( 您好!臺灣時間:2021/07/29 20:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


論文名稱(外文):Control and Trapping of Particles by Electroosmotic Flow in Semicircular and Square Microchannels
指導教授(外文):Shyh-Hong Hwang
外文關鍵詞:electroosmotic flowzeta potential distributionfeedback controlparticle manipulationparticle trap
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
This thesis investigates the control and trapping of suspended particles in confined semicircular and square microchannels, and proposes a feedback control strategy to trap multiparticles at designated points or track their trajectories by adjusting the electroosmotic flow. Via modulating the voltages of the microelectrodes embedded beneath the liquid-solid interface, a specific zeta potential distribution on the channel’s surface can be induced to cause a surface slip of the adjacent liquid and create the corresponding electroosmotic flow field in the channel. The proposed feedback control strategy calculates the required particle’s velocity according to the deviation between each particle’s position and its designated trajectory, and hence acquires the optimal voltages. Its purpose is to improve the efficiency and accuracy of the particle manipulation and to eliminate the disturbance caused by the Brownian motion. This work also addresses the problem of trapping particles at the surface stagnation point. By combining the feedback control strategy with a short-range force field, the efficiency of particle trapping can be enhanced and the invalidity of the short-range force for particles at a distance can be overcome. The concept is that the former can drive the converging electroosmotic flow to bring the particles fast to the neighborhood of the stagnation point, whereas the latter can ensure the capture of the particles at that point.
In the simulation study on the semicircular microchannel, an analytical solution for the semicircular electroosmotic flow in the literature is adopted to calculate the fluid velocity. In the simulation study on the square microchannel, the numerical solution along the semicircular arc on the channel’s bottom is computed first, and the analytical solution of the bottom semicircle is then developed using the numerical solution as a boundary condition. This analytical solution is employed to yield the so-called semi-analytical solution for the square microchannel for rapid computation of the fluid velocity.

摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機 4
1.4 論文架構 5
第二章 基本原理 6
2.1 電雙層(electric double layer, EDL)形成機制 6
2.2 電滲流(electro-osmotic flow)形成機制 8
2.3 布朗運動(Brownian motion)與Langevin Equation 11
第三章 在半圓區域中利用電滲流操控粒子行為的模擬 13
3.1 半圓平面區域中Stokes流的數學模型 13
3.2 以電滲流操控粒子運動的軌跡 17
3.2.1 基本假設 17
3.2.2 粒子運動的統馭方程式與其軌跡 18
3.2.3 滑動速度與所需電壓的關係 21
3.2.4 單一粒子定點控制 22
3.2.5 單一粒子朝向不同定點運動之控制 28
3.2.6 單一粒子沿著指定軌跡移動之控制 31
3.3 在短距力場存在下以電滲流控制來加速停滯點之粒子捕捉 36
3.3.1 產生表面停滯點所需的基本流 36
3.3.2 粒子捕捉的控制設計 38
3.3.3 在短距吸引力存在下以電滲流控制捕捉粒子 45
3.3.4 以電滲流控制捕捉多顆粒子的方法 50
第四章 利用半解析解模擬正方形微流道中的粒子控制 55
4.1 正方形微流道中Stokes流的半解析解 55
4.1.1 封閉正方形微流道中的四個基本流態 55
4.1.2 正方形微流道數學模型的建立 58
4.2 對單一粒子移動軌跡的控制 64
4.3 利用電滲流以及底部表面的停滯點捕捉粒子 68
4.3.1 基本流的選擇 68
4.3.2 以電滲流控制捕捉粒子的設計 70
4.3.3 在短距力的影響下以電滲流控制捕捉多顆粒子 72
第五章 結論與未來展望 75
參考文獻 77
附錄A 81

[1]A. Manz, N. Graber, and H. M. Widmer, Miniaturized total chemical analysis systems: A novel concept for chemical sensing, Sensors and Actuators B: Chemical, vol. 1, pp. 244-248, 1990.

[2]Y. Ben and H. Chang, Nonlinear smoluchowski slip velocity and micro-vortex generation, Journal of Fluid Mechanics, vol. 461, pp. 229-238, 2002.

[3]Y. Ben, Nonlinear Electrokinetic Phenomena in Microfluidic Devices, Ph.D. Dissertation, University of Notre Dame, 2004.

[4]A. Ajdari, Electro-osmosis on inhomogeneously charged surfaces, Physical Review Letters, vol. 75, pp. 755-758, 1995.

[5]H. Morgan and N. G. Green, AC Electrokinetics: Colloids and Nanoparticles. UK: Research Studies Press, 2003.

[6]H. A. Stone, A. D. Stroock, and A. Ajdari, Engineering flows in small devices, Annual Review of Fluid Mechanics, vol. 36, pp. 381-411, 2004.

[7]T. M. Squires and S. R. Quake, Microfluidics: Fluid physics at the nanoliter scale, Reviews of Modern Physics, vol. 77, pp. 977-1026, 2005.

[8]J. West, M. Becker, S. Tombrink, and A. Manz, Micro total analysis systems: Latest achievements, Analytical Chemistry, vol. 80, pp. 4403-4419, 2008.

[9]R. J. Hunter, Zeta Potential in Colloid Science: Principles and Applications. New York: Academic Press, 1981.

[10]S. Ghosal, Fluid mechanics of electroosmotic flow and its effect on band broadening in capillary electrophoresis, Electrophoresis, vol. 25, pp. 214-228, 2004.

[11]S. Qian and H. H. Bau, A chaotic electroosmotic stirrer, Analytical Chemistry, vol. 74, pp. 3616-3625, 2002.

[12]E. Brunet and A. Ajdari, Thin double layer approximation to describe streaming current fields in complex geometries: Analytical framework and applications to microfluidics, Physical Review E, vol. 73, p. 056306, 2006.

[13]S. Dukhin, R. Miller, and G. Kretzschmar, On the theory of adsorption kinetics of ionic surfactants at fluid interfaces, Colloid & Polymer Science, vol. 261, pp. 335-339, 1983.

[14]D. Long, H. A. Stone, and A. Ajdari, Electroosmotic flows created by surface defects in capillary electrophoresis, Journal of Colloid and Interface Science, vol. 212, pp. 338-349, 1999.

[15]A. D. Stroock, M. Weck, D. T. Chiu, W. T. S. Huck, P. J. A. Kenis, R. F. Ismagilov, and G. M. Whitesides, Patterning electro-osmotic flow with patterned surface charge, Physical Review Letters, vol. 84, pp. 3314-3317, 2000.

[16]A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, AC electric-field-induced fluid flow in microelectrodes, Journal of Colloid and Interface Science, vol. 217, pp. 420-422, 1999.

[17]A. Ajdari, Pumping liquids using asymmetric electrode arrays, Physical Review E, vol. 61, pp. 45-48, 2000.

[18]A. Gonzalez, A. Ramos, N. Green, A. Castellanos, and H. Morgan, Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis, Physical Review E, vol. 61, p. 4019, 2000.

[19]D. Holmes and H. Morgan, Particle Focusing and Separation Using Dielectrophoresis in a Microfluidic Device. Massachusetts: Kluwer Academic Publishers, 2001.

[20]J. Wu, Y. Ben, D. Battigelli, and H. C. Chang, Long-range AC electroosmotic trapping and detection of bioparticles, Industrial & Engineering Chemistry Research, vol. 44, pp. 2815-2822, 2005.

[21]P. K. Wong, T. H. Wang, J. H. Deval, and C. M. Ho, Electrokinetics in micro devices for biotechnology applications, IEEE/ASME Transactions on Mechatronics, vol. 9, pp. 366-376, 2004.

[22]J. Kreft, Y. L. Chen, and H. C. Chang, Conformation and trapping rate of DNA at a convergent stagnation point, Physical Review E, vol. 77, p. 030801, 2008.

[23]J. R. Du, Y. J. Juang, J. T. Wu, and H. H. Wei, Long-range and superfast trapping of DNA molecules in an AC electrokinetic funnel, Biomicrofluidics, vol. 2, p. 044103, 2008.

[24]S. K. Thamida and H. C. Chang, Nonlinear electrokinetic ejection and entrainment due to polarization at nearly insulated wedges, Physics of Fluids, vol. 14, p. 4315, 2002.

[25]D. Hou and H. C. Chang, Electrokinetic particle aggregation patterns in microvortices due to particle-field interaction, Physics of Fluids, vol. 18, p. 071702, 2006.

[26]S. J. Liu, H. H. Wei, S. H. Hwang, and H. C. Chang, Dynamic particle trapping, release, and sorting by microvortices on a substrate, Physical Review E, vol. 82, p. 026308, 2010.

[27]C. K. Sun, Y. C. Huang, P. C. Cheng, H. C. Liu, and B. L. Lin, Cell manipulation by use of diamond microparticles as handles of optical tweezers, Journal of the Optical Society of America B, vol. 18, pp. 1483-1489, 2001.

[28]J. E. Curtis, B. A. Koss, and D. G. Grier, Dynamic holographic optical tweezers, Optics Communications, vol. 207, pp. 169-175, 2002.

[29]M. Armani, S. Chaudhary, R. Probst, and B. Shapiro, Using feedback control and microfluidics to steer individual particles, IEEE International Conference on Micro Electro Mechanical Systems, vol. 18, pp. 855-858, 2005.

[30]S. Chaudhary and B. Shapiro, Arbitrary steering of multiple particles independently in an electro-osmotically driven microfluidic system, IEEE Transactions on Control Systems Technology, vol. 14, pp. 669-680, 2006.

[31]R. F. Probstein, Physicochemical Hydrodynamics, 2nd ed. New York: John Wiley and Sons, 1994.

[32]P. Attard, D. Antelmi, and I. Larson, Comparison of the zeta potential with the diffuse layer potential from charge titration, Langmuir, vol. 16, pp. 1542-1552, 2000.

[33]A. Van Theemsche, J. Deconinck, B. Van den Bossche, and L. Bortels, Numerical solution of a multi-ion one-potential model for electroosmotic flow in two-dimensional rectangular microchannels, Analytical Chemistry, vol. 74, pp. 4919-4926, 2002.

[34]L. Y. Yeo, H. C. Chang, P. P. Y. Chan, and J. R. Friend, Microfluidic devices for bioapplications, Small, vol. 7, pp. 12-48, 2011.

[35]N. A. Patankar and H. H. Hu, Numerical simulation of electroosmotic flow, Analytical Chemistry, vol. 70, pp. 1870-1881, 1998.

註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top