跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/26 21:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱有玲
研究生(外文):You-LingChu
論文名稱:電紡同排聚苯乙烯及其複合纖維製程與纖維性質分析
論文名稱(外文):Electrospun isotactic polystyrene and its composite nanofibers and its property characterization
指導教授:王紀
指導教授(外文):Chi Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:113
中文關鍵詞:電紡絲同排聚苯乙烯
外文關鍵詞:electrospinningisotactic polystyrene
相關次數:
  • 被引用被引用:2
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本研究成功電紡出奈米直徑的同排聚苯乙烯(iPS)纖維,在高溫電紡絲時使用夾套式熱交換器維持溶液的溫度。當電紡流量(Q)改變時,液柱直徑(dj)與纖維直徑(df)會有變化,其關係為dj~Q0.50、df~Q0.13。因iPS溶液於室溫下不易形成凝膠,因此在室溫下亦可進行電紡絲實驗,研究發現高溫電紡所得纖維較室溫電紡所得纖維細。

室溫下利用快速轉動之碟盤收集順向纖維,使用DSC、WAXD與SAXS分析纖維內微結構;WAXD結果可知電紡所得順向纖維膜為amorphous,經由逐步升溫發現晶體於110 oC開始出現,且結晶度隨著溫度的升高增加。由Herman orientation function計算得知溫度上升時晶體c軸之順向度下降。SAXS散射實驗顯示在140 oC可觀察到long period生成,其值隨溫度的上升而變大。藉由一維關聯函數可得iPS順向纖維膜於不同回火溫度之lamellar形態參數。

先前的研究發現iPS纖維可誘導iPP產生beta晶型,而iPP 的beta晶體有很好的韌性,因此本研究進一步研究得知iPS纖維可誘導iPP產生beta晶體的最高等溫溫度為135 oC,且能形成穿晶的最高等溫溫度為138 oC,不同降溫速率結晶條件下,隨著降溫速率越快,iPS纖維能誘導iPP產生beta晶核的數量越多。

Electrospun isotactic polystyrene (iPS) nanofibers were successfully prepared. The scaling laws between Q, dj and df are: dj~Q0.50, df~Q0.13. The cooled solutions remained homogeneous even at room temperature for hours due to the slow process for gel formation and/or crystallization, which led to the feasibility of ambient electrospinning. However, iPS fibers electrospun from the elevated temperature had a smaller diameter than those obtained from room temperature because of reduced viscosity.

The aligned iPS fibers were collected by a rotating disc. By means of wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS), and differential scanning calorimeter analyses, the internal structure of iPS fibers was characterized. The as-spun iPS fibers were found to be amorphous. WAXD results showed that iPS crystals initially appeared at 110 oC, and fiber crystallinity increased with increasing annealing temperatures. Based on the Herman orientation function, the orientation factor of crystal c-axis decreased with increasing temperature. SAXS results showed that long period initially appeared at 140 oC and increased with increasing annealing temperatures. Using one-dimensional correlation function, lamellar morphological parameters of aligned iPS fibers were determined.

From the previous studies, we found electrospun iPS fibers can induce the beta-crystal form of iPP. For isothermal crystallization, the maximum temperature required for transcrystalline layer to develope is 138 oC. The content of beta-form nuclei increased with increasing cooling rate.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
符號 xii
一 、前言 1
二 、簡介 2
2.1 電紡絲模式 2
2.2 電紡絲實驗觀察 3
2.2.1 cone和jet形態 3
2.2.2 jet甩動過程 3
2.2.3 纖維形態 4
三 、文獻回顧 6
3.1 同排聚苯乙烯 6
3.2 iPS電紡絲 8
3.3 iPS/iPP複合材料 8
3.3.1 同排聚丙烯簡介 9
3.3.2 成核劑誘導iPP的beta晶型 10
四 、實驗 24
4.1 實驗藥品 24
4.2 實驗儀器及材料 24
4.3 分析儀器 26
4.4 實驗步驟 27
4.4.1 電紡絲溶液配製 27
4.4.2 電紡絲實驗 28
4.4.3 偏光顯微鏡 28
4.4.4 掃描式電子顯微鏡 28
4.4.5 雷射量測步驟 29
4.4.6 示差掃描卡計 30
4.4.7 廣角X光繞射儀 31
4.4.8 小角X光散射儀 33
4.4.9 電紡絲實驗流程圖 34
4.4.10偏光顯微鏡觀察iPS纖維誘導iPP穿晶 35
五 、結果與討論 37
5.1 溶液性質 37
5.1.1 iPS溶液DSC分析 37
5.2 iPS電紡纖維製備 37
5.2.1 溶液entanglement濃度(ce) 37
5.2.2 溶液濃度對電紡製程的影響及所得纖維熱性質分析 38
5.2.3 流量對電紡製程的影響 39
5.2.4 改變溶液溫度及收集方式對纖維形態的影響 39
5.3 室溫電紡所得iPS順向纖維微結構分析 41
5.3.1 WAXD測試 41
5.3.2 SAXS測試 43
5.4 iPS/sPS混摻溶液電紡絲 44
5.4.1 iPS/sPS混摻溶液DSC分析 44
5.4.2 iPS/sPS電紡纖維製備 45
5.4.3 iPS/sPS電紡纖維熱性質分析 46
5.5 iPS纖維/iPP複合材料 46
5.5.1 不同等溫結晶溫度對iPS纖維誘導iPP形成穿晶之影響 47
5.5.2 不同降溫速率對iPS纖維誘導iPP形成beta晶體的影響 48
六 、結論 100
七 、參考文獻 101
八、附錄 104

[1] J. Brandup, E. H. Immergut, E. A. Grulke, A. Abe, D. R. Bloch, “Polymer handbook. Wiley Interscience : New York (1999).
[2] T. Liu, J Petermann, “Multiple melting behavior in isothermally cold-crystallization isotactic polystyrene. Polymer 42, 6453 (2001).
[3] Y. Duan, J. Zang, D. Shen, S. Yan, “In situ FTIR studies on the cold-crystallization process and multiple melting behavior of isotactic polystyrene. Macromolecules 36, 4874 (2003).
[4] J. Zang, Y. Duan, D. Shen, S. Yan, I. Noda, Y. Ozaki, “Structure changes during the induction period of cold crystallization of isotactic polystyrene investigated by infrated and two-dimensional infrared correlation spectroscopy. Macromolecules 37, 3292 (2004).
[5] H. Xu, B. S. Ince, P. Cebe, “Development of the crystallization and rigid amorphous fraction in cold-crystallized isotactic polystyrene. Journal of Polymer Science, Part B : Polymer Physics 41, 3026 (2003).
[6] H. Xu, P. Cebe, “Transition from solid to liquid in isotactic polystyrene studied by thermal analysis and X-ray scattering. Polymer 46, 8734 (2005).
[7] M. Tosaka, K.Yamaguchi, M. Tsuji, “Latent orientation in the skin layer of electrospun isotactic polystyrene ultrafine fibers. Polymer 51, 547 (2010).
[8] A. Phillips, P. W. Zhu, G. Edward, “Polystyrene as a versatile nucleating agent for polypropylene. Polymer 51, 1599 (2010).
[9] B. Lotz, J. C. Wittmann, A. Lovinger, “Structure and morphology of poly(propylene) : a molecular analysis. Polymer 37, 4979 (1996).
[10] S. Brűckner, S. V. Meille, V. Petraccone, B. Pirozzi, “Polymorphism in
isotactic polypropylene. Progress in Polymer Science 16, 361 (1991).
[11] J. Varga, “-Modification of isotactic polystyrene : preparation,
structure, processing, properties, and application. Journal of Macromolecular Science, Part B 41,1121 (2002).
[12] J. Varga, J. Karger-Kocsis, “Rules of supermolecular structure formation in sheared isotactic polypropylene melts. Journal of Polymer Science, Part B : Polymer Physics 34, 657 (1996).
[13] J. Varga, J.Karger-Kocsis, “Interfacial morphologies in carbon-fibre-reinforced polypropylene microcomposites. Polymer 36, 4877 (1995).
[14] F. Luo, C. Geng, K. Wang, H. Deng, F. Chen, Q. Fu, B. Na. “New understanding in tuning toughness ofpolypropylene : the role of -nucleated crystalline morphology. Macromolecules 42, 9325 (2009).
[15] Z. Su, M. Dong, Z. Guo, J. Yu, “Study of polystyrene and acrylonitrile-styrene copolymer as special -nucleating agents to induce the crystallization of isotactic polypropylene. Macromolecules 40, 4217 (2007).
[16] G. Natta, P. Corradint, I. W. Bassi, “Crystal structure of isotactic polystyrene. Nuovo Cimento 15, 68 (1960)
[17] F. J. Balt-Calleja, C. G. Vonk, “X-ray scattering of synthetic polymers. Elsevier: New York (1989)
[18] C. Wang, T. C. Hsieh, Y. W. Cheng, “Solution-electrospun isotactic polypropylene fibers: processing and microstructure development during stepwise annealing. Macromolecules 43, 9022 (2010).
[19] C. L. Huang, Y. C. Chen, T. J. Hsiao, J. C. Tsai, C. Wang, “Effect of tacticity on viscoelastic properties of polystyrene. Macromolecules 44, 6155 (2011).

[20] 吳怡君, “不同電紡纖維對聚丙烯穿晶形成能力的影響, 國立成功大學碩士論文 (2011).
[21] M. Al-Hussein, G. Strobl, “The melting line, the crystallization line, and the equilibrium melting temperature of isotactic polystyrene. Macromolecules 35, 1672 (2002).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊