跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 17:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高守辰
研究生(外文):Shou-ChenKao
論文名稱:利用膠態電解質組成的調控來促進染料敏化太陽能電池效能之研究
論文名稱(外文):Performance Enhancement of Gel-State Dye-Sensitized Solar Cells by Composition Regulations of Gel-State Electrolytes
指導教授:李玉郎
指導教授(外文):Yuh-Lang Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:116
中文關鍵詞:染料敏化太陽能電池膠態電解質長效穩定度
外文關鍵詞:DSSCGel-electrolyteStability
相關次數:
  • 被引用被引用:1
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
本研究中利用聚(丙烯腈-醋酸乙烯)(poly acrylonitrile -vinlyacte, PAN-VA)與聚(偏二氟乙烯-六氟丙烯)(Poly vinylidenefluoride−co− hexafluoropropylene, PVDF−HFP)做為膠態電解質的膠化劑並加以比較,再探討PAN-VA膠化劑的含量、共溶劑的組成和TiO2奈米粒子的混摻效應對膠態電解質的特性,以及對膠態染敏電池效率和穩定性的影響。
研究結果顯示,以PAN-VA做為膠化劑之膠態染敏池能比PVDF-HFP之膠態染敏電池有更好的電池表現。此外,使用乙腈(Acetonitrile, ACN)做為電解質的溶劑,並使膠化劑含量由7% 增加至15% 時,電解質的導電度下降,而電解質之相轉溫度提高(35oC=〉40oC),但電池的光電轉換效率並無明顯的改變(7.18%~7.14%間)。另外,利用高沸點之3-甲氧基丙腈(3-Methoxy –propionitrile, MPN)做為電解質的共溶劑,雖然可提高電解質的相轉化溫度,並增加電池之穩定度,但卻會降低電池的光電轉化效率。此外, TiO2奈米粒子在電解質中的混摻作用,不只可以提升電解質的導電度及電池效率,亦可使電解質之相轉溫度增高到65oC以上,效率更可以提升至超過8%,並且能通過60oC下、500小時穩定度的高溫穩定度測試。

In this study, the gel-electrolyte, which use poly acrylonitrile – vinlyacte (PAN-VA) or Poly vinylidenefluoride−co− hexafluoropropylene, (PVDF−HFP) as the gelator, are compared. The characteristic of gel-electrolyte ,and the efficiency and stability of DSSC are investigated by increasing the amount of polymer, mixing high-boiling point solution, and adding TiO2 nano-particle.
As results, the DSSC with PAN-VA as gelator have better cell performance than the one with PVDF-HFP. Furthermore, the electrolyte with Acetonitrile (ACN) as solvent and when the percentage of PAN-VA in the electrolyte increase from 7% to 15%, the ion-conductivity of electrolyte decreased, the phase-transfer temperature could be increased from 35 oC to 40 oC. The efficiency of the cell is between 7.18% ~7.14% with non-significant difference. Moreover, by mixing high-boiling point solvent, 3-Methoxy–propionitrile (MPN), as the co-solvent of electrolyte could increase the phase-transfer temperature of co-solvent gel-electrolyte and increase the stability of DSSC. However, the efficiency of the cell may decrease. Furthermore, adding TiO2 nano-particle could increase the phase-transfer temperature of electrolyte to over 65 oC. The efficiency of the cell could be raised over 8% and the stability at 60 oC could be held over 500 hours.

摘要 I
Abstract II
誌謝 III
目錄 V
表目錄 IX
圖目錄 X
第 1 章 緒論 1
1-1 前言 1
1-2 研究目的與動機 3
第 2 章 實驗原理與文獻回顧 5
2-1 染料敏化太陽能電池介紹 5
2-1-1 染料敏化太陽能電池之沿革與發展近況 6
2-1-2 染料敏化太陽能電池之工作原理 8
2-2 染料敏化太陽能電池之結構介紹 12
2-2-1 透明導電基板 12
2-2-2 氧化物半導體 14
2-2-3 光敏化劑 16
2-2-4 電解質 22
2-2-5 對電極 23
2-3 染敏太陽能電池電解質的介紹與發展現況 25
2-3-1 液態電解質 25
2-3-2 膠態電解質 28
2-3-3 固態電解質 30
2-3-4 膠態染敏太陽能電池在穩定度之發展近況 32
第 3 章 實驗設備與藥品 35
3-1 實驗耗材與藥品 35
3-2 實驗儀器與分析原理 36
3-2-1 網印設備 36
3-2-2 加熱板 37
3-2-3 濺鍍機 38
3-2-4 太陽光模擬器 39
3-2-5 電化學交流阻抗分析儀 42
3-2-6 流變儀 49
3-3 實驗流程 50
3-3-1 透明導電基板清洗 52
3-3-2 二氧化鈦薄膜製備 53
3-3-3 電解質配製 54
3-3-4 對電極製備 55
3-3-5 染料敏化太陽能電池組裝 56
3-3-6 電池封裝 57
第 4 章 實驗結果與討論 59
4-1 高分子膠化劑對膠態電解質之影響 59
4-1-1 PAN-VA與PVDF-HFP電解質之導電性分析 59
4-1-2 PAN-VA與PVDF-HFP電解質之黏度分析 63
4-1-3 PAN-VA與PVDF-HFP電解質之電池效率分析 64
4-1-4 PAN-VA與PVDF-HFP電解質之交流阻抗分析 69
4-1-5 PVDF-HFP與PAN-VA做為膠化劑之整體比較 72
4-1-6 不同含量高分子電解質之相轉特性測試 74
4-1-7 不同含量高分子電解質之電池穩定性測試 76
4-2 ACN/MPN共溶劑對膠態電解質之影響 78
4-2-1 共溶劑膠態電解質之相轉特性分析 79
4-2-2 共溶劑膠態電解質之導電性分析 81
4-2-3 共溶劑膠態電解質之電池表現 83
4-2-4 共溶劑膠態電池之穩定性測試 85
4-3 添加TiO2 奈米粒子對膠態電解質之影響 87
4-3-1 含TiO2 奈米粒子膠態電解質之電性分析 87
4-3-2 含TiO2 奈米粒子膠態電解質之電池表現 89
4-3-3 含TiO2 奈米粒子膠態電解質之相轉特性 90
4-3-4 含TiO2 奈米粒子膠態電池之穩定性測試 92
4-3-5 使用TiCl4後處理法來增進膠態電池效率 94
第 5 章 結論 96
第 6 章 未來工作與建議 98
第 7 章 參考文獻 99
Appendix 109
電解質流變儀分析 109
電解質失重測試 111
離子導電度整體趨勢 112
β值 113
電子收集率 114

1M. Grätzel, Power the Plant, Nature, vol. 403,p.363 (2000).
2H. Tsubomura, M. Matsumura, and Y. Nomura, Dye Sensitized Zinc Oxide : Aqueous Electrolyte : Platinum Photocell, Nature, vol. 261, p.402 (1976).
3B. O'Regan and M. Gratzel, A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloial TiO2 Films, Letter to nature, vol. 353, p.737 (1991).
4M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos, and M. Gratzel, Conversion of Light to Electricity by cis-XzBis( 2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium (II) Charge-Transfer Sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes, J. AM. CHEM. SOC , vol. 115, p.6382 (1993).
5M. Grätzel, Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells, Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, p.3 (2004).
6Md K. Nazeeruddin, P. Péchy, and M. Grätzel, Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato–ruthenium complex, Chemical Communications, vol. 18, p.1705 (1997).
7M. Grätzel, Acid-Base Equilibria of (2,2′-Bipyridyl-4,4′-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania, Inorg. Chem., vol. 38, p.6298 (1999).
8M. Grätzel, Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers, J. AM. CHEM. SOC., vol. 127, p.16835 (2005).
9Yasuo Chiba, Ashraful Islam, Yuki Watanabe, Ryoichi Komiya, Naoki Koide, and Liyuan Han, Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%, Japanese Journal of Applied Physics, vol. 45 , p.638 (2006).
10M. Grätzel, Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells., ACS Nano, vol. 3(10), p.3103 (2009).
11A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency, Science, vol. 334 , p.629 (2011).
12M. Grätzel, Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells, inorg. chem., vol. 44, p.6841 (2005).
13M. Grätzel, Conversion of Sunlight to Electric Power by Nanocrystalline Dye-sensitized Solar Cells, Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, p.3 (2004).
14M. Grätzel, Photoelectrochemical Cells, Nature, vol. 414, p.338 (2001).
15W. Shockley and H. J. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cell, J. Appl. Phys., vol. 32, p.510 (1961).
16M. Grätzel, Recent Advances in Sensitized Mesoscopic Solar Cells, ACCOUNTS of chemical research, vol. 42, p.11 (2009).
17M. Grätzel, Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells, J. AM. CHEM. SOC, vol. 123, p.1613 (2001).
18Q. Yu, Y. Wang, and Z. Yi, High-Efficiency Dye-Sensitized Solar Cells: The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States, ACS Nano, vol. 4, p.6032 (2010).
19K. Sayama, S. Tsukagoshi, and T. Mori, Efficient Sensitization of Nanocrystalline TiO2 Films with Cyanine and Merocyanine Organic Dyes Solar Energy Materials & Solar Cells, vol. 80, p.47 (2003).
20K. Hara, T. Horiguchi, and T. Kinoshita, Highly Efficient Photon-to-electron Conversion with Mercurochrome-sensitized Nanoporous oxide semiconductor Solar Cells, Solar Energy Materials & Solar Cells, vol. 64, p.115 (2000).
21T. Horiuchi, H. Miura, and K. Sumioka, Highly Efficiency of Dye-sensitized Solar Cell Based on Metal-free Indoline Dyes J. AM. CHEM. SOC., vol. 126, p.12218 (2004).
22S. Ito, S.  M Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M.  K Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, and M. Grätzel, High-Efficiency Organic-Dye- Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness, Advanced Materials, vol. 18 , p.1202 (2006).
23Seigo Ito, Hidetoshi Miura, Satoshi Uchida, Masakazu Takata, Koichi Sumioka, Paul Liska, Pascal Comte, Peter Péchy, and Michael Grätzel, High-conversion-efficiency Organic Dye-sensitized Solar Cells with A Novel Indoline Dye, Chemical Communications, vol. 41, p.5194 (2008).
24Guangliang Zhang, Hari Bala, Yueming Cheng, Dong Shi, Xueju Lv, Qingjiang Yu, and Peng Wang, High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer, Chemical Communications, vol. 16, p.2198 (2009).
25Wangdong Zeng, Yiming Cao, Yu Bai, Yinghui Wang, Yushuai Shi, Min Zhang, Fangfang Wang, Chunyue Pan, and Peng Wang, Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks, Chemistry of Materials , vol.22, p.1915 (2010).
26G. Wolbauer, A. M. Bond, and J. C. Eklund, A Channel Flow Cell System Specifically Designed to Test the Efficiency of Redox Shuttles in Dye Sensitized Solar Cells, Solar Energy Materials & Solar Cells, vol. 70, p.85 (2001).
27M. Grätzel, An Iodine-Triiodide Reduction Electrocatalyst for Aqueous and Organic Media, Journal of The Electrochemical Society, vol. 144, p.876 (1997).
28George Tsekouras, Attila J. Mozer, and Gordon G. Wallace, Enhanced Performance of Dye Sensitized Solar Cells Utilizing Platinum Electrodeposit Counter Electrodes, Journal of The Electrochemical Society, vol. 155, p.124 (2008).
29M. Grätzel, Low Cost Photovoltaic Modules Based on Dye Sensitized Nanocrystalline Titanium Dioxide and Carbon Powder, Sol. Energy Mater., vol. 44, p.99 (1996).
30Takurou N. Murakami, Seigo Ito, Qing Wang, Md Khaja Nazeeruddin, Takeru Bessho, Ilkay Cesar, Paul Liska, Robin Humphry-Baker, Pascal Comte, Péter Péchy, and Michael Grätzel, Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes, Journal of The Electrochemical Society, vol. 153, p.2255 (2006).
31Won Jae Lee, Easwaramoorthi Ramasamy, Dong Yoon Lee, and Jae Sung Song, Efficient Dye-Sensitized Solar Cells with Catalytic Multiwall Carbon Nanotube Counter Electrodes, ACS Applied Materials & Interfaces, vol.1, p.1145 (2009).
32Shahzada Ahmad, Jun-Ho Yum, Hans-Jürgen Butt, Mohammad K. Nazeeruddin, and Michael Grätzel, Efficient Platinum-Free Counter Electrodes for Dye-Sensitized Solar Cell Applications, ChemPhysChem, vol. 11, p.2814 (2010).
33C. A. Kelly, F. Farzad, and D. W. Thompson, Cation-Controlled Interfacial Charge Injection in Sensitized Nanocrystalline TiO2, Langmuir, vol. 15, p.7047 (1999);
Y. Liu, A. Hageldt, and X.-R. Xiao, Investigation of Influence of Redox Species on The Interfacial Energetics of A Dye-sensitized Nanoporous TiO2 Solar Cell, Solar Energy Materials and Solar Cells, vol. 55, p.267 (1998);
S. Pelet, J. E. Moser, and M. Grätzel, Cooperative Effect of Adsorbed Cations and Iodide on the Interception of Back Electron Transfer in the Dye Sensitization of Nanocrystalline TiO2, J. Phys. Chem. B, vol. 104, p.1791 (2000);
S. Kambe, S. Nakade, T. Kitamura, Y. Wada, and S. Yanagida, Influence of the Electrolytes on Electron Transport in Mesoporous TiO2-Electrolyte Systems, J. Phys. Chem. B, vol. 106, p.2967 (2002).
34Y. Cao, J. Zhang, Y. Bai, and M. Grätzel, Dye-Sensitized Solar Cells with Solvent-Free Ionic Liquid Electrolytes, J. Phys. Chem. C, vol. 112, p.13775 (2008).
35P. Wang, S. M. Zakeeruddin, J. E. Moser, and M. Gratzel, A New Ionic Liquid Electrolyte Enhances the Conversion Efficiency of Dye-Sensitized Solar Cells, J. Phys. Chem. B, vol. 107, p.13280 (2003).
36Shufang Zhang, Masatoshi Yanagida, Xudong Yang, and Liyuan Han, Effect of 4-tert-Butylpyridine on the Quasi-Fermi Level of Dye-Sensitized TiO2Films, Applied Physics Express, vol. 4, p.042301 (2011).
37Peng Wang, Shaik M. Zakeeruddin, Ivan Exnar, and Michael Gr??tzel, High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyteElectronic supplementary information (ESI) available: fabrication procedure for the DSSCs. Chemical Communications, vol. 24, p.2972 (2002).
38Peng Wang, Shaik M. Zakeeruddin, Jacques E. Moser, Mohammad K. Nazeeruddin, Takashi Sekiguchi, and Michael Grätzel, A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte, Nature Materials, vol. 2, p.402 (2003).
39Ryoichi Komiya, Liyuan Han, Ryohsuke Yamanaka, Ashraful Islam, and Takehito Mitate, Highly efficient quasi-solid state dye-sensitized solar cell with ion conducting polymer electrolyte, Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, p.123 (2004).
40Ching-Lun Chen, Hsisheng Teng, and Yuh-Lang Lee, Preparation of highly efficient gel-state dye-sensitized solar cells using polymer gel electrolytes based on poly(acrylonitrile-co-vinyl acetate), Journal of Materials Chemistry, vol. 21, p.628 (2011).
41Moon-Sung Kang, Kwang-Soon Ahn, and Ji-Won Lee, Quasi-solid-state dye-sensitized solar cells employing ternary component polymer-gel electrolytes, Journal of Power Sources, vol. 180, p.896 (2008).
42Ching-Lun Chen, Hsisheng Teng, and Yuh-Lang Lee, In Situ Gelation of Electrolytes for Highly Efficient Gel-State Dye-Sensitized Solar Cells, Advanced Materials, vol. 23, p.4199-4204 (2011).
43M. Grätzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature, vol. 395, p.583 (1998).
44H. J. Snaith, A. J. Moule, and M. Gratzel, Efficiency Enhancements in Solid-State Hybrid Solar Cells via Reduced Charge Recombination and Increased Light Capture, Nano Letters, vol. 7, p.3372 (2007).
45Ning Cai, Soo-Jin Moon, Lê Cevey-Ha, Thomas Moehl, Robin Humphry-Baker, Peng Wang, Shaik M. Zakeeruddin, and M. Grätzel, An Organic D-π-A Dye for Record Efficiency Solid-State Sensitized Heterojunction Solar Cells, Nano Letters, vol. 11, p.1452 (2011).
46Xizhe Liu, Wei Zhang, Satoshi Uchida, Liping Cai, Bin Liu, and Seeram Ramakrishna, An Efficient Organic-Dye-Sensitized Solar Cell with in situ Polymerized Poly(3,4-ethylenedioxythiophene) as a Hole-Transporting Material, Advanced Materials, vol. 22, p.150 (2010).
47Jong Kwan Koh, Jeonghun Kim, Byeonggwan Kim, Jong Hak Kim, and Eunkyoung Kim, Highly Efficient, Iodine-Free Dye-Sensitized Solar Cells with Solid-State Synthesis of Conducting Polymers, Advanced Materials, vol. 23, p.1641 (2011).
48I. Kang Ding, Nicolas Tétreault, Jérémie Brillet, Brian E. Hardin, Eva H. Smith, Samuel J. Rosenthal, Frédéric Sauvage, Michael Grätzel, and Michael D. McGehee, Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance, Advanced Functional Materials, vol. 19, p.2431 (2009).
49A. Fujishima, Fabrication of an Efficient Solid-State Dye-Sensitized Solar Cell, Langmuir, vol. 19, p.3572 (2003).
50Nils Mohmeyer, Daibin Kuang, Peng Wang, Hans-Werner Schmidt, Shaik M. Zakeeruddin, and M. Grätzel, An efficient organogelator for ionic liquids to prepare stable quasi-solid-state dye-sensitized solar cells, Journal of Materials Chemistry, vol. 16, p.2978 (2006).
51Kuo-Chuan Ho, In Situ Low Temperature Polymerization of Bismaleimide for Gel-Type Electrolyte for Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol. 114, p.13832 (2010).
52Qingjiang Yu, Cuiling Yu, Fengyun Guo, Jinzhong Wang, Shujie Jiao, Shiyong Gao, Hongtao Li, and Liancheng Zhao, A stable and efficient quasi-solid-state dye-sensitized solar cell with a low molecular weight organic gelator, Energy & Environmental Science, vol. 5, p.6151 (2012).
53Andreas Georg Anneke Hauch a, Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells, Electrochimica Acta, vol. 46, p.3457 (2001).
54F. Fabregat-Santiago, J. Bisquert, L. Cevey, P. Chen, M. Wang, S. M. Zakeeruddin, and M. Grätzel, Electron Transport and Recombination in Solid-State Dye Solar Cell with Spiro-OMeTAD as Hole Conductor, J. AM. CHEM. SOC. , vol. 131, p.558 (2009).
55J. Bisquert, Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer, J. Phys. Chem. B, vol. 106, p.325 (2002).
56M. Adachi, M. Sakamoto, J. Jin, Y. Ogata, and S. Isoda, Determination of Parameters of Electron Transport in Dye-Sensitized Solar Cells Using Electrochemical Impedance Spectroscopy, J. Phys. Chem. B, vol. 110, p.13872 (2006).
57Tyson J. Amick Jeremy J. Nelson, and C. Michael Elliott, Mass Transport of Polypyridyl Cobalt Complexes in Dye-Sensitized Solar Cells with Mesoporous TiO2 Photoanodes, J. Phys. Chem. C, vol. 112, 18255 (2008).
58Zhang Lan, Jihuai Wu, Jianming Lin, and Miaoliang Huang, A novel gel electrolyte for quasi-solid-state dye-sensitized solar cells, Electrochimica Acta, vol. 60, p.17 (2012).
59Zhe Sun, Ren-Kai Zhang, Huan-Huan Xie, Mao Liang, Rui-Hong Du, and Song Xue, Influence of 4-N,N-dimethylaminopyridine on the photovoltaic performance of dye-sensitized solar cells with poly(ethyleneoxide)/oligo(ethylene glycol) blend electrolytes, Electrochimica Acta, vol. 56, p.7555 (2011).
60M. Grätzel, Enhancement of the Performance of Dye-Sensitized Solar Cell by Formation of Shallow Transport Levels under Visible Light Illumination, J. Phys. Chem. C, vol. 112, p.7084 (2008).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊