跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/03 20:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張志豪
研究生(外文):Chih-HaoChang
論文名稱:表面修飾伴刀豆球蛋白之奈米粒子的合成與應用
論文名稱(外文):Synthesis and application of nanoparticles with surface modification by Concanavalin A
指導教授:陳東煌陳東煌引用關係
指導教授(外文):Dong-Hwang Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:115
中文關鍵詞:伴刀豆球蛋白氧化鐵奈米粒子金奈米粒子N-醣蛋白吸附磁性分離流行性感冒病毒鍵結
外文關鍵詞:Concanavalin AFe3O4 nanoparticlesAu nanoparticlesN-glycosylated proteinsadsorptionmagnetic separationH1N1 virusbinding
相關次數:
  • 被引用被引用:1
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
伴刀豆球蛋白(Con A)是能與甘露糖(mannose)及葡萄糖(glucose)結合的外源凝集素,本論文分別以共沉澱法及檸檬酸鈉還原法合成表面修飾檸檬酸之氧化鐵(Fe3O4)奈米粒子與金(Au)奈米粒子,或再進一步在其表面鍵結聚乙二醇(PEG)製得Fe3O4-PEG與Au-PEG奈米粒子。這些粒子藉碳二醯胺活化作用將Con A固定化於其表面,可製得磁性可操控之Fe3O4-ConA、Au-Con A、Fe3O4-PEG-Con A及Au-PEG-Con A奈米載體,用於N-醣蛋白的分離及與流感病毒H1N1的結合。
表面修飾檸檬酸之Fe3O4奈米粒子平均粒徑約11.7 ± 3.9 nm,Fe3O4-ConA及Fe3O4-PEG-Con A奈米粒子鍵結之Con A可由FTIR分析確認,其鍵結量經熱重分析與蛋白質分析得知分別約為10%及9.5%。相似地,表面修飾檸檬酸之Au奈米粒子平均粒徑約13.4 ± 3.1 nm,Au-Con A及Au-PEG-Con A奈米粒子鍵結之Con A可由FTIR分析確認,其鍵結量經熱重分析與蛋白質分析得知分別約為10 %及8.6 %。
將Fe3O4-Con A奈米粒子用於N-醣蛋白的分離,證實非N-醣蛋白之牛血清蛋白無法被吸附,而屬於N-醣蛋白之乳鐵蛋白則可被吸附,並遵循Langmuir恆溫吸附模式。在25 ℃、pH 7.4、0.02 M Tris-HCl緩衝溶液中乳鐵蛋白在Fe3O4-Con A奈米粒子上的最大吸附量為59.2 mg/g,Langmuir吸附平衡常數為0.0103 L/mg。藉由電泳分析,Fe3O4-Con A奈米粒子可選擇性分離N-醣蛋白的能力可進一步獲得確認。
此外,將上述鍵結Con A的奈米粒子用在與A型流行性感冒病毒的結合。透過酵素免疫分析法及穿透式電子顯微鏡分析可知,固定化在奈米粒子上之Con A仍能保留其活性並捕捉病毒。且Fe3O4-ConA及Au-Con A奈米粒子與A型流行性感冒病毒間的解離常數(Kd)分別為9.5 × 10-9 M與1.1 × 10-7 M,但Fe3O4-PEG-Con A及Au-PEG-Con A奈米粒子與A型流行性感冒病毒間的解離常數則分別降至2.1 × 10-9 M與2.88 × 10-8 M,顯示其捕捉A型流行性感冒病毒的效果較佳。此結果將有助於抗流感病毒藥物與疫苗的發展。

Concanavalin A (Con A), a lectin with mannose and glucose binding specificity, can be used for the targeted binding of certain oligosaccharide structures of N glycosylated proteins. In this thesis, citrate-modified Fe3O4 nanoparticles and Au nanoparticles were synthesized by co-precipitation method and sodium citrate reduction method, respectively. Their surface was also further bound with polyethylene glycol (PEG) to yield Fe3O4-PEG and Au-PEG nanoparticles. After the immobilization of Con A via carbodiimide activation, the magnetically manipulable Fe3O4-ConA, Au-Con A, Fe3O4-PEG-Con A, and Au-PEG-Con A nanocarriers were obtained and used for the separation of glycoprotein and the binding with influenza A virus.
The citrate-modified Fe3O4 nanoparticles had a mean diameter of 11.7 ± 3.9 nm. The binding of Con A on Fe3O4-ConA and Fe3O4-PEG-Con A nanoparticles could be demonstrated by FTIR analysis. By thermogravimetric analysis and protein assay, the binding amount of Con A were determined to be 10 %及9.5 % for Fe3O4-ConA and Fe3O4-PEG-Con A nanoparticles, respectively. Similarly, the citrate-modified Au nanoparticles had a mean diameter of 13.4 ± 3.1 nm. The binding of Con A on Au-Con A and Au-PEG-Con A nanoparticles also could be demonstrated by FTIR analysis. By thermogravimetric analysis and protein assay, the binding amount of Con A were determined to be 10 %及8.6 % for Au-Con A and Au-PEG-Con A nanoparticles, respectively.
Fe3O4-Con A nanoparticles were used for the separation of glycoprotein. They could not adsorb bovine serum albumin but could adsorb lactoferrin effectively, obeying Langmuir isotherm model. At pH 7 and 25 C, the maximum capacity and equilibrium constant for lactoferrin adsorption were 59.2 mg/g and 0.0103 L/mg, respectively. By SDS-polyacrylamide gel electrophoresis, the capability of Fe3O4-Con A nanoparticles for the selective separation of glycoprotein could be further confirmed.
In addition, the above Con A-bound nanoparticles were used for the binding with influenza A virus. By enzyme-linked immunosorbent assay (ELISA) and TEM analysis, it was demonstrated that Con A bound on the nanoparticles retained its capability for the capture of virus. Moreover, the dissociation constants for Fe3O4-Con A and Au-Con A with influenza A virus were 9.5  10-9 M and 1.1  10-7 M, respectively. However, the dissociation constants for Fe3O4-PEG-Con A and Au-PEG-Con A with influenza A virus were lowered to be 2.1  10-9 M and 2.88  10-8 M, respectively, revealing better capability for the capture of virus. This result will be helpful for the development of anti-influenza virus drugs or vaccines.

中文摘要 Ⅰ
英文摘要 ⅠⅠⅠ
誌謝 Ⅴ
總目錄 VII
表目錄 X
圖目錄 XI
符號 XV

第一章 緒論
1.1 病毒與疫苗 1
1.2 伴刀豆球蛋白 (Concanavalin A) 4
1.2.1 伴刀豆球蛋白的基本性質 4
1.2.2 伴刀豆球蛋白的應用 6
1.3 醣蛋白 (Glycoprotein) 10
1.4 金奈米粒子載體與磁性載體之生醫應用 12
1.5 研究動機與內容 17

第二章 基礎理論
2.1 磁性理論 20
2.1.1 磁性來源 20
2.1.2 磁性體分類 21
2.1.3 磁區與磁滯曲線 25
2.2 吸附理論 29


第三章 實驗方法
3.1 實驗藥品、儀器及材料 33
3.1.1 實驗藥品 33
3.1.2 實驗儀器 36
3.1.3 實驗材料 37
3.2 奈米粒子及奈米粒子表面被覆Con A之製備 38
3.2.1 氧化鐵奈米粒子之製備 38
3.2.2 金奈米粒子之製備 40
3.2.3 表面被覆Con A之氧化鐵奈米粒子的製備 43
3.2.4 表面被覆Con A之金奈米粒子的製備 43
3.3 特性分析 45
3.4 表面被覆Con A之氧化鐵奈米粒子分離乳鐵蛋白的方法 49
3.5 表面被覆Con A之奈米粒子結合病毒之量測 52

第四章 結果與討論
4.1 氧化鐵奈米粒子及表面被覆Con A後之基本特性 54
4.1.1 氧化鐵奈米粒子之基本特性 54
4.1.2 氧化鐵奈米粒子表面被覆Con A後之特性分析 57
4.1.3 氧化鐵奈米粒子表面被覆Con A後之定量分析 64
4.2 金奈米粒子及表面被覆Con A後之基本特性 68
4.2.1 金奈米粒子之基本特性 68
4.2.2 金奈米粒子表面被覆Con A後之特性分析 71
4.2.3 金奈米粒子表面被覆Con A後之定量分析 78
4.3 表面被覆Con A之氧化鐵奈米粒子在分離乳鐵蛋上之應用 80
4.4 表面被覆Con A之奈米粒子與病毒結合之研究 86
4.4.1 表面被覆Con A之氧化鐵奈米粒子結合病毒之研究 86
4.4.2 表面被覆Con A之金奈米粒子結合病毒之研究 90
4.4.3 改善表面被覆Con A之奈米粒子結合病毒的能力 94
第五章 結論 104
參考文獻 106

1.閻啟泰、蘇慶華、商惠芳、楊定一 合著,實用微生物及免疫學,台北:華杏 (2011)。
2.R. G. Webster, W. J. Bean, O. T. Gorman, T. M. Chambers and Y. Kawaoka, Evolution and ecology of influenza A viruses., Microbiol. Rev., 56(1), 152 (1992).
3.顏德欣,利用甘露醣結合凝集素接合金奈米之複合物抑制流行性感冒病毒感染,國立成功大學微生物及免疫學研究所碩士論文 (2011)。
4.B. Bean, Antiviral therapy: current concepts and practices., Clin Microbiol Rev, 5, 146 (1992).
5.鄭瑞洲,疫苗,《科學發展》,第427期,26 ~ 31頁(2008)。
6.G. M. Edelman, B. A. Cunningham, G. N. Reeke, J. W. Becker, M. J. Waxdal, and J. L. Wang, The Covalent and Three-Dimensional Structure of Concanavalin A., Proc. Natl. Acad. Sci. USA, 69, 2580 (1972).
7.S. Sinha, Y. Li, T. D. Williams, and E. M. Topp, Protein conformation in amorphous solids by FTIR and by hydrogen/deuterium exchange with mass spectrometry., Biophys. J., 95, 5951 (2008).
8.M. Kudou, K. Shiraki, and M. Takagi, Characterization of heat-induced aggregates of concanavalin A using fluorescent probes., Sci. Tech. Adv. Mater., 5, 339 (2004).
9.A. Dong, P. Huang, and W. S. Caughey, Protein secondary structures in water from second-derivative amide I infrared spectra., Biochemistry, 29, 3303 (1990).
10.R. Zand, B. B. L. Agrawal, and I. J. Goldstein, pH-Dependent Conformational Changes of Concanavalin A., Proc. Natl. Acad. Sci. USA, 68, 2173 (1971).
11.J. L. Wang, B. A. Cunningham, and G. M. Edelman, Unusual Fragments in the Subunit Structure of Concanavalin A., Proc. Natl. A cad. Sci. USA, 68, 1130 (1971).
12.張松文,以氧化鐵磁性奈米粒子分離伴刀豆球蛋白之研究,國立成功大學化學工程研究所碩士論文 (2007)。
13.K. Sparbier, S. Koch, I. Kessler, T. Wenzel, and M. Kostrzewa, Selective Isolation of Glycoproteins and Glycopeptides for MALDI-TOF MS Detection Supported by Magnetic Particles., J. Biomol. Tech., 16, 407 (2005).
14.F. Santori and J. Hubble, I socratic separation of monosaccharides using immobilized Concanavalin A., J. Chromatogr. A, 1003, 123 (2003).
15.S. Mansouri and J. S. Schultz, A Miniature Optical Glucose Sensor Based on Affinity Binding., Nature Biotechnology, 2, 885 (1984).
16.M. D.L. Oliveira, M. T.S. Correia, and Flamarion B. Diniz, Concanavalin A and polyvinyl butyral use as a potential dengue electrochemical biosensor., Biosens and Bioelectron., 25 , 728 (2009).
17.R. Kikkeri, F. Kamena, T. Gupta, L. H. Hossain, S. Boonyarattanakalin, G. Gorodyska, E. Beurer, G. Coullerez, M. Textor, and P. H. Seeberger, Ru(II) Glycodendrimers as Probes to Study Lectin−Carbohydrate Interactions and Electrochemically Measure Monosaccharide and Oligosaccharide Concentrations., Langmuir, 26, 1520 (2010).
18.C. Kaittanis, S. Nath and J. M. Perez, Rapid Nanoparticle-Mediated Monitoring of Bacterial Metabolic Activity and Assessment of Antimicrobial Susceptibility in Blood with Magnetic Relaxation., Plos One, 3, 3253 (2008).
19.Sudip Nath, Charalambos Kaittanis, Alisa Tinkham, and J. Manuel Perez, Dextran-Coated Gold Nanoparticles for the Assessment of Antimicrobial Susceptibility., Anal. Chem., 80, 1033 (2008).
20.張舒,康曉楠,劉銀坤,「肝癌對糖蛋白聚糖結構的變化」,世界華人消化雜誌,16,4071 (2008)。
21.郭俐亨,探討性荷爾蒙在Concanavalin A誘發小鼠肝炎的調節角色,國立成功大學微生物暨免疫學研究所碩士論文 (2003)。
22.張志鵬,刀豆素A誘導細胞自噬在肝癌治療與急性肝炎的作用,國立成功大學基礎醫學研究所博士論文 (2008)。
23.B. Liu, M. W. Min, and J. K. Bao, Induction of apoptosis by Concanavalin A and its molecular mechanisms in cancer cells., Autophagy, 5, 432 (2009).
24.李名揚,翁啟惠的醣分子世界,科學人,第79期 (2008)。
25.A. Monzo, G. K. Bonn, and A. Guttman, Lectin immobilization strategies for affinity purification and separation of glycoconjugates., Trends Anal. Chem., 26, 423 (2007).
26.S. K. Ghosh, T. Pal, Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications., Chem. Rev., 107, 4797 (2007).
27.M. Haruta, Catalysis of Gold Nanoparticles Deposited on Metal Oxides., Cattech, 6, 102 (2002).
28.T. Ishida, M. Haruta, Gold Catalysts: Towards Sustainable Chemistry., Angew. Chem. Int. Ed., 46, 7154 (2007).
29.M. C. Daniel,D. Astruc, Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology., Chem. Rev., 104, 293 (2004).
30.H. J. Qiu,L. Y. Xue,G. L. Ji, Enzyme-modified nanoporous gold-based electrochemical biosensors., Biosens. Bioelectron., 24, 3014 (2009).
31.C. Staii, D. W. Wood, G. Scoles, Verification of biochemical activity for proteins nanografted on gold surfaces., J. Am. Chem. Soc., 130, 640 (2008).
32.S. Bharathi, M. Nogami, A glucose biosensor based on electrodeposited biocomposites of gold nanoparticles and glucose oxidase enzyme., Analyst, 126, 1919 (2001).
33.Weibo Cai, Ting Gao, Hao Hong, Jiangtao Sun, Applications of gold nanoparticles in cancer nanotechnology., J. Nanotechnol. sci. and appli., 2008:1,17 (2008).
34.B. R. Pieter, R. A. Williams, and C. Webb, Magnetic carrier technology. In:Williams, R. A., ed. Colloid and Surface Engineering: Applications in the process industries. Oxford:Butterworth- Heinemann, pp.248 (1992).
35.S. I. Stoeva, F. Huo, J. S. Lee, and C. A. Mirkin, Three-layer composite magnetic nanoparticle probes for DNA., J. Am. Chem. Soc., 127, 15362 (2005).
36.U. Maver, M. Bele, D. Makovec, S. Campelj, J. Jamnik, M. Gaberscek, Incorporation and release of drug into/from superparamagnetic iron oxide nanoparticles., J. Magn. Magn. Mater., 321, 3187 (2009).
37.A. A. Bogdanov, A. L. Klibanov, and V. P. Torchilin, Protein immobilization on the surface of liposomes via carbodiimide activation in the presence of N-hydroxysulfosuccinimide., FEBS Letters, 231, 381 (1988).
38.M. Johannsen, B. Thiesen, U. Gneveckow, K. Taymoorian, N. Waldofner, R. Scholz, S. Deger, K. Jung, S. A. Loening, and A. Jordan, Thermotherapy using magnetic nanoparticles combined with external radiation in an orthotopic rat model of prostate cancer., The Prostate, 66, 97 (2006).
39.P. Moroz, S. K. Jones, and B. N. Gray, Magnetically mediated hyperthermia: current status and future directions., Int. J. Hyperthermia., 18, 267 (2002).
40.J. Yang, J. Lee, S. B. Seo, H. J. Ko, J. S. Suh, Y. M. Huh, and S. Haam, Smart nanoprobes for ultrasensitive detection of breast cancer via magnetic resonance imaging., Nanotechnology, 48, 485101 (2008).
41.M. H. Krause, K. K. Kwong, E. S. Gragoudasa, and L. H. Young, MRI of blood volume with superparamagnetic iron in choroidal melanoma treated with thermotherapy., Magn. Reson. Imag., 22 , 779 (2004).
42.D. C. Brigger and P. Couvreur, Nanoparticles in cancer therapy and diagnosis., Adv. Drug Del. Rev., 54, 631 (2002).
43.J. Halavaara, P. Tervahartiala, H. Isonieme, and K. Hockerstedt, Efficacy of sequential use of superparamagnetic iron oxide and gadolinium in liver MR imaging., Acta Radiol., 43, 180 (2002).
44.Ming Zhang, Brian L Cushing, and Charles J O’Connor, Synthesis and characterization of monodisperse ultra-thin silica-coated magnetic nanoparticles., Nanotechnology, 19, 085601 (2008).
45.L. Zhang, S. Qiao, Y. Jin, H. Yang, S. Budihartono, F. Stahr, Z. Yan, X. Wang, Z. Hao, and G. Q. Lu, Fabrication and Size-selective Bioseparation of Magnetic Silica Nanospheres with Highly Ordered Periodic Mesostructure., Adv. Funct. Mater., 18, 3203 (2008).
46.R. B. Shi, Z. C. Zhang, L. Chen, Q. H. Wan, Magnetic Silica Microspheres as a Novel Support for Immobilized Metal Affinity Purification of Proteins/Peptides., Chinese J. Anal. Chem., 35, 628 (2007).
47.J. Lee, Y. Lee, J. K. Youn, H. B. Na, T. Yu, H. Kim, S. M. Lee, Y. M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. Hwang, J. G. Park, J. Kim, and T. Hyeon, Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts., Small, 4, 143 (2008).
48.F. Herranz, M. P. Morales, A. G. Roca, M. Desco, and J. R. Cabello, A New Method for the Rapid Synthesis of Water Stable Superparamagnetic Nanoparticles., Chem. Eur. J., 14, 9126 (2008).
49.H. Gu, P. L. Ho, K. W. Tsang, C. W. Yu, and B. Xu, Using Biofunctional Magnetic Nanoparticles to Capture Gram-negative Bacteria at a Ultra-Low Concentration., Chem. Commun., 18, 1966 (2003).
50.J. J. Gallagher, R. Tekoriute, J. A. O’Reilly, C. Kerskens, Y. K. Gun’ko, and M. Lynch, Bimodal magnetic-fluorescent nanostructures for biomedical applications., J. Mater. Chem., 19, 4081 (2009).
51.劉燕玲,伴刀豆球蛋白固定化於磁性奈米粒子之研究,國立成功大學化學工程研究所碩士論文 (2010)。
52.楊謝樂,磁性奈米粒子於生物醫學上之應用,物理雙月刊,28卷4期 (2006)。
53.龔吉合,材料科學導論,台中:滄海 (1998)。
54.R. H. Kodama, Magnetic nanoparticles., J. Magn. Magn. Mater., 200, 359 (1999).
55.I. M. L. Billas, A. Chatelain, and W. A. de Heer, Magnetism from the Atom to the Bulk in Iron, Cobalt, and Nickel Clusters., Science, 265, 1682 (1994).
56.I. M. L. Billas, A. Chatelain, and W. A. de Heer, Magnetism of Fe, Co and Ni clusters in molecular beams., J. Magn. Magn. Mater., 168, 64 (1997).
57.A. J. Freeman, C. L. Fu, S. Ohnishi, and M. Weinert, Polarized Electrons in Surface Physics, World Scientific, Singapore (1985).
58.馬振基,奈米材料科技原理與應用,台北:全華 (2004)。
59.張正武,FePt及FePtB奈米晶薄帶磁性、相變化與交換藕合效應之研究,國立中正大學物理研究所碩士論文 (2004)。
60.黃世宏,奈米粉體在分離及電化學感測上之應用研究,國立成功大學化學工程研究所博士論文 (2009)。
61.許克瀛,單一散度高分子螯合顆粒之製備,私立中原大學化學工程研究所博士論文 (2003)。
62.Langmuir, I. The constitution and fundamental properties of solids and liquids., J. Am. Chem. Soc.,40, 1361 (1918).
63.廖敏宏,磁性奈米載體在生物觸媒和生化分離之應用,國立成功大學化學工程研究所博士論文 (2002)。
64.Faust, S. D.; Aly, O. M., Adsorption processes for water treatment. Boston:Butterworths, pp.16 (1987).
65.Ngah, W. S. W.; Endud, C. S.; Mayanar, Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads., R. Funct. Polym. 50, 181(2002).
66.S. C. Kou, Binny J. Cherayil, Wei Min, Brian P. English, and X. Sunney Xie, Single-Molecule Michaelis-Menten Equations., J. Phys. Chem. B, 109, 19068 (2005).

電子全文 電子全文(網際網路公開日期:20221029)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top