跳到主要內容

臺灣博碩士論文加值系統

(18.207.132.116) 您好!臺灣時間:2021/07/29 20:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐譽維
研究生(外文):Yu-WeiHsu
論文名稱:半圓形與正方形微流道中利用電滲流進行粒子之控制與捕捉
論文名稱(外文):Control and Trapping of Particles by Electroosmotic Flow in Semicircular and Square Microchannels
指導教授:黃世宏
指導教授(外文):Shyh-Hong Hwang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:81
中文關鍵詞:電滲流回饋控制表面電位分布粒子操控粒子捕捉
外文關鍵詞:electroosmotic flowzeta potential distributionfeedback controlparticle manipulationparticle trap
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討封閉半圓與正方形兩種不同的幾何微流道內懸浮粒子的控制與捕捉,提出利用電滲流的調整進行多粒子定點捕捉或指定軌跡追蹤的回饋控制策略。藉由改變埋設於液固界面下多個微電極片的電壓,可在管壁表面形成特定介達電位分布,以引起相鄰流體發生表面滑動,然後在微流道內產生相應之電滲流場。所提回饋控制策略根據粒子位置與指定軌跡的偏差來計算所需粒子速度,進而獲得最佳的電壓改變量。其目的為改善粒子操作的效率與精確性,並排除布朗運動所引起擾動的影響。文中亦討論表面停滯點的粒子捕捉問題,結合回饋控制策略及短距作用力場,前者可快速驅動收斂電滲流將粒子帶至停滯點附近,後者可確保該粒子被捕捉於停滯點,因此增強粒子捕捉效率並解決短距力場對遠距粒子失效的缺點。
在半圓形微流道的模擬研究中,採用文獻已有之電滲流解析解來計算流體速度。在正方形微流道的模擬研究中,先取得底部半圓弧之數值解,以此作為邊界值解出底部半圓解析解,然後利用該解析解來組合出所謂的正方形微流道半解析解,以加快流體速度的計算。
This thesis investigates the control and trapping of suspended particles in confined semicircular and square microchannels, and proposes a feedback control strategy to trap multiparticles at designated points or track their trajectories by adjusting the electroosmotic flow. Via modulating the voltages of the microelectrodes embedded beneath the liquid-solid interface, a specific zeta potential distribution on the channel’s surface can be induced to cause a surface slip of the adjacent liquid and create the corresponding electroosmotic flow field in the channel. The proposed feedback control strategy calculates the required particle’s velocity according to the deviation between each particle’s position and its designated trajectory, and hence acquires the optimal voltages. Its purpose is to improve the efficiency and accuracy of the particle manipulation and to eliminate the disturbance caused by the Brownian motion. This work also addresses the problem of trapping particles at the surface stagnation point. By combining the feedback control strategy with a short-range force field, the efficiency of particle trapping can be enhanced and the invalidity of the short-range force for particles at a distance can be overcome. The concept is that the former can drive the converging electroosmotic flow to bring the particles fast to the neighborhood of the stagnation point, whereas the latter can ensure the capture of the particles at that point.
In the simulation study on the semicircular microchannel, an analytical solution for the semicircular electroosmotic flow in the literature is adopted to calculate the fluid velocity. In the simulation study on the square microchannel, the numerical solution along the semicircular arc on the channel’s bottom is computed first, and the analytical solution of the bottom semicircle is then developed using the numerical solution as a boundary condition. This analytical solution is employed to yield the so-called semi-analytical solution for the square microchannel for rapid computation of the fluid velocity.

摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機 4
1.4 論文架構 5
第二章 基本原理 6
2.1 電雙層(electric double layer, EDL)形成機制 6
2.2 電滲流(electro-osmotic flow)形成機制 8
2.3 布朗運動(Brownian motion)與Langevin Equation 11
第三章 在半圓區域中利用電滲流操控粒子行為的模擬 13
3.1 半圓平面區域中Stokes流的數學模型 13
3.2 以電滲流操控粒子運動的軌跡 17
3.2.1 基本假設 17
3.2.2 粒子運動的統馭方程式與其軌跡 18
3.2.3 滑動速度與所需電壓的關係 21
3.2.4 單一粒子定點控制 22
3.2.5 單一粒子朝向不同定點運動之控制 28
3.2.6 單一粒子沿著指定軌跡移動之控制 31
3.3 在短距力場存在下以電滲流控制來加速停滯點之粒子捕捉 36
3.3.1 產生表面停滯點所需的基本流 36
3.3.2 粒子捕捉的控制設計 38
3.3.3 在短距吸引力存在下以電滲流控制捕捉粒子 45
3.3.4 以電滲流控制捕捉多顆粒子的方法 50
第四章 利用半解析解模擬正方形微流道中的粒子控制 55
4.1 正方形微流道中Stokes流的半解析解 55
4.1.1 封閉正方形微流道中的四個基本流態 55
4.1.2 正方形微流道數學模型的建立 58
4.2 對單一粒子移動軌跡的控制 64
4.3 利用電滲流以及底部表面的停滯點捕捉粒子 68
4.3.1 基本流的選擇 68
4.3.2 以電滲流控制捕捉粒子的設計 70
4.3.3 在短距力的影響下以電滲流控制捕捉多顆粒子 72
第五章 結論與未來展望 75
參考文獻 77
附錄A 81

[1]A. Manz, N. Graber, and H. M. Widmer, Miniaturized total chemical analysis systems: A novel concept for chemical sensing, Sensors and Actuators B: Chemical, vol. 1, pp. 244-248, 1990.

[2]Y. Ben and H. Chang, Nonlinear smoluchowski slip velocity and micro-vortex generation, Journal of Fluid Mechanics, vol. 461, pp. 229-238, 2002.

[3]Y. Ben, Nonlinear Electrokinetic Phenomena in Microfluidic Devices, Ph.D. Dissertation, University of Notre Dame, 2004.

[4]A. Ajdari, Electro-osmosis on inhomogeneously charged surfaces, Physical Review Letters, vol. 75, pp. 755-758, 1995.

[5]H. Morgan and N. G. Green, AC Electrokinetics: Colloids and Nanoparticles. UK: Research Studies Press, 2003.

[6]H. A. Stone, A. D. Stroock, and A. Ajdari, Engineering flows in small devices, Annual Review of Fluid Mechanics, vol. 36, pp. 381-411, 2004.

[7]T. M. Squires and S. R. Quake, Microfluidics: Fluid physics at the nanoliter scale, Reviews of Modern Physics, vol. 77, pp. 977-1026, 2005.

[8]J. West, M. Becker, S. Tombrink, and A. Manz, Micro total analysis systems: Latest achievements, Analytical Chemistry, vol. 80, pp. 4403-4419, 2008.

[9]R. J. Hunter, Zeta Potential in Colloid Science: Principles and Applications. New York: Academic Press, 1981.

[10]S. Ghosal, Fluid mechanics of electroosmotic flow and its effect on band broadening in capillary electrophoresis, Electrophoresis, vol. 25, pp. 214-228, 2004.

[11]S. Qian and H. H. Bau, A chaotic electroosmotic stirrer, Analytical Chemistry, vol. 74, pp. 3616-3625, 2002.

[12]E. Brunet and A. Ajdari, Thin double layer approximation to describe streaming current fields in complex geometries: Analytical framework and applications to microfluidics, Physical Review E, vol. 73, p. 056306, 2006.

[13]S. Dukhin, R. Miller, and G. Kretzschmar, On the theory of adsorption kinetics of ionic surfactants at fluid interfaces, Colloid & Polymer Science, vol. 261, pp. 335-339, 1983.

[14]D. Long, H. A. Stone, and A. Ajdari, Electroosmotic flows created by surface defects in capillary electrophoresis, Journal of Colloid and Interface Science, vol. 212, pp. 338-349, 1999.

[15]A. D. Stroock, M. Weck, D. T. Chiu, W. T. S. Huck, P. J. A. Kenis, R. F. Ismagilov, and G. M. Whitesides, Patterning electro-osmotic flow with patterned surface charge, Physical Review Letters, vol. 84, pp. 3314-3317, 2000.

[16]A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, AC electric-field-induced fluid flow in microelectrodes, Journal of Colloid and Interface Science, vol. 217, pp. 420-422, 1999.

[17]A. Ajdari, Pumping liquids using asymmetric electrode arrays, Physical Review E, vol. 61, pp. 45-48, 2000.

[18]A. Gonzalez, A. Ramos, N. Green, A. Castellanos, and H. Morgan, Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis, Physical Review E, vol. 61, p. 4019, 2000.

[19]D. Holmes and H. Morgan, Particle Focusing and Separation Using Dielectrophoresis in a Microfluidic Device. Massachusetts: Kluwer Academic Publishers, 2001.

[20]J. Wu, Y. Ben, D. Battigelli, and H. C. Chang, Long-range AC electroosmotic trapping and detection of bioparticles, Industrial & Engineering Chemistry Research, vol. 44, pp. 2815-2822, 2005.

[21]P. K. Wong, T. H. Wang, J. H. Deval, and C. M. Ho, Electrokinetics in micro devices for biotechnology applications, IEEE/ASME Transactions on Mechatronics, vol. 9, pp. 366-376, 2004.

[22]J. Kreft, Y. L. Chen, and H. C. Chang, Conformation and trapping rate of DNA at a convergent stagnation point, Physical Review E, vol. 77, p. 030801, 2008.

[23]J. R. Du, Y. J. Juang, J. T. Wu, and H. H. Wei, Long-range and superfast trapping of DNA molecules in an AC electrokinetic funnel, Biomicrofluidics, vol. 2, p. 044103, 2008.

[24]S. K. Thamida and H. C. Chang, Nonlinear electrokinetic ejection and entrainment due to polarization at nearly insulated wedges, Physics of Fluids, vol. 14, p. 4315, 2002.

[25]D. Hou and H. C. Chang, Electrokinetic particle aggregation patterns in microvortices due to particle-field interaction, Physics of Fluids, vol. 18, p. 071702, 2006.

[26]S. J. Liu, H. H. Wei, S. H. Hwang, and H. C. Chang, Dynamic particle trapping, release, and sorting by microvortices on a substrate, Physical Review E, vol. 82, p. 026308, 2010.

[27]C. K. Sun, Y. C. Huang, P. C. Cheng, H. C. Liu, and B. L. Lin, Cell manipulation by use of diamond microparticles as handles of optical tweezers, Journal of the Optical Society of America B, vol. 18, pp. 1483-1489, 2001.

[28]J. E. Curtis, B. A. Koss, and D. G. Grier, Dynamic holographic optical tweezers, Optics Communications, vol. 207, pp. 169-175, 2002.

[29]M. Armani, S. Chaudhary, R. Probst, and B. Shapiro, Using feedback control and microfluidics to steer individual particles, IEEE International Conference on Micro Electro Mechanical Systems, vol. 18, pp. 855-858, 2005.

[30]S. Chaudhary and B. Shapiro, Arbitrary steering of multiple particles independently in an electro-osmotically driven microfluidic system, IEEE Transactions on Control Systems Technology, vol. 14, pp. 669-680, 2006.

[31]R. F. Probstein, Physicochemical Hydrodynamics, 2nd ed. New York: John Wiley and Sons, 1994.

[32]P. Attard, D. Antelmi, and I. Larson, Comparison of the zeta potential with the diffuse layer potential from charge titration, Langmuir, vol. 16, pp. 1542-1552, 2000.

[33]A. Van Theemsche, J. Deconinck, B. Van den Bossche, and L. Bortels, Numerical solution of a multi-ion one-potential model for electroosmotic flow in two-dimensional rectangular microchannels, Analytical Chemistry, vol. 74, pp. 4919-4926, 2002.

[34]L. Y. Yeo, H. C. Chang, P. P. Y. Chan, and J. R. Friend, Microfluidic devices for bioapplications, Small, vol. 7, pp. 12-48, 2011.

[35]N. A. Patankar and H. H. Hu, Numerical simulation of electroosmotic flow, Analytical Chemistry, vol. 70, pp. 1870-1881, 1998.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top