跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 16:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李亞青
研究生(外文):Ya-ChingLee
論文名稱:以奈米碳管製備可撓式軟性透明導電膜
論文名稱(外文):Fabrication of flexible transparent conductive film by carbon nanotubes on soft substrate
指導教授:林睿哲
指導教授(外文):Jui-Che Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:55
中文關鍵詞:單壁奈米碳管可撓式透明導電薄膜奈米銀顆粒奈米複材轉印法直接圖案化
外文關鍵詞:Singled-wall carbon nanotubesflexible transparent conductive filmsilver nanoparticlesnanocompositestransfer methoddirectly patterned
相關次數:
  • 被引用被引用:0
  • 點閱點閱:308
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用單壁奈米碳管本身為高長徑比且具有優異導電能力的特性,當作可撓式透明導電膜上的導電材料:同時製備單壁奈米碳管奈米銀顆粒的奈米複材以及合成奈米銀線,配製成導電漿料後製備成可撓式的透明導電薄膜。
首先,利用表面電漿改質技術,將單壁奈米碳管表面有機化以克服奈米碳管本身凡德瓦力造成的嚴重糾結,將改質後的單壁奈米碳管以塗佈棒法及轉印法製備透明導電薄膜,並以轉印法直接製備出不同大小的奈米碳管導電圖案,而不需要任何額外的蝕刻步驟;並將以電漿改質的奈米碳管當作基板,將奈米銀顆粒成長於其上,重覆同樣的步驟製備透明導電薄膜,並以高溫熱壓得到片電阻值更低的薄膜,由實驗結果得知,在透光度約82%的情況下,片電阻值從450Ω/sq下降到350Ω/sq;額外合成直徑約150~200nm的奈米銀線,與奈米碳管奈米銀顆粒複材混摻成導電漿料,製備成薄膜後以高溫熱壓,得到片電阻值300Ω/sq,透光度81.0%的可撓式透明導電薄膜,為本論文最佳數據。

This study use singled-wall carbon nanotubes as the major material in fabricating flexible transparent conductive films in the reason that SWNT is high in aspect ratio and shows a good ability in conducting. At the same time, we use the plasma-treated SWNT as substrate growing silver nanoparticles, turning into nanocomposites. First, we prepared the SWNT that have treated by the plasma then grafted the maleic anhydride (MA) on the surface of the SWNT to improve the severe entanglement cause by SWNT’s van der Waals force. We use two different process fabrication flexible transparent conductive film, rod printing and transfer printing, and we directly make different conductive patterns by transfer printing without any etching process. Furthermore, we use the as-prepared SWNT as substrates growing silver nanoparticles turning into nanocomposites, and use thess nanocomposites as materials repeating the same process as transfer printing of transparent conductive films, after hot pressing, surface resistance lower to 350ohm/sq in 82% transmittance, meanwhile, the pure SWNT transparent conductive film is 450ohm/sq in 82% transmittance. Additionally, we synthesize silver nanowires mixing with SWNT-MA-Ag nanocomposites as conductive slurry and fabricate transparent conductive film, after hot pressing, surface resistance lower to 300ohm/sq in 81% transmittance, which is the best data of this research.
中文摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1-1前言 1
1-2研究動機與目的 2
第二章 文獻回顧 3
2-1透明導電膜 3
2-1-1透明導電膜簡介 3
2-1-2透明導電膜材料 3
2-2奈米碳管 6
2-2-1奈米碳管發展簡介 6
2-2-2 奈米碳管的結構 7
2-2-3 奈米碳管的改質 8
2-2-4 奈米碳管的應用 11
2-3奈米銀線製備法 16
第三章 實驗部分 18
3-1 藥品 18
3-2 儀器設備: 19
3-3 實驗步驟 20
3-3-1 奈米碳管之純化 20
3-3-2 電漿改質奈米碳管 20
3-3-3 以塗佈棒製程製備奈米碳管導電薄膜 20
3-3-4 以轉印法製備透明導電薄膜並將其直接圖案化 21
3-3-5 奈米碳管上成長奈米銀顆粒並製備透明導電薄膜 22
3-3-6 額外添加奈米銀線期許能降低透明導電薄膜的電阻值 22
第四章 實驗結果與討論 24
4-1 以塗佈棒製備奈米碳管導電薄膜 24
4-1-1 奈米碳管電漿改質 24
4-1-2 奈米粒子SiO2 sol-gel合成製備 29
4-1-3 以塗佈棒法製備奈米碳管透明導電薄膜 31
4-2 以轉印法製備奈米碳管透明導電薄膜 33
4-2-1以轉印法製備透明圖案化導電薄膜 33
4-2-2奈米碳管上成長奈米銀顆粒並製備透明導電薄膜 38
4-2-3合成奈米銀線並添加入碳管導電漿料中以降低片電阻值 44
第五章 結論 51
參考文獻 52
自述 55

1.K.Badeker, Annals of Physics, 22, 4 ,749, 1907.
2.G.Rupprecht, Physik, 139, 504-517, 1954.
3.J.J.van Boort, R. Groth, Philips Technology Review, 29, 1968.
4.A.R. Rathmell, B.J.Wiley, Advanced Materials, 23, 4798–4803, 2011.
5.C.H.Liu, X.Yu, Nanoscale Research Letters, 6, 75, 2011.
6.D.R.Sahu, Microelectronics Journal, 38, 3, 299–303, 2007.
7.楊明輝,透明導電膜 藝軒圖書出版社2006.
8.X. Crispin, et al., Chemistry of Materials, 18, 18, 4354–4360, 2006.
9.N.Saran, et al., Journal of The American Chemical Society, 126 ,14, 4462–4463, 2004.
10.H.W.Kroto, J.R.Heath, S.C.O’Brien, R.F.Curl, and R.E.Smalley, Nature, 318, 162-163, 1985.
11.S.Iijima, Nature, 354, 56, 1991
12.洪昭南、徐逸明、王宏達,奈米碳管結構及特性簡介,化工,第49卷,23-30,2002.
13.http://www.nanotechnologies.qc.ca/projets/nanotubes/
14.C.H.Chen, Q.Cai, C.Tsai, C.L.Chen, G.Xiong, and Y.Yu, Applied Physics Letters, 90, 173108-17310, 2007.
15.E.T.Thostenson, Z.Ren, and T.W.Chou, Composites Science and Technology, 61, 1899-1912, 2001.
16.M.S.Dresselhaus, G.Dresselhaus, and P.C.Eklund, Academic, 1996.
17.R.J.Chen, Y.Zhang, D.Wang, and H.Dai, Journal of the American Chemical Society 123, 3838-3839, 2001.
18.D.Tasis, N.Tagmatarchis, A.Bianco, and M.Prato, Chemical Reviews 106, 1105-1136, 2006.
19.J.Chen, M.A.Hamon, H.Hu, Y.Chen, A.M.Rao, P.C.Eklund, and R.C.Haddon, Science, 282,95-98, 1998.
20.J. Chen, A. M. Rao, S. Lyuksyutov, M. E. Itkis, M. A. Hamon, H. Hu, R. W. Cohn, P. C. Eklund, D. T. Colbert, R. E. Smalley, and R. C. Haddon, The Journal of Physical Chemistry B, 105, 2525-2528, 2001.
21.M. A. Hamon, J. Chen, H. Hu, Y. Chen, M. E. Itkis, A. M. Rao, P. C. Eklund, and R. C. Haddon, Advanced Materials, 11, 834-840, 1999.
22.E. T. Mickelson, I. W. Chiang, J. L. Zimmerman, P. J. Boul, J. Loano, J. Liu, R. E. Smalley, R. H. Hauge, and J. L. Margrave, Journal of Physical Chemistry B, 103, 4318-4322, 1999.
23.D. H. Jung, Y. K. Ko, and H. T. Jung, Materials Science and Engineering, C24, 117- 121, 2004.
24.F. Cardona, G. A. George, D. J. T. Hill, F. Rasoul, and J. Maeji, Macromolecules, 35, 355-364, 2001.
25.N. M. El-Sawy, Polymer International, 49,533-538, 2000.
26.C. H. Tseng, C. C. Wang, and C. Y. Chen, Nanotechnology, 17,5602-5612, 2006.
27.C. H. Tseng, C. C. Wang, and C. Y. Chen. American Scientific Publishers, 3897-3903, 2006.
28.C. H. Tseng, C. C. Wang, and C. Y. Chen, Journal of Physical Chemistry B 110, 4020-4029, 2006.
29.S.J.Tans, et al., Nature 393, 49, 1998.
30.J.Chen, et al., Science 282, 95, 1998.
31.P.Kim, et al., Science 286, 2148, 1999.
32.S.Akita, et al., Applied Physics Letters, 79, 1691, 2001.
33.A. C. Dillon, et al., Nature 386, 377-379, 1997.
34.Z.Wu, et al., Science, 305, 27, 2004.
35.L. Hu, D. S. Hecht, and G. Gruner, Nano Letters 4, 12, 2513 – 2517, 2004.
36.M.Xiaoguang, et al., Journal of Materials Chemistry, 21, 17842–17849 , 2011.
37.D.Budhadipta, et al., Acs Nano, 3, 4, 835–843, 2009.
38.Y.Sun, et al., Nano Letters, 2, 2, 165 – 168, 2002.
39.Y.Sun, et al., Nano Letters, 3, 7, 955 – 960, 2003.
40.X.T. Zhang, Chemistry of Materials, 17, 696-700, 2005.
41.A. Deaka, I. Szekelya, E. Kalmanb, Zs. Keresztesb, A.L. Kovacsc, Z. Horvolgyi, Thin Solid Films, 484, 310– 317,2005.
42.B.Jirgensons, M.E. Straumanis, A Short Textbook of Colloidal Chemistry. MacMillan, New York, 43 and 201, 1962.
43.H.Z.Geng, et al., Journal of The American Chemistry Society, 129, 7758 - 7759 , 2007.
44.C.H.Tseng, et al., Nanotechnology, 19, 035606-035613, 2008.
45.C.H.Tseng, et al.,The Journal of Physical Chemistry B 110, 4020-4029, 2006.
46.Z.Adalberto, et al., Small, 2, 346, 2006.
47.G.A.Gelves, et al., Advanced Functional Materials, 16, 2423, 2006.
48.V.K.J.Kaushik, et al., Electron Spectroscopy, 56, 273, 1991.
49.A.R.Madaria, et al., Nano Research 3, 564–573, 2010.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top