跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/28 04:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳國政
研究生(外文):Kuo-ChengChen
論文名稱:以電漿沉積成長功能性奈米複合薄膜
論文名稱(外文):Functional Nanocomposite Thin Films Deposited by Plasma Deposition
指導教授:洪昭南洪昭南引用關係
指導教授(外文):Franklin Chau-Nan Hong
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:209
中文關鍵詞:類鑽碳膜奈米複合膜電漿氮化硼
外文關鍵詞:diamond-like carbon filmnanocomposite filmplasmaboron nitride
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用不同的電漿鍍膜技術成長含有奈米結構的類鑽碳奈米複合膜,成長技術包括了感應耦合式電漿系統、濺射輔助電漿CVD、電容耦合式電漿系統和電漿噴塗系統,而奈米結構包括了奈米陶瓷粒子(如SiC, Si3N4, ZrO2, TiC, TiO2, ZnO等),以及奈米結構碳,用以提高奈米複合碳膜的硬度,降低膜的壓縮應力,提升薄膜的靭性,增強膜的附著力,降低摩擦係數,以及使其具有光致親水性。
利用感應耦合式電漿CVD沉積含SiCxNy奈米粒子的類鑽碳奈米複合膜,製程上通入HNDSN [(CH3)3Si-NH-Si(CH3)3]為前驅物,並在基板施加一負的脈衝直流電壓以提供鍍膜離子所需的能量。藉由改變不同的基板偏壓之鍍膜參數,探討對於SiCxNy-DLC膜的表面形貌、粗糙度,以及薄膜機械性質之影響。本研究可獲得15 GPa的薄膜硬度且具有0.5 GPa相當低的壓縮應力值,摩擦係數範圍在0.06~0.09之間,並以奈米磨耗測試得到相對低的磨耗深度,此薄膜呈現出不錯的耐磨耗性能;而添加SiCxNy奈米粒子到DLC基質中,可以增加薄膜的破裂韌性。
利用濺射輔助電漿CVD沉積含ZrO2奈米粒子的類鑽碳奈米複合膜,製程上通入乙炔做為碳源,並利用進氣環裝置在靶材表面通入Ar而濺射ZrO2靶材。此ZrO2-DLC膜具有非常平坦的表面,其磨潤性質可藉由鍍膜過程中的基板偏壓做調控。當使用愈高的離子轟擊能量,會促使膜中sp2碳含量增加,從而薄膜的硬度與楊氏係數都降低;而以Vickers探針去壓印ZrO2-DLC膜所得到的破裂韌性值在14~22 MPa•m1/2之間,顯示了DLC膜內包覆ZrO2奈米粒子可以增加薄膜的破裂韌性。
利用電漿噴塗CVD沉積含有奈米結構碳的類鑽碳奈米複合膜,製程上通入苯和氮氣做為反應氣體,並由穿透式電子顯微鏡分析發現了奈米結構碳的存在。電漿噴塗反應器具有高度的電漿解離率與氣相碰撞反應,並輔以在氣相中通入微量的氮氣,是成長奈米結構碳的重要因素。
本論文亦利用濺射輔助電漿CVD製備了類鑽碳膜內含有TiO2(或ZnO)奈米粒子,使類鑽碳膜具有光致親水性的功能。製程上在靶材施加一RF電源並通入Ar氣體去濺射TiO2靶材(或ZnO靶材),並同時通入乙炔氣體且基板施予一脈衝直流電壓來成長類鑽碳膜。藉由調控濺鍍功率之鍍膜參數,TiO2及TiC的奈米粒子都可以加入到膜中,此TiO2-DLC膜所具有的最高的硬度值為14 GPa並具有相當低的應力,水接觸角在照射紫外光40分鐘內可以降到0度之超親水性;而ZnO-DLC膜也具有光致親水性的效果。
本論文亦利用中空陰極電漿CVD在低溫下合成了非晶形氮化硼膜,製程上通入Borazine (B3N3H6)及氮氣做為反應前驅物。此非晶形氮化硼膜具有透明且平坦的表面,當施加的中空陰極功率愈高及在高濃度氮氣的環境下,愈有助於膜中形成sp3鍵氮化硼,此中空陰極電漿為產生sp3鍵氮化硼的重要因素。
Diamond-like carbon (DLC) nanocomposite films containing nanostructures were synthesized by various deposition techniques, including inductively-coupled plasma chemical vapor deposition (ICP-CVD), sputtering-assisted CVD, capacitive-coupled plasma CVD, plasma jet CVD etc. By incorporating high densities of ceramic nanoparticles (SiC, Si3N4, ZrO2, TiC, TiO2, ZnO, etc.) and nano-carbons, DLC nanocomposites can present the increase of film hardness and the reduction of film stress, as well as the enhancement of toughness, increase of film adhesion, and decrease of friction coefficients with novel function of light-induced hydrophilicity.
SiCxNy nanocrystallites-containing DLC nanocomposite films were prepared by ICP-CVD using a hexamethyldisilazane (HMDSN) precursor. The substrate was biased by a pulsed-DC power supply to provide the necessary energy of deposited ions. The effects of substrate bias on the surface morphology, roughness, and the mechanical properties of nanocomposite film were well investigated. The results revealed the film has maximum hardness of 15 GPa at a relative low stress of 0.5 GPa at an ICP power of 100W, and a substrate bias of -200V. The films exhibited a lower coefficient of friction in the range of 0.06 to 0.09 via nano-scratch technique, and had lower wear depth with a good wear performance using nano-wear test. The fracture toughness of the film was greatly enhanced by the incorporation of SiCxNy nanoparticles in the DLC matrix, measured from its resistance to crack propagation by the indentation method of Vickers indenter.
Zirconia-containing DLC nanocomposite films were prepared by sputtering-assisted plasma CVD. ZrO2-DLC films were deposited using acetylene as the carbon source, and argon was used to sputter ZrO2 target. AFM results show that the surface of the films is very smooth. The tribological properties of the films could be controlled by adjusting the substrate biases during depositions. A higher energy of ion bombardment in this system biasing by pulsed-DC, induces the formation of sp2 carbon bonding in the film and makes the films’ hardness and Young’s modulus drop. The fractured toughness of DLC nanocomposite films measured by Vickers indenter were in the range from 14 to 22 MPa•m1/2, revealing the enhancement of film toughness.
Nano-carbons embedded in DLC nanocomposite films were synthesized by plasma jet CVD in the mixed gases of benzene and nitrogen. Transmission electron microscopy images of the films indicate the existence of nanostructured carbon. A high degree of dissociation and reaction in plasma jet reactor and appropriate nitrogen contents in the gas phase are important for the growth of nanostructured carbon embedded in the DLC matrix.
Synthesis of TiO2-DLC nanocomposite films with novel functions were studied by sputtering-assisted plasma CVD. With titanium-oxygen species sputtered from titania (TiO2) target by argon using a radio-frequency (RF) power, DLC films were simultaneously grown on the negatively-biased substrate by plasma CVD of acetylene gas using a pulsed direct-current (DC) power. By adjusting the sputtering power, both TiO2 and TiC nanoparticles could be incorporated in the DLC films. The TiO2-DLC nanocomposite films deposited at 80.7 % Ar exhibited a high hardness of around 14 GPa at a relatively low stress and, particularly, a fast rate of turning super-hydrophilic by reaching zero degree of water contact angle under 40 minutes of ultraviolet irradiation.
Synthesis of amorphous boron nitride films (a-BN) at low temperature were studied by hollow cathode discharge CVD. Borazine and N2 gases were employed as the precursors to deposit a-BN films. The as-deposited films were amorphous phase with a transparent and smooth surface. Fourier transform infrared spectroscopy (FTIR) revealed that with a high nitrogen concentration and a high hollow cathode power, high content of sp3-bonded BN can be obtained. Hollow cathode plasma was essential in forming the sp3-bonded BN in the film.
中文摘要....I
英文摘要....IV
誌謝....VIII
目錄....IX
表目錄....XVII
圖目錄....XIV
符號說明....XXVIII

第一章 緒論....1
1-1 前言....1
1-2 奈米複合薄膜....2
1-3 類鑽碳奈米複合薄膜之研究現況....4
1-4 氮化硼薄膜之研究現況....5
1-5 研究動機與方向....6
第二章 理論基礎....10
2-1 類鑽碳膜....10
2-1-1 電子組態....10
2-1-2 電子結構....11
2-1-3 類鑽碳膜的結構....13
2-1-4 類鑽碳膜的sp3鍵濃度....15
2-1-5 類鑽碳膜之成長機構....16
2-2 類鑽碳膜的性質....26
2-2-1 硬度....26
2-2-2 附著力....27
2-2-3 應力....28
2-2-4 熱穩定性....30
2-2-5 摩擦磨損性能....30
2-2-6 表面形貌....31
2-2-7 熱傳導率....32
2-2-8 摻雜....32
2-2-9 能隙....33
2-2-10 表面能....34
2-2-11 生物相容性....34
2-3 高硬度奈米複合薄膜研究背景....40
2-3-1 傳統硬質薄膜....40
2-3-2 奈米複合硬質薄膜....41
2-4高韌性奈米複合薄膜研究背景....45
2-4-1 提高韌性之目的....45
2-4-2 增加韌性的方法....45
2-5 氮化硼膜....48
2-5-1 電子組態....48
2-5-2 氮化硼結構....49
2-5-3 氮化硼的鍵結與離子性....49
2-6 電漿鍍膜原理....54
2-6-1 電漿增強化學氣相沉積....54
2-6-2 感應耦合式電漿....57
2-6-3 非平衡磁控濺鍍....58
2-6-4 中空陰極電漿....60
2-6-5 脈衝式電源供應器....62
2-6-6 電漿顏色....63
2-6-7 高頻放電的原因與電源激發頻率....63
2-6-8 離子轟擊....65
第三章 實驗步驟與方法....70
3-1 實驗流程....70
3-2 實驗裝置....71
3-2-1 電漿反應器....71
3-2-2 真空鍍膜系統....73
3-3 實驗材料....77
3-3-1 基板材料....77
3-3-2 實驗氣體....78
3-3-3 靶材材料....78
3-4 實驗操作....78
3-4-1 基板前處理....78
3-4-2 實驗操作步驟....79
3-5 分析與鑑定....80
3-5-1 表面型態觀察....80
3-5-2 成長速率測定....81
3-5-3 拉曼光譜與紅外線光譜分析....81
3-5-4 XRD結構分析....82
3-5-5 薄膜組成及鍵結型態分析....84
3-5-6 微結構分析....85
3-5-7 殘留應力測試....85
3-5-8 硬度值測定....86
3-5-9 破裂韌性測定....87
3-5-10 接觸角分析....88
第四章 以感應耦合式電漿成長含碳氮化矽奈米粒子類鑽碳奈米複合薄膜....93
4-1 前言....93
4-2 實驗設計....94
4-3 鍍膜速率與表面形貌....95
4-4 X-ray光電子光譜-鍵結分析....95
4-5 薄膜組成分析....96
4-6 拉曼光譜分析....97
4-7 TEM微結構分析....99
4-8 應力分析....99
4-9 硬度與楊氏模數分析....100
4-10 摩擦係數分析....101
4-11 磨耗分析....102
4-12 破裂韌性分析....103
第五章 以濺射輔助化學氣相沉積法成長含氧化鋯奈米粒子類鑽碳奈米複合薄膜....115
5-1 前言....115
5-2 實驗設計....116
5-2-1 濺射輔助電漿化學氣相沉積法....116
5-2-2 進氣環的使用....117
5-2-3 碳源的選擇....117
5-2-4 惰性氣體效應....118
5-2-5 實驗參數....120
5-3 薄膜組成分析....120
5-4 XRD結晶分析....121
5-5 拉曼光譜分析....123
5-6 TEM微結構分析....124
5-7 應力分析....125
5-8 硬度與楊氏模數分析....126
5-9 破裂韌性分析....127
第六章 以電漿噴射沉積含奈米結構碳之類鑽碳膜....137
6-1 前言....137
6-2 電漿噴射反應器原理....138
6-3 以苯所沉積之類鑽碳奈米複合膜....138
6-4 添加氮對類鑽碳膜的影響....139
第七章 功能性奈米複合類鑽碳膜之沉積....152
7-1 前言....152
7-2 實驗設計....153
7-3 薄膜組成分析....153
7-4 XRD結晶分析....154
7-5 X-ray光電子能譜-鍵結分析....154
7-6 拉曼光譜分析....155
7-7 TEM微結構分析....156
7-8 硬度與應力分析....157
7-9 電阻率分析....157
7-10 接觸角分析....158
7-11 含ZnO奈米粒子的DLC膜之光致親水性與硬度....159
第八章 以中空陰極電漿沉積非晶形氮化硼薄膜....174
8-1 前言....174
8-2 中空陰極電漿放電原理....175
8-3 實驗設計....176
8-4 XPS分析....178
8-5 XRD分析....179
8-6 FTIR分析....180
8-7 SEM分析....181
第九章 總結論....189
第十章 參考文獻....192
[1]T. Abraham, Diamond, Diamond-like and cBN Films & Coating Products- Market Analysis, Business Communications Company, 2010.
[2]W. G. Eversole, Synthesis of diamond, US Patent No. 3030188, 1962.
[3]M. Lahres, P. Müller-Hummel, and O. Doerfel, Applicability of different hard coatings in dry milling aluminium alloys, Surface and Coatings Technology, vol. 91, pp. 116-121, 1997.
[4]T. C. S. Vandevelde, K. Vandierendonck, M. Van Stappen, W. Du Mong, and P. Perremans, Cutting applications of DLC, hard carbon and diamond films, Surface and Coatings Technology, vol. 113, pp. 80-85, 1999.
[5]S. Vepřek, P. Nesládek, A. Niederhofer, F. Glatz, M. Jı́lek, and M. Šı́ma, Recent progress in the superhard nanocrystalline composites: towards their industrialization and understanding of the origin of the superhardness, Surface and Coatings Technology, vol. 108–109, pp. 138-147, 1998.
[6]A. A. Voevodin, J. P. O'Neill, and J. S. Zabinski, Nanocomposite tribological coatings for aerospace applications, Surface and Coatings Technology, vol. 116–119, pp. 36-45, 1999.
[7]R. Hauert, J. Patscheider, L. Knoblauch, and M. Diserens, New coatings by nanostructuring, Advanced Materials, vol. 11, pp. 175-177, 1999.
[8]J. Musil, Hard and superhard nanocomposite coatings, Surface and Coatings Technology, vol. 125, pp. 322-330, 2000.
[9]X. Wang, H. Harris, H. Temkin, S. Gangopadhyay, M. D. Strathman, and M. West, Determination of oscillator strength of C--F vibrations in fluorinated amorphous-carbon films by infrared spectroscopy, Applied Physics Letters, vol. 78, pp. 3079-3081, 2001.
[10]E. Tomasella, C. Meunier, and S. Mikhailov, a-C:H thin films deposited by radio-frequency plasma: influence of gas composition on structure, optical properties and stress levels, Surface and Coatings Technology, vol. 141, pp. 286-296, 2001.
[11]S. Logothetidis, Hydrogen-free amorphous carbon films approaching diamond prepared by magnetron sputtering, Applied Physics Letters, vol. 69, pp. 158-160, 1996.
[12]K. Bewilogua, R. Wittorf, H. Thomsen, and M.Weber, DLC based coatings prepared by reactive d.c. magnetron sputtering, Thin Solid Films, vol. 447–448, pp. 142-147, 2004.
[13]M. Chhowalla, C. A. Davis, M. Weiler, B. Kleinsorge, and G. A. J. Amaratunga, Stationary carbon cathodic arc: plasma and film characterization, Journal of Applied Physics, vol. 79, pp. 2237-2244, 1996.
[14]D. R. McKenzie, D. Muller, and B. A. Pailthorpe, Compressive-stress-induced formation of thin-film tetrahedral amorphous carbon, Physical Review Letters, vol. 67, pp. 773-776, 1991.
[15]L.-Y. Chen and F. C.-N. Hong, Diamond-like carbon nanocomposite films, Applied Physics Letters, vol. 82, pp. 3526-3528, 2003.
[16]H. Lee, I.-Y. Kim, S. S. Han, B. S. Bae, M. K. Choi, and I.-S. Yang, Spectroscopic ellipsometry and Raman study of fluorinated nanocrystalline carbon thin films, Journal of Applied Physics, vol. 90, pp. 813-818, 2001.
[17]Q. F. Huang, S. F. Yoon, Rusli, K. Chew, and J. Ahn, Characterization of metal-containing carbon films using Raman scattering, Journal of Applied Physics, vol. 90, pp. 4520-4525, 2001.
[18]I. R. Videnovic, V. Thommen, P. Oelhafen, D. Mathys, M. Duggelin, and R. Guggenheim, Influence of substrate bias voltage on surface morphology and nanocluster arrangement of gold containing amorphous hydrogenated carbon, Applied Physics Letters, vol. 80, pp. 2863-2865, 2002.
[19]T. Hioki, K. Okumura, Y. Itoh, S. Hibi, and S. Noda, Formation of carbon films by ion-beam-assisted deposition, Surface and Coatings Technology, vol. 65, pp. 106-111, 1994.
[20]H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature, vol. 318, pp. 162-163, 1985.
[21]S. Iijima, Helical microtubules of graphitic carbon, Nature, vol. 354, pp. 56-58, 1991.
[22]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science, vol. 306, pp. 666-669, 2004.
[23]C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Ultrathin epitaxial graphite:  2D electron gas properties and a route toward graphene-based nanoelectronics, The Journal of Physical Chemistry B, vol. 108, pp. 19912-19916, 2004.
[24]K. Okano, S. Koizumi, S. R. P. Silva, and G. A. J. Amaratunga, Low-threshold cold cathodes made of nitrogen-doped chemical-vapour-deposited diamond, Nature, vol. 381, pp. 140-141, 1996.
[25]Y. Tanabe and E. Yasuda, Carbon alloys, Carbon, vol. 38, pp. 329-334, 2000.
[26]Y. Wu, P. Qiao, T. Chong, and Z. Shen, Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition, Advanced Materials, vol. 14, pp. 64-67, 2002.
[27]N. Sano, H. Wang, M. Chhowalla, I. Alexandrou, and G. A. J. Amaratunga, Synthesis of carbon 'onions' in water, Nature, vol. 414, pp. 506-507, 2001.
[28]A. G. Nasibulin, P. V. Pikhitsa, H. Jiang, D. P. Brown, A. V. Krasheninnikov, A. S. Anisimov, P. Queipo, A. Moisala, D. Gonzalez, G. Lientschnig, A. Hassanien, S. D. Shandakov, G. Lolli, D. E. Resasco, M. Choi, D. Tomanek, and E. I. Kauppinen, A novel hybrid carbon material, Nature Nanotechnology, vol. 2, pp. 156-161, 2007.
[29]J. Brand, R. Gadow, and A. Killinger, Application of diamond-like carbon coatings on steel tools in the production of precision glass components, Surface and Coatings Technology, vol. 180–181, pp. 213-217, 2004.
[30]G. A. J. Amaratunga, M. Chhowalla, C. J. Kiely, I. Alexandrou, R. Aharonov, and R. M. Devenish, Hard elastic carbon thin films from linking of carbon nanoparticles, Nature, vol. 383, pp. 321-323, 1996.
[31]Q. Wang, C. Wang, Z. Wang, J. Zhang, and D. He, Fullerene nanostructure-induced excellent mechanical properties in hydrogenated amorphous carbon, Applied Physics Letters, vol. 91, pp. 141902-3, 2007.
[32]E. H. T. Teo, J. Kulik, Y. Kauffmann, R. Kalish, and Y. Lifshitz, Nanostructured carbon films with oriented graphitic planes, Applied Physics Letters, vol. 98, pp. 123104-3, 2011.
[33]R. O. Ritchie, The conflicts between strength and toughness, Nature Materials, vol. 10, pp. 817-822, 2011.
[34]S. Zhang, H. L. Wang, S.-E. Ong, D. Sun, and X. L. Bui, Hard yet tough nanocomposite coatings– present status and future trends, Plasma Processes and Polymers, vol. 4, pp. 219-228, 2007.
[35]S. Zhang, D. Sun, Y. Fu, and H. Du, Toughening of hard nanostructural thin films: a critical review, Surface and Coatings Technology, vol. 198, pp. 2-8, 2005.
[36]J. Musil and M. Jirout, Toughness of hard nanostructured ceramic thin films, Surface and Coatings Technology, vol. 201, pp. 5148-5152, 2007.
[37]A. A. Voevodin, J. S. Zabinski, and C. Muratore, Recent advances in hard, tough, and low friction nanocomposite coatings, Tsinghua Science & Technology, vol. 10, pp. 665-679, 2005.
[38]P. K. M. Nastasi, K. C. Walter, J. D. Embury, R. Raj and Y. Nakamura, Fracture toughness of diamondlike carbon coatings, Journal of Materials Research, vol. 14, pp. 2173-2180, 1999.
[39]M. I. E. Yasuda, K. Kaneko, M. Endo, A. Oya, Y. Tanabe, Carbon Alloys, Elsevier Science, 2003.
[40]A. Cavaleiro and J. T. M. De Hosson, Nanostructured Coatings, 1 edition: Springer, 2006.
[41]V. K. K. Chee Huei Lee , Jiesheng Wang , and Yoke Khin Yap, B-C-N Nanotubes and Related Nanostructures, Y. K. Yap, Ed., 1st Edition ed: Springer, 2009.
[42]萬隆、陳石林、劉小磐,超硬材料與工具,化學工業出版社,2006.
[43]J. Robertson, Amorphous carbon, Advances in Physics, vol. 35, pp. 317-374, 1986.
[44]J. C. Angus and C. C. Hayman, Low-pressure, metastable growth of diamond and diamondlike phases, Science, vol. 241, pp. 913-921, 1988.
[45]J. P. Schaffer, A. Saxena, S.D. Antolovich, T.H.S. Jr., and S.B. Warner, The Science and Design of Engineering Materials, 2nd Edition, McGraw-Hill, pp. 62-98, 1999.
[46]J. Robertson, Diamond-like amorphous carbon, Materials Science and Engineering R, vol. 37, pp. 129-281, 2002.
[47]L. Martinu, O. Zabeida, and J. E. Klemberg-Sapieha, Chapter 9- Plasma-Enhanced Chemical Vapor Deposition of Functional Coatings, Handbook of Deposition Technologies for Films and Coatings (Third Edition), M. M. Peter, Ed., Boston: William Andrew Publishing, pp. 392-465, 2010.
[48]S. Neuville and A. Matthews, A perspective on the optimisation of hard carbon and related coatings for engineering applications, Thin Solid Films, vol. 515, pp. 6619-6653, 2007.
[49]J. Robertson, Mechanical properties and structure of diamond-like carbon, Diamond and Related Materials, vol. 1, pp. 397-406, 1992.
[50]E. G. Spencer, P. H. Schmidt, D. C. Joy, and F. J. Sansalone, Ion-beam-deposited polycrystalline diamondlike films, Applied Physics Letters, vol. 29, pp. 118-120, 1976.
[51]Y. Lifshitz, S. R. Kasi, J. W. Rabalais, and W. Eckstein, Subplantation model for film growth from hyperthermal species, Physical Review B, vol. 41, pp. 10468-10480, 1990.
[52]W. Moller, Modeling of the sp3/sp2 ratio in ion beam and plasma-deposited carbon films, Applied Physics Letters, vol. 59, pp. 2391-2393, 1991.
[53]D. R. McKenzie, Generation and applications of compressive stress induced by low energy ion beam bombardment, Journal of Vacuum Science & Technology B, vol. 11, pp. 1928-1935, 1993.
[54]J. Robertson, The deposition mechanism of diamond-like a-C and a-C: H, Diamond and Related Materials, vol. 3, pp. 361-368, 1994.
[55]J. Robertson, Comparison of diamond-like carbon to diamond for applications, physica status solidi (a), vol. 205, pp. 2233-2244, 2008.
[56]R. Riedel, Novel ultrahard materials, Advanced Materials, vol. 6, pp. 549-560, 1994.
[57]J. J. Cuomo, D. L. Pappas, J. Bruley, J. P. Doyle, and K. L. Saenger, Vapor deposition processes for amorphous carbon films with sp3 fractions approaching diamond, Journal of Applied Physics, vol. 70, pp. 1706-1711, 1991.
[58]M. A. Tamor, W. C. Vassell, and K. R. Carduner, Atomic constraint in hydrogenated diamond-like carbon, Applied Physics Letters, vol. 58, pp. 592-594, 1991.
[59]D. F. Shriver, P. W. Atkins, and C. H. Langford, Inorganic Chemistry, New York: Oxford University Press, p. 337, 1989.
[60]A. Y. Liu and M. L. Cohen, Structural properties and electronic structure of low-compressibility materials: β-Si3N4 and hypothetical β-C3N4, Physical Review B, vol. 41, pp. 10727-10734, 1990.
[61]S. Kumar, P. N. Dixit, D. Sarangi, and R. Bhattacharyya, Possible solution to the problem of high built-up stresses in diamond-like carbon films, Journal of Applied Physics, vol. 85, pp. 3866-3876, 1999.
[62]R. E. Clausing, L. L. Horton, J. C. Angus, and P. Koidl, Diamond and diamond-like films and coatings, NATO Science Series: B: Physics, vol. 266, pp. 173-192, 1991.
[63]J. Robertson, Properties of diamond-like carbon, Surface and Coatings Technology, vol. 50, pp. 185-203, 1992.
[64]A. Grill, Review of the tribology of diamond-like carbon, Wear, vol. 168, pp. 143-153, 1993.
[65]J. C. Angus and C. C. Hayman, Low-pressure, metastable growth of diamond and diamondlike phases, Science, vol. 241, pp. 913-921, August 19, 1988 1988.
[66]C. H. P. Poa, S. R. P. Silva, R. G. Lacerda, G. A. J. Amaratunga, W. I. Milne, and F. C. Marques, Effects of applying stress on the electron field emission properties in amorphous carbon thin films, Applied Physics Letters, vol. 86, pp. 232102-3, 2005.
[67]O. Knotek, R. Elsing, G. Krämer, and F. Jungblut, On the origin of compressive stress in PVD coatings- an explicative model, Surface and Coatings Technology, vol. 46, pp. 265-274, 1991.
[68]C. A. Davis, A simple model for the formation of compressive stress in thin films by ion bombardment, Thin Solid Films, vol. 226, pp. 30-34, 1993.
[69]D. R. Tallant, J. E. Parmeter, M. P. Siegal, and R. L. Simpson, The thermal stability of diamond-like carbon, Diamond and Related Materials, vol. 4, pp. 191-199, 1995.
[70]W.-J. Wu and M.-H. Hon, Thermal stability of diamond-like carbon films with added silicon, Surface and Coatings Technology, vol. 111, pp. 134-140, 1999.
[71]K. Holmberg, H. Ronkainen, A. Laukkanen, and K. Wallin, Friction and wear of coated surfaces- scales, modelling and simulation of tribomechanisms, Surface and Coatings Technology, vol. 202, pp. 1034-1049, 2007.
[72]M. Moseler, P. Gumbsch, C. Casiraghi, A. C. Ferrari, and J. Robertson, The ultrasmoothness of diamond-like carbon surfaces, Science, vol. 309, pp. 1545-1548, 2005.
[73]M. Stutzmann, J. A. Garrido, M. Eickhoff, and M. S. Brandt, Direct biofunctionalization of semiconductors: A survey, physica status solidi (a), vol. 203, pp. 3424-3437, 2006.
[74]B. Dischler, A. Bubenzer, and P. Koidl, Bonding in hydrogenated hard carbon studied by optical spectroscopy, Solid State Communications, vol. 48, pp. 105-108, 1983.
[75]J. P. Schaffer, A. Saxena, S. D. Antolovich, T. H. S. Jr., and S. B. Warner, The Science and Design of Engineering Materials, 2nd Edition, McGraw-Hill, pp. 62-98, 1999.
[76]萬隆、陳石林、劉小磐,超硬材料與工具,化學工業出版社,2006.
[77]H. Holleck, Material selection for hard coatings, Journal of Vacuum Science & Technology A, vol. 4, pp. 2661-2669, 1986.
[78]E. Quandt and H. Holleck, Transducer and protective PVD-films for applications in microsystem components, Microsystem Technologies, vol. 5, pp. 49-58, 1998.
[79]A. Y. Liu and M. L. Cohen, Prediction of new low compressibility solids, Science, vol. 245, pp. 841-842, 1989.
[80] C. Niu, Y. Z. Lu, and C. M. Lieber, Experimental realization of the covalent solid carbon nitride, Science, vol. 261, pp. 334-337 1993.
[81] C. A. Davis, Y. Yin, D. R. McKenzie, L. E. Hall, E. Kravtchinskaia, V. Keast, G. A. J. Amaratunga, and V. S. Veerasamy, The structure of boron-, phosphorus- and nitrogen-doped tetrahedral amorphous carbon deposited by cathodic arc, Journal of Non-Crystalline Solids, vol. 170, pp. 46-50, 1994.
[82] S. Veprek, M. G. J. Veprek-Heijman, P. Karvankova, and J. Prochazka, Different approaches to superhard coatings and nanocomposites, Thin Solid Films, vol. 476, pp. 1-29, 2005.
[83] F. H. W. Löffler, Systematic approach to improve the performance of PVD coatings for tool applications, Surface and Coatings Technology, vol. 68–69, pp. 729-740, 1994.
[84] P. H. Mayrhofer, A. Horling, L. Karlsson, J. Sjolen, T. Larsson, C. Mitterer, and L. Hultman, Self-organized nanostructures in the Ti-Al-N system, Applied Physics Letters, vol. 83, pp. 2049-2051, 2003.
[85] P. H. Mayrhofer, F. Kunc, J. Musil, and C. Mitterer, A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings, Thin Solid Films, vol. 415, pp. 151-159, 2002.
[86] A. A. Voevodin, S. D. Walck, and J. S. Zabinski, Architecture of multilayer nanocomposite coatings with super-hard diamond-like carbon layers for wear protection at high contact loads, Wear, vol. 203–204, pp. 516-527, 1997.
[87] A. A. Voevodin and J. S. Zabinski, Supertough wear-resistant coatings with chameleon surface adaptation, Thin Solid Films, vol. 370, pp. 223-231, 2000.
[88] A. A. Voevodin, J. S. Zabinski, and C. Muratore, Recent advances in hard, tough, and low friction nanocomposite coatings, Tsinghua Science & Technology, vol. 10, pp. 665-679, 2005.
[89] 陳良益,奈米晶體複合薄膜在磨潤與光電性質之研究,國立成功大學化工系博士論文,2003.
[90] V. F. Dorfman, Diamond-like nanocomposites (DLN), Thin Solid Films, vol. 212, pp. 267-273, 1992.
[91] B. Dorfman, M. Abraizov, F. H. Pollak, D. Yan, M. Strongin, X.-Q. Yang, and Z.-Y. Rong, Atomic structure modifications of diamond-like nanocomposite films: observation by Raman spectroscopy, FTIR and STM, MRS Proceedings, vol. 349, p. 547, 1994.
[92] J. Musil, P. Zeman, H. Hrubý, and P. H. Mayrhofer, ZrN/Cu nanocomposite film—a novel superhard material, Surface and Coatings Technology, vol. 120–121, pp. 179-183, 1999.
[93] S. Vepřek and S. Reiprich, A concept for the design of novel superhard coatings, Thin Solid Films, vol. 268, pp. 64-71, 1995.
[94] S. Veprek, M. Haussmann, and S. Reiprich, Superhard nanocrystalline W2N/amorphous Si3N4 composite materials Journal of Vacuum Science & Technology A, vol. 14, pp. 46-51, 1996.
[95] S. Christiansen, M. Albrecht, H. P. Strunk, and S. Veprek, Microstructure of novel superhard nanocrystalline-amorphous composites as analyzed by high resolution transmission electron microscopy, Journal of Vacuum Science & Technology B, vol. 16, pp. 19-22, 1998.
[96] S. Zhang, X. L. Bui, Y. Fu, D. L. Butler, and H. Du, Bias-graded deposition of diamond-like carbon for tribological applications, Diamond and Related Materials, vol. 13, pp. 867-871, 2004.
[97] K. Yamamoto, M. Keunecke, K. Bewilogua, Z. Czigany, and L. Hultman, Structural features of thick c-boron nitride coatings deposited via a graded B–C–N interlayer, Surface and Coatings Technology, vol. 142–144, pp. 881-888, 2001.
[98] Y. Pauleau, F. Thièry, V. V. Uglov, V. M. Anishchik, A. K. Kuleshov, and M. P. Samtsov, Tribological properties of copper/carbon films formed by microwave plasma-assisted deposition techniques, Surface and Coatings Technology, vol. 180–181, pp. 102-107, 2004.
[99]H. Dimigen, H. Hubsch, and R. Memming, Tribological and electrical properties of metal-containing hydrogenated carbon films, Applied Physics Letters, vol. 50, pp. 1056-1058, 1987.
[100] Z. Xia, L. Riester, W. A. Curtin, H. Li, B. W. Sheldon, J. Liang, B. Chang, and J. M. Xu, Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites, Acta Materialia, vol. 52, pp. 931-944, 2004.
[101] A. A. Voevodin, S. V. Prasad, and J. S. Zabinski, Nanocrystalline carbide/amorphous carbon composites, Journal of Applied Physics, vol. 82, pp. 855-858, 1997.
[102] A. A. Voevodin, J. J. Hu, J. G. Jones, T. A. Fitz, and J. S. Zabinski, Growth and structural characterization of yttria-stabilized zirconia–gold nanocomposite films with improved toughness, Thin Solid Films, vol. 401, pp. 187-195, 2001.
[103] S. Logothetidis, C. Charitidis, M. Gioti, Y. Panayiotatos, M. Handrea, and W. Kautek, Comprehensive study on the properties of multilayered amorphous carbon films, Diamond and Related Materials, vol. 9, pp. 756-760, 2000.
[104] R. F. Bunshah, Handbook of Hard Coatings, William Andrew, 2001, p. 468.
[105] J. Robertson, Deposition mechanism of cubic boron nitride, Diamond and Related Materials, vol. 5, pp. 519-524, 1996.
[106] H. M. Naguib and R. Kelly, Criteria for bombardment-induced structural changes in non-metallic solids, Radiation Effects, vol. 25, pp. 1-12, 1975.
[107] J. Robertson, Deposition mechanism of diamond-like carbon and cubic boron nitride, Radiation Effects and Defects in Solids, vol. 142, pp. 63-90, 1997.
[108] P. B. Mirkarimi, K. F. McCarty, and D. L. Medlin, Review of advances in cubic boron nitride film synthesis, Materials Science and Engineering R, vol. 21, pp. 47-100, 1997.
[109] M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, New York: Wiley, 1994.
[110] B. Chapman, Glow Discharge Processes: Sputtering and Plasma Etching, John Wiley & Sons, pp. 141-142, 1980.
[111] C. Wild and P. Koidl, Structured ion energy distribution in radio frequency glow-discharge systems, Applied Physics Letters, vol. 54, pp. 505-507, 1989.
[112] C. Wild and P. Koidl, Ion and electron dynamics in the sheath of radio-frequency glow discharges, Journal of Applied Physics, vol. 69, pp. 2909-2922, 1991.
[113] A. Bubenzer, B. Dischler, G. Brandt, and P. Koidl, rf-plasma deposited amorphous hydrogenated hard carbon thin films: preparation, properties, and applications, Journal of Applied Physics, vol. 54, pp. 4590-4595, 1983.
[114] H. Xiao, Introduction to Semiconductor Manufacturing Technology 1st Edition, Prentice Hall, 2001.
[115] 陳克紹/編譯, DLC成膜技術,全華圖書,pp. 10-13,2005.
[116] F. Adibi, I. Petrov, J. E. Greene, L. Hultman, and J. E. Sundgren, Effects of high-flux low-energy (20-100 eV) ion irradiation during deposition on the microstructure and preferred orientation of Ti0.5Al0.5N alloys grown by ultra-high-vacuum reactive magnetron sputtering, Journal of Applied Physics, vol. 73, pp. 8580-8589, 1993.
[117] R. F. Bunshah and R. S. Juntz, The influence of ion bombardment on the microstructure of thick deposits produced by high rate physical vapor deposition processes, Journal of Vacuum Science and Technology, vol. 9, pp. 1404-1405, 1972.
[118] R. J. Hecht and J. R. Mullaly, Deposition rate and substrate temperature effects on the structure and properties of bulk-sputtered OFHC Cu and Cu-O.15 Zr, Journal of Vacuum Science and Technology, vol. 12, pp. 836-841, 1975.
[119] L. Bárdoš, H. Baránková, and S. Berg, Thin film processing by radio frequency hollow cathodes, Surface and Coatings Technology, vol. 97, pp. 723-728, 1997.
[120] 郭有斌,微中空陰極陣列常壓電漿與低溫成長碳奈米結構,國立成功大學化工系博士論文,2003.
[121] L. Bárdoš, Radio frequency hollow cathodes for the plasma processing technology, Surface and Coatings Technology, vol. 86–87, pp. 648-656, 1996.
[122] P. J. Kelly and R. D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum, vol. 56, pp. 159-172, 2000.
[123] J. Sellers, Asymmetric bipolar pulsed DC: the enabling technology for reactive PVD, Surface and Coatings Technology, vol. 98, pp. 1245-1250, 1998.
[124] 羅吉宗,薄膜科技與應用,全華圖書,pp. 2-23~2-24,1994.
[125] R. D. Bland, G. J. Kominiak, and D. M. Mattox, Effect of ion bombardment during deposition on thick metal and ceramic deposits, Journal of Vacuum Science and Technology, vol. 11, pp. 671-674, 1974.
[126] D. M. Mattox, Particle bombardment effects on thin-film deposition: A review, Journal of Vacuum Science & Technology A, vol. 7, pp. 1105-1114, 1989.
[127] T. Takagi, Role of ions in ion-based film formation, Thin Solid Films, vol. 92, pp. 1-17, 1982.
[128] I. Alexandrou, M. Baxendale, N. L. Rupesinghe, G. A. J. Amaratunga, and C. J. Kiely, Field emission properties of nanocomposite carbon nitride films, Journal of Vacuum Science & Technology B, vol. 18, pp. 2698-2703, 2000.
[129] K.-I. Tanaka and N. Mutsukura, Deposition of diamond-like carbon film and mass spectrometry measurement in CH4/O2 RF plasma, Plasma Chemistry and Plasma Processing, vol. 19, pp. 217-227, 1999.
[130] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, Atmospheric pressure plasmas: a review, Spectrochimica Acta Part B, vol. 61, pp. 2-30, 2006.
[131] MKS Instruments Catalog, http://mksinst.mobi/Docs/UR/gbror.pdf.
[132] S. A. Solin, Raman and IR studies of graphite intercalates, Physica B, vol. 99, pp. 443-452, 1980.
[133] F. Tuinstra and J. L. Koenig, Raman spectrum of graphite, The Journal of Chemical Physics, vol. 53, pp. 1126-1130, 1970.
[134] M. Murakawa and S. Watanabe, The possibility of coating cubic BN films on various substrates, Surface and Coatings Technology, vol. 43–44, pp. 145-153, 1990.
[135] L. G. Jacobsohn and J. F. L. Freire, Influence of the plasma pressure on the microstructure and on the optical and mechanical properties of amorphous carbon films deposited by direct current magnetron sputtering, Journal of Vacuum Science & Technology A, vol. 17, pp. 2841-2849, 1999.
[136] W. C. Oliver and G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research, vol. 7, pp. 1564-1583, 1992.
[137] S. Zhang, D. Sun, Y. Fu, and H. Du, Toughness measurement of thin films: a critical review, Surface and Coatings Technology, vol. 198, pp. 74-84, 2005.
[138] X. Li, D. Diao, and B. Bhushan, Fracture mechanisms of thin amorphous carbon films in nanoindentation, Acta Materialia, vol. 45, pp. 4453-4461, 1997.
[139] J. M. Jungk, B. L. Boyce, T. E. Buchheit, T. A. Friedmann, D. Yang, and W. W. Gerberich, Indentation fracture toughness and acoustic energy release in tetrahedral amorphous carbon diamond-like thin films, Acta Materialia, vol. 54, pp. 4043-4052, 2006.
[140] A. W. Adamson and A. P. Gast, Physical Chemistry of Surfaces, 6 edition ed. New York Wiley-Interscience, 1997.
[141] Y. Pauleau and F. Thièry, Deposition and characterization of nanostructured metal/carbon composite films, Surface and Coatings Technology, vol. 180-181, pp. 313-322, 2004.
[142] A. A. Voevodin and J. S. Zabinski, Supertough wear-resistant coatings with chameleon surface adaptation, Thin Solid Films, vol. 370, pp. 223-231, 2000.
[143] Y. T. Pei, D. Galvan, and J. T. M. De Hosson, Nanostructure and properties of TiC/a-C:H composite coatings, Acta Materialia, vol. 53, pp. 4505-4521, 2005.
[144] X. Zhao, X. He, Y. Sun, J. Yi, and P. Xiao, Superhard and tougher SiC/diamond-like-carbon composite films produced by electron beam physical vapour deposition, Acta Materialia, vol. 57, pp. 893-902, 2009.
[145] J. W. Bradley, H. Bäcker, P. J. Kelly, and R. D. Arnell, Space and time resolved Langmuir probe measurements in a 100 kHz pulsed rectangular magnetron system, Surface and Coatings Technology, vol. 142–144, pp. 337-341, 2001.
[146] J. L. Andújar, M. Vives, C. Corbella, and E. Bertran, Growth of hydrogenated amorphous carbon films in pulsed d.c. methane discharges, Diamond and Related Materials, vol. 12, pp. 98-104, 2003.
[147] C. Corbella, M. Rubio-Roy, E. Bertran, and J. L. Andujar, Plasma parameters of pulsed-dc discharges in methane used to deposit diamondlike carbon films, Journal of Applied Physics, vol. 106, pp. 033302-11, 2009.
[148] W. Luithardt, I. Schmidt, and C. Benndorf, Deposition of metal-containing diamond-like carbon films from metal-organic precursors using a plasma activated r.f. process, Diamond and Related Materials, vol. 5, pp. 415-419, 1996.
[149] A. Stricker, W. Luithardt, and C. Benndorf, Deposition of titanium oxide and titanium carbide containing thin carbon films in a plasma activated process, Diamond and Related Materials, vol. 8, pp. 500-503, 1999.
[150] A. Bendavid, P. J. Martin, C. Comte, E. W. Preston, A. J. Haq, F. S. Magdon Ismail, and R. K. Singh, The mechanical and biocompatibility properties of DLC-Si films prepared by pulsed DC plasma activated chemical vapor deposition, Diamond and Related Materials, vol. 16, pp. 1616-1622, 2007.
[151] S. Ulrich, H. Ehrhardt, T. Theel, J. Schwan, S. Westermeyr, M. Scheib, P. Becker, H. Oechsner, G. Dollinger, and A. Bergmaier, Phase separation in magnetron sputtered superhard BCN thin films, Diamond and Related Materials, vol. 7, pp. 839-844, 1998.
[152] A. K. Gangopadhyay, P. A. Willermet, M. A. Tamor, and W. C. Vassell, Amorphous hydrogenated carbon films for tribological applications I. Development of moisture insensitive films having reduced compressive stress, Tribology International, vol. 30, pp. 9-18, 1997.
[153] J. F. Zhao, P. Lemoine, Z. H. Liu, J. P. Quinn, and J. A. McLaughlin, The effects of Si incorporation on the microstructure and nanomechanical properties of DLC thin films, Journal of Physics: Condensed Matter, vol. 12, p. 9201, 2000.
[154] L. Randeniya, A. Bendavid, P. Martin, J. Cairney, A. Sullivan, S. Webster, G. Proust, F. Tang, and R. Rohanizadeh, Thin film composites of nanocrystalline ZrO2 and diamond-like carbon: Synthesis, structural properties and bone cell proliferation, Acta Biomaterialia, vol. 6, pp. 4154-4160, 2010.
[155] N. Dubrovinskaia, S. Dub, and L. Dubrovinsky, Superior wear resistance of aggregated diamond nanorods, Nano Letters, vol. 6, pp. 824-826, 2006.
[156] C. A. Schuh and T. G. Nieh, A nanoindentation study of serrated flow in bulk metallic glasses, Acta Materialia, vol. 51, pp. 87-99, 2003.
[157] A. A. Voevodin, T. A. Fitz, J. J. Hu, and J. S. Zabinski, Nanocomposite tribological coatings with chameleon surface adaptation, Journal of Vacuum Science & Technology A, vol. 20, pp. 1434-1444, 2002.
[158] S. Admin, L. Randeniya, A. Bendavid, P. Martin, and E. Preston, Investigation of biomimetic apatite growth on DLC-ZrO2 thin films prepared by MOCVD, Materials Science Forum, vol. 654-656, pp. 2204-2207, 2010.
[159] C. Corbella, E. Pascual, A. Canillas, E. Bertran, and J. L. Andújar, Visible and infrared ellipsometry applied to the study of metal-containing diamond-like carbon coatings, Thin Solid Films, vol. 455–456, pp. 370-375, 2004.
[160] M. Grischke, M. Hans, O. Massler, K. Bewilogua, J. Schroeder, R. Wittorf, and J. Brand, Carbon coatings: structure and functionality of a high volume product, SPIE, vol. 3790, pp. 2-12, 1999.
[161] C. Benndorf, M. Grischke, H. Koeberle, R. Memming, A. Brauer, and F. Thieme, Identification of carbon and tantalum chemical states in metal-doped a-C:H films, Surface and Coatings Technology, vol. 36, pp. 171-181, 1988.
[162] G. Schultes, P. Frey, D. Goettel, and O. Freitag-Weber, Strain sensitivity of nickel-containing amorphous hydrogenated carbon (Ni:a-C:H) thin films prepared by r.f. sputtering using substrate bias conditions, Diamond and Related Materials, vol. 15, pp. 80-89, 2006.
[163] J. Barriga, M. Kalin, K. V. Acker, K. Vercammen, A. Ortega, and L. Leiaristi, Tribological performance of titanium doped and pure DLC coatings combined with a synthetic bio-lubricant, Wear, vol. 261, pp. 9-14, 2006.
[164] M. Wang, K. Schmidt, K. Reichelt, H. Dimigen, and H. Hubsch, Characterization of metal-containing amorphous hydrogenated carbon films, Journal of Materials Research, vol. 7, pp. 667-676, 1992.
[165] K. Bewilogua, C. V. Cooper, C. Specht, J. Schröder, R. Wittorf, and M. Grischke, Effect of target material on deposition and properties of metal-containing DLC (Me-DLC) coatings, Surface and Coatings Technology, vol. 127, pp. 223-231, 2000.
[166] G. Keller, I. Barzen, R. Erz, W. Dötter, S. Ulrich, K. Jung, and H. Ehrhardt, Crystal structure, morphology and composition of magnetron sputtered tungsten carbide films, Fresenius' Journal of Analytical Chemistry, vol. 341, pp. 349-352, 1991.
[167] M. Weiler, S. Sattel, K. Jung, H. Ehrhardt, V. S. Veerasamy, and J. Robertson, Highly tetrahedral, diamond-like amorphous hydrogenated carbon prepared from a plasma beam source, Applied Physics Letters, vol. 64, pp. 2797-2799, 1994.
[168] R. Kleber, M. Weiler, A. Krüger, S. Sattel, G. Kunz, K. Jung, and H. Ehrhardt, Influence of ion energy and flux composition on the properties of plasma-deposited amorphous carbon and amorphous hydrogenated carbon films, Diamond and Related Materials, vol. 2, pp. 246-250, 1993.
[169] Z. Sun, C. H. Lin, Y. L. Lee, J. R. Shi, B. K. Tay, and X. Shi, Effects on the deposition and mechanical properties of diamond-like carbon film using different inert gases in methane plasma, Thin Solid Films, vol. 377–378, pp. 198-202, 2000.
[170] N. Mutsukura and K.-i. Yoshida, Deposition of DLC films in CH4/Ar and CH3/Xe r.f. plasmas, Diamond and Related Materials, vol. 5, pp. 919-922, 1996.
[171] A. Schroeder, G. Francz, A. Bruinink, R. Hauert, J. Mayer, and E. Wintermantel, Titanium containing amorphous hydrogenated carbon films (a-C:H/Ti): surface analysis and evaluation of cellular reactions using bone marrow cell cultures in vitro, Biomaterials, vol. 21, pp. 449-456, 2000.
[172] D. Caschera, F. Federici, S. Kaciulis, L. Pandolfi, A. Cusmà, and G. Padeletti, Deposition of Ti-containing diamond-like carbon (DLC) films by PECVD technique, Materials Science and Engineering: C, vol. 27, pp. 1328-1330, 2007.
[173] K. I. Schiffmann, M. Fryda, G. Goerigk, R. Lauer, P. Hinze, and A. Bulack, Sizes and distances of metal clusters in Au-, Pt-, W- and Fe-containing diamond-like carbon hard coatings: a comparative study by small angle X-ray scattering, wide angle X-ray diffraction, transmission electron microscopy and scanning tunnelling microscopy, Thin Solid Films, vol. 347, pp. 60-71, 1999.
[174] N. Laidani, V. Micheli, and M. Anderle, Carbon effect on the phase structure and the hardness of RF sputtered zirconia films, Thin Solid Films, vol. 382, pp. 23-29, 2001.
[175] K. D. Leedy and J. M. Rigsbee, Microstructure of radio frequency sputtered Ag1-xSix alloys, Journal of Vacuum Science & Technology A, vol. 14, pp. 2202-2206, 1996.
[176] A. M. Peters and M. Nastasi, Titanium-doped hydrogenated DLC coatings deposited by a novel OMCVD-PIIP technique, Surface and Coatings Technology, vol. 167, pp. 11-15, 2003.
[177] B. Basu, Toughening of yttria-stabilised tetragonal zirconia ceramics, International Materials Reviews, vol. 50, pp. 235-256, 2005.
[178] C. Wang, S. Yang, Q. Wang, Z. Wang, and J. Zhang, Super-low friction and super-elastic hydrogenated carbon films originated from a unique fullerene-like nanostructure, Nanotechnology, vol. 19, p. 225709, 2008.
[179] S. Hirono, S. Umemura, M. Tomita, and R. Kaneko, Superhard conductive carbon nanocrystallite films, Applied Physics Letters, vol. 80, pp. 425-427, 2002.
[180] K. Suenaga, M. P. Johansson, N. Hellgren, E. Broitman, L. R. Wallenberg, C. Colliex, J. E. Sundgren, and L. Hultman, Carbon nitride nanotubulite– densely-packed and well-aligned tubular nanostructures, Chemical Physics Letters, vol. 300, pp. 695-700, 1999.
[181] 宮內雅浩、中島章,TiO2 /WO3 複合高感度光誘起親水性材料,工業材料(日本),vol. 48,pp. 45-48,2000 年6月號.
[182] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, Light-induced amphiphilic surfaces, Nature, vol. 388, pp. 431-432, 1997.
[183] A. Fujishima, T. N. Rao, and D. A. Tryk, Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 1, pp. 1-21, 2000.
[184] T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima, and K. Hashimoto, Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass, Thin Solid Films, vol. 351, pp. 260-263, 1999.
[185] L. Ramqvist, K. Hamrin, G. Johansson, A. Fahlman, and C. Nordling, Charge transfer in transition metal carbides and related compounds studied by ESCA, Journal of Physics and Chemistry of Solids, vol. 30, pp. 1835-1847, 1969.
[186] M. S. Amin, L. K. Randeniya, A. Bendavid, P. J. Martin, and E. W. Preston, Amorphous carbonated apatite formation on diamond-like carbon containing titanium oxide, Diamond and Related Materials, vol. 18, pp. 1139-1144, 2009.
[187] F. R. Marciano, D. A. Lima-Oliveira, N. S. Da-Silva, A. V. Diniz, E. J. Corat, and V. J. Trava-Airoldi, Antibacterial activity of DLC films containing TiO2 nanoparticles, Journal of Colloid and Interface Science, vol. 340, pp. 87-92, 2009.
[188] M. Samuelsson, K. Sarakinos, H. Högberg, E. Lewin, U. Jansson, B. Wälivaara, H. Ljungcrantz, and U. Helmersson, Growth of Ti-C nanocomposite films by reactive high power impulse magnetron sputtering under industrial conditions, Surface and Coatings Technology, vol. 206, pp. 2396-2402, 2012.
[189] F. Santerre, M. A. El Khakani, M. Chaker, and J. P. Dodelet, Properties of TiC thin films grown by pulsed laser deposition, Applied Surface Science, vol. 148, pp. 24-33, 1999.
[190] M. Grischke, K. Bewilogua, K. Trojan, and H. Dimigen, Application-oriented modifications of deposition processes for diamond-like-carbon-based coatings, Surface and Coatings Technology, vol. 74–75, Part 2, pp. 739-745, 1995.
[191] P. Zhang, B. K. Tay, G. Q. Yu, S. P. Lau, and Y. Q. Fu, Surface energy of metal containing amorphous carbon films deposited by filtered cathodic vacuum arc, Diamond and Related Materials, vol. 13, pp. 459-464, 2004.
[192] D. R. Lide, CRC Handbook of Chemistry and Physics, Internet Version 2007, (87th Edition), Taylor and Francis, Boca Raton, FL, pp. 9-54.
[193] G. F. Cardinale, P. B. Mirkarimi, K. F. McCarty, E. J. Klaus, D. L. Medlin, W. M. Clift, and D. G. Howitt, Effects of ambient conditions on the adhesion of cubic boron nitride films on silicon substrates, Thin Solid Films, vol. 253, pp. 130-135, 1994.
[194] M. A. Tamor and W. C. Vassell, Method of making hard, transparent amorphous hydrogenated boron nitride films, US Patent No. 5518780, 1996.
[195] D. H. Berns and M. A. Cappelli, Cubic boron nitride synthesis in low-density supersonic plasma flows, Applied Physics Letters, vol. 68, pp. 2711-2713, 1996.
[196] D. H. Berns and M. A. Cappelli, Low energy ion impact-enhanced growth of cubic boron nitride in a supersonic nitrogen/argon plasma flow, Journal of Materials Research, vol. 12, pp. 2014-2026, 1997.
[197] S. Kurooka, T. Ikeda, K. Kohama, T. Tanaka, and A. Tanaka, Formation and characterization of BN films with Ti added, Surface and Coatings Technology, vol. 166, pp. 111-116, 2003.
[198] J. Yu and S. Matsumoto, Growth of cubic boron nitride films on tungsten carbide substrates by direct current jet plasma chemical vapor deposition, Journal of Materials Research, vol. 19, pp. 1408-1412, 2004.
[199] P. B. Mirkarimi, K. F. McCarty, D. L. Medlin, W. G. Wolfer, T. A. Friedmann, E. J. Klaus, G. F. Cardinale, and D. G. Howitt, On the role of ions in the formation of cubic boron nitride films by ion-assisted deposition, Journal of Materials Research, vol. 9, pp. 2925-2938, 1994.
[200] Y. Lifshitz, Diamond-like carbon- present status, Diamond and Related Materials, vol. 8, pp. 1659-1676, 1999.
[201] Y. Panayiotatos, S. Logothetidis, M. Handrea, and W. Kautek, Homogeneous and amorphous sputtered sp3-bonded BN films at RT: a stress, spectroscopic ellipsometry and XPS study, Diamond and Related Materials, vol. 12, pp. 1151-1156, 2003.
[202] W. Dworschak, K. Jung, and H. Ehrhardt, Growth of cubic boron nitride coatings in a magnetic field enhanced r.f. glow discharge, Diamond and Related Materials, vol. 3, pp. 337-340, 1994.
[203] S. Reinke, M. Kuhr, W. Kulisch, and R. Kassing, Recent results in cubic boron nitride deposition in light of the sputter model, Diamond and Related Materials, vol. 4, pp. 272-283, 1995.
[204] L. B. Hackenberger, L. J. Pilione, R. Messier, and G. P. Lamaze, Effect of stoichiometry on the phases present in boron nitride thin films, Journal of Vacuum Science & Technology A, vol. 12, pp. 1569-1575, 1994.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top