跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/01 00:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張緯立
研究生(外文):Wei-LiChang
論文名稱:以 Pseudomonas aeruginosa S2 利用芒草水解液之還原糖發酵生產界面活性劑
論文名稱(外文):Production of biosurfactant by Pseudomonasaeruginosa S2 using reducing sugar from hydrolyzedMiscanthus floridulus
指導教授:吳文騰
指導教授(外文):Wen-Teng Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:63
中文關鍵詞:酸水解電透析芒草
外文關鍵詞:acid hydrolysiselectrodialysisMiscanthus floridulus
相關次數:
  • 被引用被引用:1
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  酸水解木質纖維素是一種快速且有效獲得還原糖的方法,但是水解液中的酸必須回收,以降低生產的成本及避免對環境造成汙染。本研究利用電透析裝置能夠有效地回收芒草 (Miscanthus floridulus) 水解液中的鹽酸。在水解的程序,於芒草與鹽酸重量比1/5,以1%(w/w)鹽酸於溫度121 oC,壓力1.2 atm 下水解1 小時,可獲得最高之還原糖濃度70 g/L。在分離還原糖與鹽酸的程序,於施加電壓5 V/cm 及處理時間20 分鐘之條件下,可得鹽酸移除率為90%。芒草水解液經電透析處理、調整pH 值及添加微量元素後,以Pseudomonas aeruginosa S2 利用水解液中之還原糖生產鼠李醣脂,其產率約208 g/L。實驗結果顯示,電透析程序可以有效地回收鹽酸,且水解液經電透析處理後可以被Pseudomonas aeruginosa S2 利用生產鼠李醣脂。
Acid hydrolysis of cellulose to obtain sugar is an effective approach but the recovery of acid for reusage is necessary to develop for reducing cost and preventing pollution. An efficient process for separation of acid and sugar from hydrolyzed Miscanthus floridulus with diluted hydrochloric acid was developed. The highest sugar concentration was 70 g/L when hydrolysis was carried out with 1% of hydrochloric acid at 121 oC for 60 min and Miscanthus floridulus to acid ratio was 1:5. Separation of acid from the sugar solution was conducted through electrodialysis. In order to evaluate the performance of electrodialysis process, the effects of applied voltage and hydraulic retention time (HRT) on acid recovery were investigated. The results showed that efficiency of separation reaches 90% at the optimal conditions of applied
voltage 5 V/cm for 20 min. After electrodialysis process and pH adjustment, the sugar solution was subjected to fermentation using Pseudomonas aeruginosa S2. The rhamnolipid yield was approximately 208 mg/L. These experimental results indicate that the electrodialysis is an effective and important method to recover acid from the sugar solution and remove the toxic compound for Pseudomonas aeruginosa S2.
摘要---------------------------------------------------------------------------------------I
Abstract----------------------------------------------------------------------------------II
致謝--------------------------------------------------------------------------------------III
目錄-------------------------------------------------------------------------------------IV
表目錄---------------------------------------------------------------------------------VII
圖目錄--------------------------------------------------------------------------------VIII
第一章 緒論--------------------------------------------------------------------------1
1.1前言---------------------------------------------------------------------------------1
1.2研究動機與目的------------------------------------------------------------------2
第二章 文獻回顧--------------------------------------------------------------------3
2.1生物質------------------------------------------------------------------------------3
2.2木質纖維素------------------------------------------------------------------------5
2.2.1纖維素----------------------------------------------------------------------------5
2.2.2半纖維素-------------------------------------------------------------------------6
2.2.3木質素----------------------------------------------------------------------------6
2.3芒草---------------------------------------------------------------------------------7
2.4木質纖維素水解-----------------------------------------------------------------10
2.4.1酸水解---------------------------------------------------------------------------10
2.4.1.1稀酸水解---------------------------------------------------------------------10
2.4.1.2濃酸水解---------------------------------------------------------------------11
2.4.2酵素水解-----------------------------------------------------------------------12
2.5電透析-----------------------------------------------------------------------------13
2.5.1電透析簡介--------------------------------------------------------------------13
2.5.2電透析原理--------------------------------------------------------------------14
2.5.3電透析構造--------------------------------------------------------------------15
2.6生物界面活性劑-----------------------------------------------------------------16
2.6.1生物界面活性劑簡介--------------------------------------------------------16
2.6.2生物界面活性劑的種類-----------------------------------------------------18
2.6.3生物界面活性劑之生產動力學--------------------------------------------19
2.6.4綠膿桿菌-----------------------------------------------------------------------20
2.6.5鼠李醣脂-----------------------------------------------------------------------20
2.6.6生物界面活性劑的應用-----------------------------------------------------22
第三章 材料與方法---------------------------------------------------------------23
3.1材料-------------------------------------------------------------------------------23
3.1.1藥品----------------------------------------------------------------------------23
3.1.2菌株----------------------------------------------------------------------------24
3.1.3儀器----------------------------------------------------------------------------25
3.2方法-------------------------------------------------------------------------------26
3.2.1實驗流程----------------------------------------------------------------------26
3.2.2以稀鹽酸水解芒草----------------------------------------------------------27
3.2.3以電透析分離還原糖及鹽酸----------------------------------------------28
3.2.4以綠膿桿菌發酵生產鼠李醣脂-------------------------------------------30
3.2.5分析方法----------------------------------------------------------------------32
3.2.5.1芒草成分分析-------------------------------------------------------------32
3.2.5.2單醣及乙酸定量分析----------------------------------------------------32
3.2.5.3還原糖定量分析----------------------------------------------------------33
3.2.5.4鼠李醣脂定量分析-------------------------------------------------------34
第四章 結果與討論--------------------------------------------------------------37
4.1水解程序------------------------------------------------------------------------37
4.1.1芒草成分之分析-------------------------------------------------------------37
4.1.2稀鹽酸水解程序-------------------------------------------------------------39
4.1.2.1不同固液比對泛纖維素轉化率的影響-------------------------------39
4.2分離程序------------------------------------------------------------------------44
4.2.1不同電壓梯度對鹽酸移除率的影響------------------------------------44
4.2.2電透析處理時間對鹽酸移除率的影響---------------------------------46
4.2.3電極液濃度對鹽酸移除率的影響---------------------------------------48
4.2.4電透析處理前後之還原糖成分比較------------------------------------50
4.2.5電透析處理之能量消耗量------------------------------------------------51
4.3發酵程序------------------------------------------------------------------------52
4.3.1不同碳源對鼠李醣脂產率之影響---------------------------------------52
4.3.2以電透析處理芒草水解液對鼠李醣脂產率之影響------------------54
4.3.3不同生物質來源對鼠李醣脂產率之影響------------------------------56
第五章 結論與未來展望--------------------------------------------------------58
5.1結論------------------------------------------------------------------------------58
5.2未來展望------------------------------------------------------------------------59
參考文獻-----------------------------------------------------------------------------60

Jun Zhang, Lu Lin, Junhua Zhang, Jianbin Shi, “Efficient conversion of D-glucose into D-sorbitol over MCM-41 supported Ru catalyst prepared by a formaldehyde reduction process, Carbohydrate Research, 346: 1327-1332(2011).
Lewandowski I., Kicherer A., Vonier P., “CO2 balance for the cultivation and combustion of Miscanthus, Biomass and Bioenergy, 8: 81-90(1995).
Chang-Hung Chou, “Miscanthus plants used as an alternative biofuel material: The basic studies on ecology and molecular evolution, Renewable Energy, 34: 1908-1912(2009).
T. de Vrije, G.G. de Haas, G.B. Tan, “Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii, International Journal of Hydrogen Energy, 27: 1381-1390(2002).
C.L. Huang, W.C. Liao, Y.C. Lai, “Cultivation studies of Taiwanese native Miscanthus floridulus lines, Biomass and Bioenergy, 35: 1873-1877(2011).
Kuhad R.C., Singh A., “Lignocellulose biotechnology: current and future prospects, Crit Rev Biotechnol, 13: 151-172(1993).
Olsson L., Hahn-Hägerdal B., “Fermentation of lignocellulosic hydrolysates for ethanol production, Enzyme Microb. Technol., 18: 312-331(1996).
Nigam J.N., “Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol byxylose–fermenting yeast, J. Biotechnol, 97: 107-116(2002).
Esther Guerra-Rodri´guez, Oscar M. Portilla-Rivera, Lorenzo
Jarqui´n-Enrı´quez, “Acid hydrolysis of wheat straw: A kinetic study, Biomass and Bioenergy, 36: 346-355(2012).
Antonio Rodriguez-Chong, Jose Alberto Ramirez, Gil Garrote,
“Hydrolysis of sugar cane bagasse using nitric acid: a kinetic assessment, Journal of Food Engineering, 61: 143-152(2004).
A. Orozco, M. Ahmad, D. Rooney, “DILUTE ACID HYDROLYSIS OF
CELLULOSE AND CELLULOSIC BIO-WASTE USING A MICROWAVE REACTOR SYSTEM, Trans IChemE, 85(B5): 446-449(2007).
Ana Cassales, Priscila Brasil de Souza-Cruz, Rosane Rech, “Optimization of soybean hull acid hydrolysis and its characterization as a potential substrate for bioprocessing, Biomass and Bioenergy, 35: 4675-4683(2011).
Anuj Kumar Chandel, Chan E.S., Ravinder Rudravaram, M. Lakshmi Narasu, “Economics and environmental impact of bioethanol production technologies: an appraisal, Biotechnology and Molecular Biology, 1: 014-032(2007).
Chen-Yeon Chu, Shu-Yii Wub, Chun-Yu Tsai, “Kinetics of cotton cellulose hydrolysis using concentrated acid and fermentative hydrogen production from hydrolysate, international journal of hydrogen energy, 36: 8743-8750(2011).
Zhao-Yong Sun, Yue-Qin Tang, Tomohiro Iwanaga, “Production of fuel ethanol from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation, Bioresource Technology, 102: 10929-10935(2011).
T.W. Xu, W.H. Yang, “Citric acid production by electrodialysis with bipolar Membranes, Chem. Eng. Process., 41: 519-524(2002).
T.W. Xu, W.H. Yang, “Effect of cell configurations on the performance of critic acid production by a bipolar membrane electrodialysis, J. Membr. Sci., 203: 145-153(2002).
S. Novalic, K.D. Kulbe, “Separation and concentration of citric acid by means of electrodialytic bipolar membrane technology, Food Technol. Biotechnol., 36: 193-195(1998).
J.Y. Shen, J.R. Duan, L.X. Yu, X.H. Xing, P. Xu, “Desalination of glutamine fermentation broth by electrodialysis, Process Biochem., 41: 720-726(2006).
V. Montiel, V. Garc´ıa-Garc´ıa, J. Gonz´alez-Garc´ıa, F. Carmona, A. Aldaz, “Recovery by means of electrodialysis of an aromatic amino acid from a solution with a high concentration of sulphates and phosphates, J. Membr. Sci., 140: 243-250(1998).
B. Zeli´c, D. Vasi´c-Raˇcki, “Process development and modeling of pyruvate recovery from a model solution and fermentation broth, Desalination, 174: 267-276(2005).
Keun Ho Choi, Tae Young Jeoung, “Removal of Zinc Ions in Wastewater by Electrodialysis, Korean J. Chem. Eng., 19 (1): 107-113(2002).
T. Mohammadi, A. Razmi, M. Sadrzadeh, “Effect of operating parameter on Pb separation from wastewater using electrodialysis, Desalination, 167: 379-385(2004).
Mohtada Sadrzadeh, Toraj Mohammadi, “Sea water desalination using electrodialysis, Desalination, 221: 440-447(2008).
Altan G., Belgin K., “Use of electrodialysis to remove silver ions from model solutions and wastewater, Desalination, 172: 7-17(2005).
J.D. Desai, I.M. Banat, “Microbial production of surfactants and their commercial potential, Microbiol. Mol. Biol. Rev., 61(1): 47-64(1997).
Guerra-Santos L.H., O. Kappeli et al., “Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors, Appl. Microbiol. Biotechnol., 24: 443-448(1986).
Abu-Ruwaida A.S., I.M. Banat, S. Haditirto, A. Khamis, “Nutritional requirements and growth characteristics of a biosurfactantproducing Rhodococcus bacterium, World J. Microbiol. Biotechnol., 7:53-61(1991).
Lee K.H., J.H. Kim, “Distribution of substrate carbon in sophorose lipid production by Torulopsis bombicola, Biotechnol. Lett, 15: 263-266(1993).
Francy D.S., J.M. Thomas, R.L. Raymond, C.H. Ward, “Emulsification of hydrocarbons by subsurface bacteria, J. Ind. Microbiol, 8:237-246(1991).
Klekner V., N. Kosaric, “Biosurfactants for cosmetics, In N. Kosaric (ed.), Biosurfactants: production, properties, applications. Marcel Dekker, Inc., New York, N.Y., 329-372(1993).
Shephord R., J. Rockey, I.W. Shutherland, S. Roller, “Novel
bioemulsifier from microorganisms for use in foods, J. Biotechnol, 40: 207-217(1995).
White R.T., D. Damm, J. Miller, K. Spratt, J. Schilling, S. Howgood, “Isolation and characterisation of the human pulmonary surfactant apoprotein gene, Nature, 317: 316-320(1985).
陳嘉明,生物質木材膠合劑,國立編譯館,2000。
簡宣裕、張明暉、劉禎祺,木質纖維素產生能源方法之探討,綠色油田在農業永續發展扮演的角色研討會專刊,103-114,2007。
陳文恆、郭家倫、黃文松、王嘉寶,纖維酒精技術之發展,農業生技產業季刊,第九期,2007。
王湛,膜分離技術基礎,化學工業出版社,2006。
張嘉修,生化工程,新文京開發,2010。
吳彥穆,醫用微生物學,台灣愛思唯爾,2012。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top