1.閻啟泰、蘇慶華、商惠芳、楊定一 合著,實用微生物及免疫學,台北:華杏 (2011)。
2.R. G. Webster, W. J. Bean, O. T. Gorman, T. M. Chambers and Y. Kawaoka, Evolution and ecology of influenza A viruses., Microbiol. Rev., 56(1), 152 (1992).
3.顏德欣,利用甘露醣結合凝集素接合金奈米之複合物抑制流行性感冒病毒感染,國立成功大學微生物及免疫學研究所碩士論文 (2011)。4.B. Bean, Antiviral therapy: current concepts and practices., Clin Microbiol Rev, 5, 146 (1992).
5.鄭瑞洲,疫苗,《科學發展》,第427期,26 ~ 31頁(2008)。6.G. M. Edelman, B. A. Cunningham, G. N. Reeke, J. W. Becker, M. J. Waxdal, and J. L. Wang, The Covalent and Three-Dimensional Structure of Concanavalin A., Proc. Natl. Acad. Sci. USA, 69, 2580 (1972).
7.S. Sinha, Y. Li, T. D. Williams, and E. M. Topp, Protein conformation in amorphous solids by FTIR and by hydrogen/deuterium exchange with mass spectrometry., Biophys. J., 95, 5951 (2008).
8.M. Kudou, K. Shiraki, and M. Takagi, Characterization of heat-induced aggregates of concanavalin A using fluorescent probes., Sci. Tech. Adv. Mater., 5, 339 (2004).
9.A. Dong, P. Huang, and W. S. Caughey, Protein secondary structures in water from second-derivative amide I infrared spectra., Biochemistry, 29, 3303 (1990).
10.R. Zand, B. B. L. Agrawal, and I. J. Goldstein, pH-Dependent Conformational Changes of Concanavalin A., Proc. Natl. Acad. Sci. USA, 68, 2173 (1971).
11.J. L. Wang, B. A. Cunningham, and G. M. Edelman, Unusual Fragments in the Subunit Structure of Concanavalin A., Proc. Natl. A cad. Sci. USA, 68, 1130 (1971).
12.張松文,以氧化鐵磁性奈米粒子分離伴刀豆球蛋白之研究,國立成功大學化學工程研究所碩士論文 (2007)。13.K. Sparbier, S. Koch, I. Kessler, T. Wenzel, and M. Kostrzewa, Selective Isolation of Glycoproteins and Glycopeptides for MALDI-TOF MS Detection Supported by Magnetic Particles., J. Biomol. Tech., 16, 407 (2005).
14.F. Santori and J. Hubble, I socratic separation of monosaccharides using immobilized Concanavalin A., J. Chromatogr. A, 1003, 123 (2003).
15.S. Mansouri and J. S. Schultz, A Miniature Optical Glucose Sensor Based on Affinity Binding., Nature Biotechnology, 2, 885 (1984).
16.M. D.L. Oliveira, M. T.S. Correia, and Flamarion B. Diniz, Concanavalin A and polyvinyl butyral use as a potential dengue electrochemical biosensor., Biosens and Bioelectron., 25 , 728 (2009).
17.R. Kikkeri, F. Kamena, T. Gupta, L. H. Hossain, S. Boonyarattanakalin, G. Gorodyska, E. Beurer, G. Coullerez, M. Textor, and P. H. Seeberger, Ru(II) Glycodendrimers as Probes to Study Lectin−Carbohydrate Interactions and Electrochemically Measure Monosaccharide and Oligosaccharide Concentrations., Langmuir, 26, 1520 (2010).
18.C. Kaittanis, S. Nath and J. M. Perez, Rapid Nanoparticle-Mediated Monitoring of Bacterial Metabolic Activity and Assessment of Antimicrobial Susceptibility in Blood with Magnetic Relaxation., Plos One, 3, 3253 (2008).
19.Sudip Nath, Charalambos Kaittanis, Alisa Tinkham, and J. Manuel Perez, Dextran-Coated Gold Nanoparticles for the Assessment of Antimicrobial Susceptibility., Anal. Chem., 80, 1033 (2008).
20.張舒,康曉楠,劉銀坤,「肝癌對糖蛋白聚糖結構的變化」,世界華人消化雜誌,16,4071 (2008)。
21.郭俐亨,探討性荷爾蒙在Concanavalin A誘發小鼠肝炎的調節角色,國立成功大學微生物暨免疫學研究所碩士論文 (2003)。22.張志鵬,刀豆素A誘導細胞自噬在肝癌治療與急性肝炎的作用,國立成功大學基礎醫學研究所博士論文 (2008)。23.B. Liu, M. W. Min, and J. K. Bao, Induction of apoptosis by Concanavalin A and its molecular mechanisms in cancer cells., Autophagy, 5, 432 (2009).
24.李名揚,翁啟惠的醣分子世界,科學人,第79期 (2008)。25.A. Monzo, G. K. Bonn, and A. Guttman, Lectin immobilization strategies for affinity purification and separation of glycoconjugates., Trends Anal. Chem., 26, 423 (2007).
26.S. K. Ghosh, T. Pal, Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications., Chem. Rev., 107, 4797 (2007).
27.M. Haruta, Catalysis of Gold Nanoparticles Deposited on Metal Oxides., Cattech, 6, 102 (2002).
28.T. Ishida, M. Haruta, Gold Catalysts: Towards Sustainable Chemistry., Angew. Chem. Int. Ed., 46, 7154 (2007).
29.M. C. Daniel,D. Astruc, Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology., Chem. Rev., 104, 293 (2004).
30.H. J. Qiu,L. Y. Xue,G. L. Ji, Enzyme-modified nanoporous gold-based electrochemical biosensors., Biosens. Bioelectron., 24, 3014 (2009).
31.C. Staii, D. W. Wood, G. Scoles, Verification of biochemical activity for proteins nanografted on gold surfaces., J. Am. Chem. Soc., 130, 640 (2008).
32.S. Bharathi, M. Nogami, A glucose biosensor based on electrodeposited biocomposites of gold nanoparticles and glucose oxidase enzyme., Analyst, 126, 1919 (2001).
33.Weibo Cai, Ting Gao, Hao Hong, Jiangtao Sun, Applications of gold nanoparticles in cancer nanotechnology., J. Nanotechnol. sci. and appli., 2008:1,17 (2008).
34.B. R. Pieter, R. A. Williams, and C. Webb, Magnetic carrier technology. In:Williams, R. A., ed. Colloid and Surface Engineering: Applications in the process industries. Oxford:Butterworth- Heinemann, pp.248 (1992).
35.S. I. Stoeva, F. Huo, J. S. Lee, and C. A. Mirkin, Three-layer composite magnetic nanoparticle probes for DNA., J. Am. Chem. Soc., 127, 15362 (2005).
36.U. Maver, M. Bele, D. Makovec, S. Campelj, J. Jamnik, M. Gaberscek, Incorporation and release of drug into/from superparamagnetic iron oxide nanoparticles., J. Magn. Magn. Mater., 321, 3187 (2009).
37.A. A. Bogdanov, A. L. Klibanov, and V. P. Torchilin, Protein immobilization on the surface of liposomes via carbodiimide activation in the presence of N-hydroxysulfosuccinimide., FEBS Letters, 231, 381 (1988).
38.M. Johannsen, B. Thiesen, U. Gneveckow, K. Taymoorian, N. Waldofner, R. Scholz, S. Deger, K. Jung, S. A. Loening, and A. Jordan, Thermotherapy using magnetic nanoparticles combined with external radiation in an orthotopic rat model of prostate cancer., The Prostate, 66, 97 (2006).
39.P. Moroz, S. K. Jones, and B. N. Gray, Magnetically mediated hyperthermia: current status and future directions., Int. J. Hyperthermia., 18, 267 (2002).
40.J. Yang, J. Lee, S. B. Seo, H. J. Ko, J. S. Suh, Y. M. Huh, and S. Haam, Smart nanoprobes for ultrasensitive detection of breast cancer via magnetic resonance imaging., Nanotechnology, 48, 485101 (2008).
41.M. H. Krause, K. K. Kwong, E. S. Gragoudasa, and L. H. Young, MRI of blood volume with superparamagnetic iron in choroidal melanoma treated with thermotherapy., Magn. Reson. Imag., 22 , 779 (2004).
42.D. C. Brigger and P. Couvreur, Nanoparticles in cancer therapy and diagnosis., Adv. Drug Del. Rev., 54, 631 (2002).
43.J. Halavaara, P. Tervahartiala, H. Isonieme, and K. Hockerstedt, Efficacy of sequential use of superparamagnetic iron oxide and gadolinium in liver MR imaging., Acta Radiol., 43, 180 (2002).
44.Ming Zhang, Brian L Cushing, and Charles J O’Connor, Synthesis and characterization of monodisperse ultra-thin silica-coated magnetic nanoparticles., Nanotechnology, 19, 085601 (2008).
45.L. Zhang, S. Qiao, Y. Jin, H. Yang, S. Budihartono, F. Stahr, Z. Yan, X. Wang, Z. Hao, and G. Q. Lu, Fabrication and Size-selective Bioseparation of Magnetic Silica Nanospheres with Highly Ordered Periodic Mesostructure., Adv. Funct. Mater., 18, 3203 (2008).
46.R. B. Shi, Z. C. Zhang, L. Chen, Q. H. Wan, Magnetic Silica Microspheres as a Novel Support for Immobilized Metal Affinity Purification of Proteins/Peptides., Chinese J. Anal. Chem., 35, 628 (2007).
47.J. Lee, Y. Lee, J. K. Youn, H. B. Na, T. Yu, H. Kim, S. M. Lee, Y. M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. Hwang, J. G. Park, J. Kim, and T. Hyeon, Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts., Small, 4, 143 (2008).
48.F. Herranz, M. P. Morales, A. G. Roca, M. Desco, and J. R. Cabello, A New Method for the Rapid Synthesis of Water Stable Superparamagnetic Nanoparticles., Chem. Eur. J., 14, 9126 (2008).
49.H. Gu, P. L. Ho, K. W. Tsang, C. W. Yu, and B. Xu, Using Biofunctional Magnetic Nanoparticles to Capture Gram-negative Bacteria at a Ultra-Low Concentration., Chem. Commun., 18, 1966 (2003).
50.J. J. Gallagher, R. Tekoriute, J. A. O’Reilly, C. Kerskens, Y. K. Gun’ko, and M. Lynch, Bimodal magnetic-fluorescent nanostructures for biomedical applications., J. Mater. Chem., 19, 4081 (2009).
51.劉燕玲,伴刀豆球蛋白固定化於磁性奈米粒子之研究,國立成功大學化學工程研究所碩士論文 (2010)。52.楊謝樂,磁性奈米粒子於生物醫學上之應用,物理雙月刊,28卷4期 (2006)。53.龔吉合,材料科學導論,台中:滄海 (1998)。
54.R. H. Kodama, Magnetic nanoparticles., J. Magn. Magn. Mater., 200, 359 (1999).
55.I. M. L. Billas, A. Chatelain, and W. A. de Heer, Magnetism from the Atom to the Bulk in Iron, Cobalt, and Nickel Clusters., Science, 265, 1682 (1994).
56.I. M. L. Billas, A. Chatelain, and W. A. de Heer, Magnetism of Fe, Co and Ni clusters in molecular beams., J. Magn. Magn. Mater., 168, 64 (1997).
57.A. J. Freeman, C. L. Fu, S. Ohnishi, and M. Weinert, Polarized Electrons in Surface Physics, World Scientific, Singapore (1985).
58.馬振基,奈米材料科技原理與應用,台北:全華 (2004)。
59.張正武,FePt及FePtB奈米晶薄帶磁性、相變化與交換藕合效應之研究,國立中正大學物理研究所碩士論文 (2004)。60.黃世宏,奈米粉體在分離及電化學感測上之應用研究,國立成功大學化學工程研究所博士論文 (2009)。61.許克瀛,單一散度高分子螯合顆粒之製備,私立中原大學化學工程研究所博士論文 (2003)。
62.Langmuir, I. The constitution and fundamental properties of solids and liquids., J. Am. Chem. Soc.,40, 1361 (1918).
63.廖敏宏,磁性奈米載體在生物觸媒和生化分離之應用,國立成功大學化學工程研究所博士論文 (2002)。64.Faust, S. D.; Aly, O. M., Adsorption processes for water treatment. Boston:Butterworths, pp.16 (1987).
65.Ngah, W. S. W.; Endud, C. S.; Mayanar, Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads., R. Funct. Polym. 50, 181(2002).
66.S. C. Kou, Binny J. Cherayil, Wei Min, Brian P. English, and X. Sunney Xie, Single-Molecule Michaelis-Menten Equations., J. Phys. Chem. B, 109, 19068 (2005).