跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 04:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭仲佑
研究生(外文):Chung-YuCheng
論文名稱:微奈米結構在太陽能電池之效率提升研究
論文名稱(外文):The applications of micro & nano structure to enhance the efficiencies of solar cells
指導教授:洪昭南洪昭南引用關係
指導教授(外文):Chau-Nan Hong
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:74
中文關鍵詞:染料敏化太陽能電池基板反射電極結構
外文關鍵詞:Dye-sensitized solar cellsubstrate reflectionelectrode structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:91
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在染料敏化太陽能電池(dye-sensitized solar cells, DSSC)中,多孔性的二氧化鈦光電極必須經過400~500℃高溫燒結,但是一般的可撓式塑膠導電基板在此高溫下會變形,無法承受高溫燒結;所以在2006年,M.Grätzel團隊提出以軟性鈦金屬基板取代塑膠基板製作染料敏化太陽能電池,本實驗以此概念製作背向照光染料敏化太陽能電池。首先,由於背向照光的緣故,光必須由對電極照入,所以對電極的白金的厚度會影響穿透度、導電度與催化活性;利用不同厚度的白金濺鍍在透明導電玻璃電極上製作元件來量測效率,得到最適當的白金厚度。其次利用鈦基板取代透明導電玻璃,製作背向照光染料敏化太陽能電池,得到效率為3.25%;並利用可見-紫外光譜儀(UV-Vis)量測鈦基板處理後,其基板反射對於元件效率之影響,可得拋光後的太陽能電池效率為4.17%。更進一步製作具有各種電極結構之太陽能電池元件,探討不同電極結構對太陽能電池元件效率之影響,並且利用電化學交流阻抗、光譜儀與外部量子效率(IPCE)作檢測,可得最佳效率為5.91%。
In dye-sensitized solar cells (DSSCs), the porous titanium dioxide photoelectrode must be sintered at a temperature of 400-500℃. However, the regular flexible plastic conductive substrates will deformed under high temperature treatment, it can not sustain high temperature sintering. In 2006, M.Grätzel group proposed a method to replace the plastic substrate with flexible titanium substrate to fabricate dye-sensitized solar cells. In this study, we use this concept in manufacturing back illuminated dye-sensitized solar cells.
For the back illuminated dye-sensitized solar cells, the light comes from the rear side to the counter electrodes, the thickness of the platinum will have an effect on the transmittance, conductivity, and catalytic activity on the counter electrode. We fabricate the back illuminated DSSC by sputtering platinum with different thickness on transparent conductive glass electrode, then the photoelectric conversion efficiency is measured to get the optimum thickness of platinum. Second, we use the titanium foil substrate to replace the transparent conductive glass in fabrication of back illuminated dye-sensitized solar cells, the efficiency reached 3.63%. The reflectivity is measured by visible - ultraviolet spectrometer (UV-Vis) to distinguish the effect of substrate reflection on devices efficiencies. With polished treatment of the titanium substrate, the photoelectric conversion efficiencies of the devices reached 4.17%. Next, we fabricate the DSSCs devices with variety of electrode structure to investigate the effect of different electrode structure on the efficiencies of solar cells. The devices are analyzed with electrochemical impedance spectrometer (EIS) and incident photon-to-electron conversion efficiency (IPCE). The resulting photoelectric conversion efficiencies of the devices reached 5.91%.

第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
第二章 理論基礎與文獻回顧 6
2-1 染料敏化太陽能電池之歷史與發展沿革 6
2-2 染料敏化太陽能電池之結構 9
2-3 染料敏化太陽能電池之工作原理 14
2-4 對電極在DSSC之發展與應用 17
2-4-1 白金對電極(Platium CEs) 19
2-4-2 金屬基板的對電極(Metal substrate for CEs) 20
2-4-3 高分子材料(polymer materials) 21
2-4-4 高分子-白金複合材料(Polymer-Pt composite) 21
2-5 染料敏化太陽能電池之光電特性量測 23
2-5-1 DSSC之總效率 23
2-5-2 DSSC之光電轉化效率(Incident Photo to Current conversion efficiency) 28
第三章 實驗儀器與方法 29
3-1 實驗流程 29
3-2 實驗儀器 31
3-3 實驗材料與藥品 34
3-4 實驗步驟 36
3-5 實驗分析與鑑定 41
第四章 結果與討論 45
4-1 正向染料敏化太陽電池分析 45
4-2 背向染料敏化太陽電池分析 49
4-3 背向鈦基板光電極之染料敏化太陽電池分析 55
4-4 利用乾蝕刻方式製作具結構之鈦基板光電極的DSSC分析 58
4-4-1 利用乾蝕刻方式製作具結構之鈦基板光電極 58
4-4-2 利用乾蝕刻製作之具結構鈦基板於DSSC之效率與分析 59
4-5 利用濕蝕刻方式製作具結構之鈦基板光電極的DSSC分析 65
4-5-1 利用濕蝕刻方式製作具結構之鈦基板光電極 65
4-5-2 利用濕蝕刻製作之具結構鈦基板於DSSC之效率與分析 66
第五章 結論 69
第六章 文獻回顧 70

1.Aswani Yella, Hsuan-Wei Lee, Hoi Nok Tsao, Chenyi Yi, Aravind Kumar Chandiran, Md. Khaja Nazeeruddin, Eric Wei-Guang Diau, *Chen-Yu Yeh, *Shaik M. Zakeeruddin, *M. Grätzel. “Porphyrin-Sensitized Solar Cells with Cobalt (II/III) Electrolyte Exceed 12 Percent Efficiency. Science, 334, 2011, 629-634.
2.T. Miyasaka and Y. Kijitori, “Low-Temperature Fabrication of Dye-Sensitized Plastic Electrodes by Electrophoretic Preparation of Mesoporous TiO2 Layers. J. Electrochem. Soc., 151, 2004, A1767-A1773.
3.S. Ito, N. L. Cevey Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Pechy, M. Khaja Nazeeruddin and M. Grätzel, “High-Efficiency (7.2%) Flexible Dye-Sensitized Solar Cells with Ti-Metal Substrate for Nanocrystalline-TiO2 Photoanode. Chem. Commun., 2006, 4004-4006.
4. H. Tsubomura, M. Matsumura, Y, Nomura and T. Amamiya, “Dye-sensitized zinc oxide/aqueous electrolyte/platinum photocell. Nature, 261, 1976, 402-403.
5.O'Regan, B. and M. Grätzel, A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature, 1991, 353, 737–740.
6.M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, Le Cevey, E. Costa, V. Shklover,L. Spiccia, Glen B. Deacon, Carlo A. Bignozzi, and Michael Grätzel *.“Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells. J. Am. Chem. Soc., 123, 2001, 1613-1624.
7.M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. J. Am. Chem. Soc., 127, 2005, 16835-16847.
8.Q-J Yu, Y-H Wang, Z-H Yi, N-N Zu, J. Zhang, and *P.Wang. “High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states. ACS Nano, 4, 2010, 6032-6038.
9.P. Wang, S. M. Zakeeruddin, M. Grätzel, “Solidifying Liquid Electrolytes with Fluorine Polymer and Silica Nanoparticles for Quasi-Solid Dye-Sensitized Solar Cells. J. Fluor. Chem., 125, 2004, 1241-1245.
10.P. Wang, Q. Dai, S. M. Zakeeruddin, M. Forsyth, D. R. MacFarlane and M. Grätzel, “Ambient Temperature Plastic Crystal Electrolyte for Efficient, All-Solid-State Dye-Sensitized Solar Cell J. Am. Chem. Soc., 126, 2004, 13590-13591.
11.L. Dloczik, “Dynamic Response of Dye-Sensitized Nanocrystalline Solar Cells: Characterization by Intensity-Modulated Photocurrent Spectroscopy, J. Phys. Chem. B, 101, 1997, 10281-10289.
12.G. Wolfbauer, A. M. Bond, J. C. Eklund and D. R. MacFarlane, A Channel Flow Cell System Specifically Designed to Test the Efficiency of Redox Shuttles in Dye Sensitized Solar Cells, Sol. Energy Mater. Sol. Cells, 70, 2001, 85-101.
13.N. Kopidakis, K. D. Benkstein, J. Lagemaat and A. J. Frank, “Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells., J. Phys. Chem. B, 107, 2003, 11307-11315.
14.D. Kuang, C. Klein, H. J. Snaith, J. Moser, R. Humphry-Baker, P. Comte, S. M. Zakeeruddin and M. Grätzel, “Ion Coordinating Sensitizer for High Efficiency Mesoscopic Dye-Sensitized Solar Cells: Influence of Lithium Ions on the Photovoltaic Performance of Liquid and Solid-State Cells., Nano Lett., 6, 2006, 769-773.
15. S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug and J. R. Durrant, “ Charge Separation versus Recombination in Dye-Sensitized Nanocrystalline Solar Cells: the Minimization of Kinetic Redundancy. J. Am. Chem. Soc., 127, 2005, 3456-3462.
16.M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humpbry-Baker, E. Muller, P. Liska, N. Vlachopoulos and M. Grätzel, “Conversion of Light to Electricity by cis-XzBis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(11) Charge-Transfer Sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes., J. Am. Chem. Soc., 115, 1993, 6382-6390.
17.P. Wang, S. M. Zakeeruddin, I. Exnar and M. Grätzel, “High Efficiency Dye-Sensitized Nanocrystalline Solar Cells Based on Ionic Liquid Polymer Gel Electrolyte. Chem. Commun, 2002, 2972-2973.
18.W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada and S. Yanagida, “Quasi-Solid-State Dye-Sensitized Solar Cells Using Room Temperature Molten Salts and a Low Molecular Weight Gelator., Chem. Commun, 2002, 374-375.
19.N. Mohmeyer, D. Kuang, P. Wang, H. W. Schmidt, S. M. Zakeeruddin and M. Grätzel, “An Efficient Organogelator for Ionic Liquids to Prepare Stable Quasi-Solidstate Dye-Sensitized Solar Cells. J. Mater. Chem., 16, 2006, 2978-2983.
20.G. J. Meyer, “Efficient light-to Electrical Conversion-Nanocrystalline TiO2 film Modified with Inorganic-Sensitizers. J. Chem. Educ., 74, 1997, 652–656.
21.A. Hagfeldt, M. Grätzel, “Light Induced Redox Reactions in Nanocrystalline Systems, Chem. Rev., 95, 1995, 49-68.
22.D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, I. Riess, “Nature of Photovoltaic Action in Dye-Sensitized Solar Cells, J.Phys. Chem. B, 104 (9), 2000, 2053–2059.
23.Takurou N. Murakami and M. Grätzel, “Counter electrodes for DSC: Appication of functional materials as catalysts. Inorg. Chim. Acta, 361, 2008, 572-580.
24.A. Kay, M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder Sol. Energy Mater. Sol. Cells, 44, 1996, 99-117.
25.T. Kitamura, M. Maitani, M. Matsuda, Y. Wada and S. Yanagida, “Improved Solid-State Dye Solar Cells with Polypyrrole Using a Carbon-Based Counter Electrode Chem. Lett., 2001,1054-1055.
26.Y. Saito, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida, “I-/I3- redox reaction behavior on poly(3,4-ethylenedioxythiophene) counterelectrode in dye-sensitized solar cells J. Photochem. Photobiol. A. Chem. 164, 2004, 153-157.
27.K. Suzuki, M. Yamamoto, M. Kumagai, S. Yanagada, “Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells Chem. Lett., 32, 2003, 28-29.
28.K. Imoto, K. Takatashi, T. Yamaguchi, T. Komura, J. Nakamura, and K. Murata, “High-performance carbon counter electrode for dye-sensitized solar cells Sol. Energy Mater. Sol. Cells, 79, 2003, 459-469.
29.N. Fukuri, Y. Saito, W. Kubo, G.K.R. Senadeera, T. Kitamura, Y. ada, S. Yanagida, “Performance Improvement of Solid-State Dye-Sensitized Solar Cells Fabricated Using Poly(3,4-ethylenedioxythiophene) and Amphiphilic Sensitizing Dye J. Electrochem. Soc., 151, 2004, 1745-1752.
30.T. Ma, X. Fang, M. Akiyama, K. Inoue, H. Noma, E. Abe, “Properties of several types of novel counter electrodes for dye-sensitized solar cell J. Electroanal. Chem., 574, 2004, 77-83.
31.R. Senadeera, N. Fukuri, Y. Saito, T. Kitamura, Y. Wada, S. Yanagida, “Volatile solvent-free solid-state polymer-sensitized TiO2 solar cells with poly(3,4-ethylenedioxythiophene) as a hole-transporting medium. Chem. Commun., 2005, 2259-2261.
32.T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, and M. Grätzel, “Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes J. Electrochem. Soc., 153, 2006, A2255-A2261.
33.N. Ikeda, K. Teshima, T. Miyasaka, “Conductive polymer–carbon–imidazolium composite: a simple means forconstructing solid-state dye-sensitized solar cells Chem. Commun. , 2006, 1733-1735.
34.T.C. Wei, C.C. Wan, Y.Y. Wang, “Poly(N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tin oxide glass as counterelectrode for dye-sensitized solar cells. Appl. Phys. Lett. 88, 103122(2006).
35.M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, “Investigation of Sensitizer Adsorption and the Influence of Photons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cells J. Phys. Chem. B 107, 2003, 8981-8987.
36.T. Yamaguchi, N. Tobe, D. Matsumoto and H. Arakawa, “Highly Efficient Plastix Substrate Dye-Sensitized Solar Cells Using A Compression Method for Preparation of TiO2 Photoelectrodes. Chem. Commun., 2007, 4767-4769.
37.C.Y. Chen, M. Wang, J.Y. Li, N. Pootrakulchote, L. Alibabaei, C.H. Ngoc-le, J.D. Decoppet, J.H. Tsai, C. Grätzel, C.G. Wu, S. M. Zakeeruddin and M. Grätzel , “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells ACS Nano, 3, 2009, 3103-3109.
38.http://www.etafilm.com.tw/images/DCplasmaSputtering.jpg
39.X. Fanga, T. Ma, M. Akiyama, G. Guan, S. Tsunematsua, E. Abe, “Flexible counter electrodes based on metal sheet and polymer film fordye-sensitized solar cells Thin Solid Film. 472, 2005, 242-245.
40.S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug and J. R. Durrant, “ Charge Separation versus Recombination in Dye-Sensitized Nanocrystalline Solar Cells: the Minimization of Kinetic Redundancy. J. Am. Chem. Soc. 127, 2005, 3456-3462.
41.S.-S. Kim. , J.-H. Yum and Y. E. Sung.,Flexible dye-sensitized solar cells using ZnO coated TiO2 nanoparticles. J. Photochem. Photobiol. A, 171, 2005, 269-273.
42.Man Gu Kang,Nam-Gyu Park, Kwang Sun Ryu, Soon Ho Chang, and Kang-Jin Kim., “Flexible Metallic Substrates for TiO2 Film of Dye-sensitized Solar Cells. Chem. Lett. 34, 6 , 2005, 804-805.
43.Liyuan Han, Naoki Koide,Yasuo Chiba, Takehito Mitate, “Modeling of an equivalent circuit for dye-sensitized solar cells, Appl. Phys. Lett. 84, 2004, 2433-2435.
44.R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, “Modeling and inter- pretation of electrical impedance spectra of dye solar cells operated under open- circuit conditions, Electrochimica Acta.47, 2002, 4213-4225.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top