys. Chem, 1983, 87, 2479. d) Huppert. D, Chem. Phys. Lett, 1988, 144, 15.
45)Turro. N. J, Molecular Photochemistry, W. A. Benjamin Inc., New York,N.Y, 1967.
46)Chen. R. F, Anal. Biochem, 1967, 19, 374.
47)a) Bershtein. I. Y, Ginsburg. O. F, Tautomerism of Aromatic Azo-Compounds, Usp. Khim. b) Ball. P, Nicholls. C. H, Dyes Pigm, 1982, 3, 5. c) Morley. J. O, J. Phys. Chem. 1994, 98, 13177. d) Misuishi. M, Kamimura. R, Shinohara. N, Seni. Gakkaishi, 1976, 32, 382. e) Hempel. R, Viola. H, Morgenstern. J, Mayer. R, Prakt. J, Chem. 1976, 318, 983.
48)a) Briegleb. G, Strohmeier. W, Angew. Chem, 1952, 64, 409 b) Rogers. M. T, Burdett. J. L, J. Am. Chem. Soc, 1964, 86, 2105. c) Drexler. E. J, Field. K. W, J. Chem. Educ, 53, 392, 1976.
49)Williams. R. T, Brides. J. W, J. Clin. Path. 1964, 17, 371.
50)a) Divya. O, Mishra. A. K, Analytica Chimica Acta, 2008, 63, 47. b) Reen. M, Smith. T. W, Chens. L. B, Biochemistry, 1991, 30, 4480.
51)a) Asiri. A. M, Badahdah. K. O, Molecules, 2007, 12, 1796. b) Evans. W. C, Smith. B. S. W, Fernley. H. N, Davies. J. I, Biochem. J, 1971, 122, 543. c) Han. Y. K, Kim. K. M, Bull. Korean Chem. Soc, 1999, 20, 1421.
52)a) Rakotondradany. F, Whitehead. M. A, Lebuis A.-M, Sleiman. H. F, Chem. Eur. J, 2003, 9, 4771. b) Yao. H, Sugiyama. S, Kawabata. R, Ikeda. H, Matsuoka. O, Yamamoto. S, Kitamura. N, J. Phys. Chem. B, 1999, 103, 4452.
53)a) Matsen. M. W, Bates. F. S, Macromolecules, 1996, 29, 7641. b) Kim. E, Whitesides. G. M, Chem. Mater, 1995, 7, 1257.
54)a) Liu. Y, Wang. H, Liang. P, Zhang. H. Y, Angew. Chem, 2004, 116, 2744. b) Bratu. I, Astilean. S, Ionesc. S, Indrea. E, Huvenne. J.P, Legrand. J.P, Spectrochimica Acta Part A, 1998, 54, 191.
56)Cruz. J. R, Becker. B. A, Morris. K. F, Larive. K. C, Magn. Reson. Chem, 2008, 46, 838.
57) Marzouqi A. H. A, Shehatta. I, Jobe. B. Dowaidar, A. J. Pharm.Sci, 2006, 95, 292.
58) a) Jadhav. G.S, Vavia. P.R, Int. J. Pharm, 2008, 352, 5 b) Chow. D.D, Karara. A.K, Int. J. Pharm, 1986, 28, 95.
59) Zhou. P. P, Qiu. W. Y, ChemPhysChem, 2009, 10, 1847.
8.5. References
1)a) Harada. A, Li. J, Kamachi. M, Nature, 1992, 356, 325. b) Dodziuk. H, Cyclodextrins and Their Complexes; Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2006.
2)a) Buschmann. H. J, Knittel. D, Schollmeyer. E, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2001, 40, 169. b) Rajeswari. C, Alka. A, Javed. A, Khar. R.K, AAPS PharmSciTech, 2005, 6, 329. c) Valle. E.M, Process Biochemistry, 2004, 39, 1033. d) Schmann H. J, Schollmeyer E, J. Cosmet Sci., 2002, 53, 185. e) Singh. M. R, Sharma. Banerjee, Biotechnology Advances, 2002, 20, 341.
3)a) Chung. J. W, Kwak. S. Y, Langmuir, 2010, 26, 2418. b) Nicolis. I, Coleman. A.W, Selkti. M, Villain. F, Charpin. P, Rango. C. J, J. Phys. Org. Chem, 2001, 14, 35. c) Nicolis. I, Coleman. A. W, Charpin. P, Rango. C. D, Angew. Chem, Int. Ed. Engl, 1995, 34, 2381. d) Nicolis. I, Coleman. A. W, Charpin. P, Rango. P. D, Angew. Chem, Int. Ed. Engl, 1995, 34, 2381. e) Russell. N. R, Mcnamara. M. J, Inclusion Phenom. Macrocyclic Chem, 1989, 7, 455. f) Charpin. P, Nicolis. I, Villain. F, De. Rango. C, Coleman. A. W, Act Crystallogr, Sect. C, 1991, 47, 1829.
4)Nicolis. I. A. W, Coleman. P, De. Rango. C, Acta Cryst, 1996, B52, 122.
5)a) Kumar. S, Nann. T, small, 2006, 2, 316 b) Zhao. D, J. Sun, Galen. Q. L, Stucky. D, Chem. Mater, 2000, 12, 275. c) Adair. J. H, Suvaci. E, Current Opinion in Colloid & Interface Science, 2000, 5, 160. d) Lan. C.W, Chemical Engineering Science, 2004, 59, 1437. e) Austin. A. E, Miller. J. F, Vaughan. D. A, Kircher. J. F, Desulinorion, 1975, 16, 345.
6)a) Boisvert J. P., Domenech M., Foissy A., Persello J., Mutin J. C., J. Crystal Growth, 2000, 220, 579. (b) Bosbach D., Hochella M. F., J. Chem. Geol., 1996, 132, 227c) Smith B. R., Alexander A. E., J. Colloid Interface Sci., 1970, 34, 81. d) Tanoue. F, Sakakibara. S, Ohbora. M, Ishino. K, Ishida. A, Fujiyasu. H, J. Crystal Growth, 1998, 186, 47. e) Klepetsanis. P. G, Kautsoukos. P. G, J. Crystal Growth, 1998, 193, 156. f) Amjad. Z, Can. J. Chem, 1988, 66, 1529. g) Amjad, J. Colloid Interface Sci, 1988, 123, 523.h) Brigid. R, Heywood S, Adv. Muter. 1994, 6. 1
7)a) Cody. R.D, J. Crystal Growth, 1974, 23, 275 b) Liu. S. T, Nancollas. G. H, Journal of Colloid and Interface Science, 1975, 52, 593c). Wang. P, Lee. E. J, Park C. S, Yoon B. H, Shin. D. S, Kim H. E, J. Am. Ceram. Soc, 2008, 91, 2039. d) Austin. A. E, Vaughan J. F, Desalination, 1975, 16, 345 e) Mahmoud. M. H. H, Rashad. M. M, Ibrahim. I.A, Abdel-Aal. E.A, Journal of Colloid and Interface Science, 2004, 270, 99 f) Zhuoxian. S, Baohong. G, Fu. W. H, Yang. L, J. Am. Ceram. Soc, 2009, 92, 2894 g) Rees. G. D, Gowing R. E, Hammond. S. J, Robinson B. H. Langmuir, 1999, 15, 1993 h) Osterwalder. N, Loher. S, Grass. R. N, Brunner. T. J, Limbach L. K, Halim. S. C, Stark. W. J, Journal of Nanoparticle Research, 2007, 9, 275 (i Klepetsanis. P. G, Dalas E, Koutsoukos. P. G, Langmuir, 1999, 15, 1534 (j Song. X, Sun. S, Fan. W, Yu. H, J. Mater. Chem. 2003, 13, 1817.
8)Wollmann. G, Voigt. W, J. Chem. Eng. Data, 2008, 53, 1375.
9)Chatjigakis. A. K, Donz. C, Coleman. A. W, Anal. Chem. 1999, 64, 1632.
10)Sun. C. T, Shao X, Chipot. C, Phys. Chem, 2008, 10, 3236.
11)Naidoo K. J, Chen. J. Y. J, Jansson. J. L. M, Widmalm. G, Maliniak. A, J. Phys. Chem. B, 2004, 108, 4236.
12)a) Yu J, Jiang Z., Liu H, Yu J., Zhang L., Analytica Chimica Acta 2003, 477, 93.
13)b) Roik. N. V, Belyakova. L. A, J Incl Phenom Macrocycl Chem, 2010, 69, 315. c) Lamcharfi E, Kunesch. G, Meyer. C, Robert. B, Spectrochimica Acta Part A, 1995, 51, 1861. d) Yamaguchi. I, Kashiwagi. K, Yamamoto. T, Macromol. Rapid Commun, 2004, 25, 1163.
14)a) Osterwalder. N, Loher. S, Grass. R. N, Brunner. T. J, Limbach. L. K, Halim. S. C, Stark W. J, Journal of Nanoparticle Research, 2007, 9, 275. b) Nosov. V. N, Frolova. N. G, Kamyshov. V. F., Zhurnal Prikladnoi Spektroskopi, 1976, 24, 713.
15)Takashima. H, Hada. M, Nakatsuji. H, J. Phys. Chem, 1995, 99, 7951.
16)Atreya. H. S, Chary. K. V. R, Current Science, 2002, 83, 1240.
17)a) Ramsdell. L. S, Journal MineralogIcal Society of America, 1929, 59, 1. b) Harryb. W. M, Ekholm. W. C, J. Am. Chem. Soc, 1936, 58, 1261. c) Pedersen. B. F, Acta Cryst. 1982, B38, 1074. 16) a) Bonini. M, Rossi. S, Karlsson. G, Almgren. M, Nostro. P. L, Baglioni. P, Langmuir, 2006, 22, 1478. b) Choisnard L., Géze A., Bigan M., Putaux J. L., Wouessidjewe D., J Pharm Pharmaceut Sci. 2005, 8, 593.
18)a) Harada. A, Okada. M, Li. J, Kamachi. M, Macromolecules, 1995, 28, 8406. b) Braga. S. S, Paz. S. S, Pillinger. M, Seixas. J. D, Romão. C. C, Gonçalves. I. S, Eur. J. Inorg. Chem, 2006, 1 , 1662. c) Huang. L, Gerber. M, Lu. J, Tonelli. A. E, Polymer Degradation and Stability, 2001, 71, 279. d) Harada. A, Kamachi. M, Macromolecules, 1990, 23 ,2821. f) Mura. P, Faucci. M. T, Maestrelli. F, Furlanetto. S, Pinzauti. S, Journal of Pharmaceutical and Biomedical Analysis, 2002, 29, 1015. g) Mura. P, Faucci. M.T, Maestrelli. F, Furlanetto. S, Pinzauti. S, J. Pharm. Biomed. Anal. 2002, 29, 1015.
19)Mccartney. E. R, Alexander. A. E, J. Colloid Interface Sci, 1958, 13, 383.
20)Smith. B. R, Alexander. A. E, J. Colloid Interface Sci, 1970, 34, 81.
21)Smith. B. R, Sweet. F, Desalination, 1971, 9, 277.
22)Smith. B. R, Desalination, 1967, 3, 263.
23)Solon. D. H, Rolfe. P. R, Desalination, 1966, 1, 260.
24)Rolfe. P. R, Desalination, 1966, 1, 539.
25)Ralston. P. H, J. Petrol. Technol, 1969, 21, 1029.
26)Nestler. C. H, J. Colloid Interface Sci, 1968, 26, 10.
27)a) Shen. Y. L, Yang. S. H. Wu. L. M, Ma. X. Y, Spectrochimica Acta Part A, 2005, 61, 1025 b) Savarino. P. Parlati. S, Buscaino. R, Piccinini. P, Degani. I, Barni. E, Dyes and Pigments, 2004, 60 , 223 c) Giordano. F, Novak. C, Moyano. J.R, Themochimica Acta 2001, 380, 123. d) Veiga. M. D, Merino. M, Fernández. D, Lozano. R, Journal of Thermal Analysis and Calorimetry, 2002, 68, 511.
28)Murariu. M, Ferreira. A. L. D, Alexandre. F. D. M, Dubois. P, Polymer. 2007, 48, 2613.
29)Bonini. M, Rossi. S, Karlsson. G, Almgren. M, Nostro. P. L, Baglioni. P, Langmuir, 2006, 22, 1478.
30)Li. M, Schnablegger. H, Mann. S, Nature, 1999, 402, 393.
31)a) Hopwood. J. D, Mann. S, Chem. Mater, 1997, 9, 1819. b) Li. M, Mann S, Langmuir, 2000, 16, 7088.
32)Rees. G. D, Gowing. E, Hammond. R, Robinson S. J, Langmuir 1999, 15, 1993.
33)Arriagada. F. J, Osseo-Asare. K. J, Colloid Interface Sci, 1995, 170, 8.
34)Taleb. A, Petit. C, Pileni. M. P, Chem. Mater, 1997, 9, 950.
35)Manna. A, Kulkarni. B. D, Bandyopadhyay. K, Vijayamohanan. K, Chem. Mater, 1997, 9, 3032.
36)Lisiecki. I, Bjorling. M, Motte. L, Ninham. B, Pileni. M. P, Langmuir, 1995, 11, 2385.
37)Pileni. M. P, Lisiecki. I, Colloids Surf. A, 1993, 80, 63.
38)Handa. P. K, Matthews. J. C, AlChE Journal, 1983, 29, 717.
39)Olevsky. E. A, J. Am. Ceram. Soc. 2006, 89, 1914.
9.5. References
1)a) Terech. P, Weiss. R. G, Chem. Rev, 1997, 97, 3133. b) Estroff. L. A, Hamilton. A. D, Chem. Rev, 2004, 104, 1201. c) Svobodova, Hana. Noponen. V, Kolehmainen. E, Sievanen. E, RSC Advances (DOI: 10.1039/c2ra01343). d) Krishna. H, Srinivasa. H. T, Kumar. S, Beilstein Journal of Organic Chemistry, 2009, 52, 5. e) Huang. Y, Key Engineering Materials, 2010, 428, 12.
2)a) Terech. P, Bunsenges. B, Phys. Chem, 1998, 102, 1630. b) Terech. P, Weiss. R. G, Chem. Rev, 1997, 97, 3133. c) Yoza. K, Amanokura. N, Ono. Y, Akao. T, Shinomori. H, Takeuchi. M, Shinkai. S, Reinhoudt. D. N, Chem. Eur. J, 1999, 5, 2722. d) Oda. R, Huc. I, Candau. S. J, Angew. Chem, 1998, 110, 2853. e) Kato. T, Kondo. G, Hanabusa. K, Chem. Lett, 1988, 14, 193. f) Esch. J, Feyter. S, De. Kellog. R. M, Schryver. F. De, Feringa. B. L, Chem. Eur. J. 1997, 3, 1238. g) Sohna. J. E. S, Fages. F, Chem. Commun, 1997, 19, 327. h) Placin. F, Colomes. M, Desvergne. J. P, Tetrahedron Lett, 1997, 38, 2665.
3)a) Suzuki. M, Sato.T, Kurose. A, Shirai. H, Hanabusa. K, Tetrahedron Lett, 2005, 46, 2741. b) Suzuki. M, Owa. S, Kimura. M, Kurose. A, Shiraib. H, Hanabusa. K, Tetrahedron Lett, 2005, 46, 303.
4)Suzuki. M, Nigawara. T, Yumoto. M, Kimura. M, Shirai. H, Hanabusa. K, Org. Biomol. Chem, 2003, 1, 4124. (b) Yang. H, Yi. T, Zhou. Z, Zhou.Y, Wu. J, Xu. M, Li. F, Huang. C, Langmuir, 2007, 23, 8224. (c) Suzuki. M, Sato. T, Shiraib. H, Hanabusa. K, New J. Chem, 2006, 30, 1184.
5)a) Hill. D. J, Mio. M. J, Prince. R. B, Hughes. T. S, Moore. J. S, Chem. Rev, 2001, 101, 3893. b) Cornelissen. J, Rowan. A. E, Nolte. R. J. M, Sommerdijk. N. Chem. Rev, 2001, 101, 4039. c) Spector. M. S, Selinger. J. V, Schnur. J. M, Green. M. M, Nolte. R. J. M, Meijer. E. W, Eds. Materials Chirality, John Wiley & Sons: New York, 2003. d) Rudick. J. G, Percec. V, Acc. Chem. Res, 2008, 41, 1641.
6)Yashima. E, Maeda. K, Furusho. Y; Acc. Chem. Res. 2008, 41, 1166.
7)a) Murata. K, Aoki. M, Suzuki. T, Harada. T, Kawabata. H, Komori. T, Ohseto.
F, Ueda. K, Shinkai. S, J. Am. Chem. Soc, 1994, 116, 6664. b) Jung. J. H, Shimizu. T, Shinkai. S, J. Mater. Chem, 2005, 15, 3979. c) Dukh. M, Saman. D, Kroulik. J, Cerny. I, Pouzar. V, Kral. V, Drasar. P, Tetrahedron, 2003, 59, 4069.
8)a) Žini. c. M, Vögtle. F, Fages. F, Top Curr Chem, 2005, 256, 39. b) Qu. S, Wang. L, Liu. X, Li. M, Chem. Eur. J, 2011, 17, 3512. c) Jung. J. H, Nakashima. K, Shinkai. S, Nano Lett, 2001, 1, 312.
9)Yang. H, Yi. T, Zhou. Z, Zhou. Y, Wu. J, Xu. M, Li. F, Huang.C; Langmuir, 2007, 23, 8224.
10)Shen. Y. T, Li. C. H, Chang. K. C, Chin. S. Y, Lin. H. A, Liu. Y. M, Hung. C. Y, Sun. S.S. Langmuir, 2009, 25, 8714.
11)Shen. C. H, Hsu. C. W, Chen. L. C, Org. Lett, 2006, 17, 3713.
12)Sugiyasu. K, Fujita. N, Takeuchi. M, Yamada. S, Shinkai. S, Org. Biomol. Chem, 2003, 1, 899.
13) a) Wang. D, Narang. A. S, Kotb. M, Gaber. A. Osama, Miller. D. D, Kim. S. W, Mahato. R. I, Biomacromolecules, 2002, 3, 1197. b) Son. S, Chae. S. Y, Choi. M. C, Kim. Y, Ngugen. V. G, Jang. M. K, Nah. J.W, Macromolecular Research, 2004, 12, 573. c) Geall. A. J, Taylor. R . J, Earll. M. E, Eaton. M. A. W, Blagbrough. I. S, Bioconjugate Chem, 2000, 11, 314.
14) a) AkyuÈza. S, AkyuÈzb. T, Ozer. N. M, Journal of Molecular Structure, 2001, 14 493. b) Wang. S, Xu. J, Tong. Y, Wang. L, He. C, Polym Int, 2005, 54, 1268.
15)a) Dautel. O. J, Robitzer. M, Porte. J. P. L, Spirau. F. S, Joe. L., J. Am. Chem. Soc, 2006, 128, 16213. b) Jadzyn. J, Stockhausen. M, Zywucki. B, J. Phys. Chem, 1987, 91, 754.
16) a) Yang. H, Yi. T, Zhou. Z, Zhou. Y, Wu. J, Xu. M, Li. F, Huang. C, Langmuir, 2007, 23, 8224. b) Springer-verlag berlin Heidelberg printed in Germany; suprammolecular dye chemistry; Frank Würthner 2005.
17)Geckeler K. R, Advanced nanomaterials, edited by wiley VCH, 2001.
18)Duan. P, Li. Y, Li. L, Deng. J, Liu. M, J. Phys. Chem. B 2011, 115, 3322.
19)Hanabusa. K, Okui. K, Karaki. K, Kimura. M, Shirai. H. J Colloid Interface Sci, 1997, 195, 86.
20)a) Masahiro. S, Saito. H, Shirai. H, Hanabusa. K, New J. Chem, 2007, 31, 1654. b) Guenet J, Macromol. Symp, 2006, 241, 45. c) Sangeetha. N. M, Maitra. U, Chem. Soc. Rev, 2005, 34, 821. d) Kumar1. R, Katare. O. P, AAPS PharmSciTech, 2005, 6, 298. e) Nishide. G, advanced nano material wiley, 2010.
21) Ronald W. Wise1, Terry V. Zenser and Bernard B. Davis Carcinogenesis, 1984, 5, 1499.
22) Liu X. M, Pramoda K.P., Yang Y. Y, Chow S. Y, Chaobin He Biomaterials, 2004, 25, 2619.
23)a) Browan. D. J, Fused pyrimidines, Wily Inc, 1971. b) Mishra. A, Behera. R. K, Behera. P. K, Mishra. B. K, Behera. G. B, Chem. Rev, 2000, 100, 1973.
24) a) Suzuki. M, Saito. H, Shirai. H, Hanabusa. K, New J. Chem, 2007, 31, 1654. b) Guenet. J. M, Macromol. Symp, 2006, 241, 45. c) Sangeetha. N. M, Maitra. U, Chem. Soc. Rev, 2005, 34, 821. d) Kumar1. R, Katare. O. P, AAPS PharmSciTech, 2005, 6, 298. e) Nishide. H. G. advanced nano material wiley, 2010.
25) Vintiloiu. A, Leroux. J. C, Journal of Controlled Release, 2008, 125, 179.
26) Weiss. R. G, Terech. P, Supramolecular Gels Materials with Self-Assembled Fibrillar Networks, Springer, Dordrecht, The Netherlands, 2006.
27) a) Murata. K, Aoki. M, Suzuki. T, Harada. T, Kawabata. H, Komri. T, Olrseto. F, Ueda. K, Shinkai. S, J. Am. Chem. Soc. 1994, 116, 6664. b) Duncan. D. C, Whitten. D. G, Langmuir, 2000, 16, 6445.
28) Fages. M, Vögtle. F, Top Curr Chem, 2005, 256, 39.
10.5. References
1)Terech. P, Weiss. R. G, Chem Rev, 1997, 97, 3133.
2)Geiger. C, Stanescu. M, Chen. L, Whitten. D. G, Langmuir, 1999, 15, 2241.
3)Hanabusa. K, Tanaka. R, Suzuki. M, Kimura. M, Shirai. H, Adv. Mater, 1997, 9, 1095.
4)Kato. T, Kondo. G, Hanabusa. K, Chem. Lett, 1998, 1, 193.
5)Mizoshita. N, Hanabusa. K, Kato. T, Adv. Mater, 1999, 5, 392.
6)Mizoshita. N, Kutsuna. T, Hanabusa. K, Kato. T, Chem. Commun., 1999, 6, 701.
7)Yabuuchi. K, Rowan. A. E, Nolte R. J. M, Kato T, Chem. Mater, 2000, 12, 440.
8)Janssen. R. H. C, Stumpflen. V., Bastiaansen. C. W. M, Broer. D. J, Tervoort. T. A, Smith P, Jpn. J. Appl. Phys, 2000, 39, 2721.
9) Yang. D. K, Chien. L. C, Fung. Y. K, In Liquid Crystals in Complex Geometries Formed by Polymer and Porous Networks, ed. G. P. Crawford and S. Zumer, Taylor & Francis, London, 1996.
10)Hikmet. R. A. M, J. Mater. Chem., 1999, 9, 1921.
11)Zhao. Y, Chenard Y, Macromolecules, 2000, 33, 5891.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top