跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/06 04:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅國峰
研究生(外文):Kuo-FengLo
論文名稱:蛋白質溶液於密閉空間之揮發沉積行為及其沉積物用於微/奈米結構製作之研究
論文名稱(外文):Investigating Formation of Micro/nanopattern by Protein Solution Evaporation inside Microconfinements and Its Applications
指導教授:莊怡哲
指導教授(外文):Yi-Je Juang
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:208
中文關鍵詞:揮發沉積牛血清蛋白聚二乙基矽氧烷奈米流道乾蝕刻
外文關鍵詞:evaporation/depositionbovine serum albuminpolydimethylsiloxanenanochanneldry etching
相關次數:
  • 被引用被引用:0
  • 點閱點閱:463
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
溶液揮發沉積現象在日常生活中隨處可見,相關研究也從19世紀中期便開始進行,然而時至今日,研究內容多半與開放空間的揮發沉積有關,鮮少針對溶液在密閉空間中的揮發沉積進行探討。
有鑑於此,本論文利用牛血清蛋白(bovine serum albumin, BSA)水溶液於具微孔洞結構之聚二乙基矽氧烷(polydimethylsiloxane, PDMS)與玻璃基材所構成的密閉空間中,進行揮發沉積,並就其沉積之結構與機制加以探討。我們發現BSA沉積結構與孔洞尺度、溶液濃度有關,然而與基材性質幾乎無關。而根據揮發後的沉積結構型態,以及透過擷取揮發過程的影像,我們推論蛋白質溶液在密閉空間揮發沉積之機制與開放空間揮發沉積的行為不同,且在揮發過程中,溶劑(水分子)揮發的途徑主要由PDMS模板滲透到達外界,並非文獻所提乃是經由模板與基材間隙。另外,透過沉積結構之相對高度與溶液濃度作圖可以得到一主趨勢線。
本論文亦探討藉由溶液於密閉空間中揮發沉積,以製備長奈米流道與水可溶性乾蝕刻遮罩。利用PDMS翻模1 wt% BSA水溶液所沉積出的結構,可得到流道最小寬度約100奈米、長約1公分之微米-奈米複合流道陣列。至於蝕刻遮罩的製備, BSA結構在經過乾蝕刻製程之後無法以去離子水移除,因此無法作為蝕刻遮罩之用。本研究改用聚乙烯吡咯烷酮(polyvinylpyrrolidone, PVP)水溶液進行密閉揮發沉積,利用所得到之微結構作為蝕刻遮罩,在經過乾蝕刻製程之後,不僅可以得到次微米的矽結構,遮罩亦可以去離子水移除。
Evaporation and deposition of solution is ubiquitous everywhere in daily life and there have been tremendous amount of studies conducted since the mid 19th century. However, most of them discussed evaporation taking place in the ambient and only a few have attempted to address the issue regarding evaporation and deposition of solution inside a confinement.
As a result, in this study, evaporation of bovine serum albumin (BSA) aqueous solution inside the microconfinement was investigated. It was found that the deposited structures were affected by both the dimensions of microwells and the concentration of BSA(aq), but not the surface properties of the substrate. By observing the deposited structures and taking the sequential images during the evaporation process, we deduced that the mechanism of solution evaporation inside the microconfinement is different from that in the ambient. Moreover, the solvent (i.e. water molecules) evaporates mainly through the PDMS stamp instead of the interstitial gap between the stamp and glass substrate as described in the literature. Besides, a master curve was obtained when plotting the relative height of the deposited structures vs. solution concentration.
In this stusy, fabrication of long nanochannes and water-soluble etching mask via solution evaporation inside a microconfinement was also investigated. A nanochannel array with approximately 100 nm in width and 1 cm in length can be obtained through replication of the deposited structures using PDMS. The nanochannel as fabricated also features with a micro-nano junction to facilitate solution loading. As to fabrication of water-soluble etching mask, the BSA struc-tures cannot be removed by DI water after dry etching process. The polyvinylpyrrolidone (PVP) solution was used instead. It was found that not only the sub-micron silicon structures can be obtained through dry etching but the PVP mask can be removed by DI water as well.
摘要 i
Abstract iii
目錄 v
表目錄 vii
圖目錄 ix
符號表 xxi
緒論 1
第一章、研究動機與目的 3
第二章、文獻回顧 5
2-1 淺談表面張力(surface tension) 5
2-2 溶液的揮發現象 9
2-2.1 Marangoni effect 10
2-2.2 咖啡環效應(coffee-ring effect) 13
2-2.3 溶質對揮發沉積過程的影響 16
2-2.4 基材性質與其他外界因素對揮發沉積過程的影響 19
2-3 藉由溶液揮發/溶質沉積方式製作微/奈米結構技術 21
第三章、研究方法及實驗步驟 71
3-1 主要使用的藥品與材料 71
3-2 特殊儀器設備及參數設定 73
3-3 實驗步驟 75
3-3.1 牛血清蛋白水溶液(BSA(aq))於密閉微結構中的揮發沉積 75
3-3.2 奈米流道的製作 77
3-3.3 水可溶性乾蝕刻遮罩的製作 78
第四章、結果與討論 83
4-1 牛血清蛋白於微孔洞陣列中的沉積結構 84
4-1.1 不同溶液濃度的沉積結構 84
4-1.2 表面性質對密閉揮發沉積結構的影響 86
4-2 牛血清蛋白於微孔洞中的揮發沉積機制 89
第五章、密閉空間揮發沉積結構之應用 117
5-1 沉積結構用於PDMS奈米流道(nanochannel)的製作 117
5-2 密閉揮發沉積技術用於水可溶性乾蝕刻遮罩製作 121
5-2.1 蝕刻遮罩製作與矽基乾蝕刻技術簡介 121
5-2.2 以牛血清蛋白沉積結構作為蝕刻遮罩 124
5-2.3 以水溶性高分子沉積結構作為蝕刻遮罩 128
第六章、結論 161
第七章、未來工作與建議 163
第八章、參考文獻與資料 165
附錄、相關補充資料 195
[1] M.A. Silberberg. Chemistry. 4th ed. New York: McGraw-Hill. (2006)
[2] J. Thomson, On certain curious motions observable on the surfaces of wine and other alcoholic liquours, Philosophical Magazine 10, 330. (1855)
[3] C. Marangoni, Sull' espansione delle gocce liquide, (1865)
[4] R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Capillary flow as the cause of ring stains from dried liquid drops, Nature 389, 827-829. (1997)
[5] N.D. Denkov, O.D. Velev, P.A. Kralchevsky, I.B. Ivanov, H. Yoshimura, K. Nagayama, Mechanism of formation of 2-dimensional crystals from latex-particles on substrates, Langmuir 8, 3183-3190. (1992)
[6] N.D. Denkov, O.D. Velev, P.A. Kralchevsky, I.B. Ivanov, H. Yoshimura, K. Nagayama, Two-dimensional crystallization, Nature 361, 26. (1993)
[7] C.D. Dushkin, H. Yoshimura, K. Nagayama, Nucleation and growth of 2-dimensional colloidal crystals, Chemical Physics Letters 204, 455-460. (1993)
[8] X.M. Lin, H.M. Jaeger, C.M. Sorensen, K.J. Klabunde, Formation of long-range-ordered nanocrystal superlattices on silicon nitride substrates, Journal of Physical Chemistry B 105, 3353-3357. (2001)
[9] T. Cuk, S.M. Troian, C.M. Hong, S. Wagner, Using convective flow splitting for the direct printing of fine copper lines, Applied Physics Letters 77, 2063-2065. (2000)
[10] B. Messer, J.H. Song, P.D. Yang, Microchannel networks for nanowire patterning, Journal of the American Chemical Society 122, 10232-10233. (2000)
[11] P.D. Yang, A.H. Rizvi, B. Messer, B.F. Chmelka, G.M. Whitesides, G.D. Stucky, Patterning porous oxides within microchannel networks, Advanced Materials 13, 427-431. (2001)
[12] M. Cavallini, F. Biscarini, M. Massi, A. Farran-Morales, D.A. Leigh, F. Zerbetto, Spontaneous fabrication of microscopic arrays of molecular structures with submicron length scales, Nano Letters 2, 635-639. (2002)
[13] M. Cavallini, F. Biscarini, Nanostructuring conjugated materials by lithographically controlled wetting, Nano Letters 3, 1269-1271. (2003)
[14] M. Cavallini, F. Biscarini, J. Gomez-Segura, D. Ruiz, J. Veciana, Multiple length scale patterning of single-molecule magnets, Nano Letters 3, 1527-1530. (2003)
[15] X.H. Yu, Z. Wang, R.B. Xing, S.F. Luan, Y.C. Han, Fabrication of structures with tunable morphologies and sizes by soft molding, Applied Surface Science 252, 1947-1953. (2005)
[16] C.T. Chen, F.G. Tseng, C.C. Chieng, Evaporation evolution of volatile liquid droplets in nanoliter wells, Sensors and Actuators a-Physical 130, 12-19. (2006)
[17] S. Vyawahare, K.M. Craig, A. Scherer, Patterning lines by capillary flows, Nano Letters 6, 271-276. (2006)
[18] W. Cheng, N. Park, M.T. Walter, M.R. Hartman, D. Luo, Nanopatterning self-assembled nanoparticle superlattices by moulding microdroplets, Nature Nanotechnology 3, 682-690. (2008)
[19] D.M. Kuncicky, O.D. Velev, Surface-guided templating of particle assemblies inside drying sessile droplets, Langmuir 24, 1371-1380. (2008)
[20] O.D. Velev, S. Gupta, Materials fabricated by micro- and nanoparticle assembly - the challenging path from science to engineering, Advanced Materials 21, 1897-1905. (2009)
[21] C. Farcau, H. Moreira, B. Viallet, J. Grisolia, L. Ressier, Tunable Conductive Nanoparticle Wire Arrays Fabricated by Convective Self-Assembly on Nonpatterned Substrates, Acs Nano 4, 7275-7282. (2010)
[22] K.-F. Lo, Y.-J. Juang, Parametric Study of Protein Solution Evaporation inside the Microwells for Micropatterning, (submitted).
[23] K.-F. Lo, Y.-J. Juang, Fabrication of long poly(dimethyl siloxane) nanochannels by replicating the protein deposit inside microchannels, Biomicrofluidics 6, 026504. (2012)
[24] K.-F. Lo, Y.-J. Juang, Investigation of micro/nanoring formation by protein solution evaporation inside confined microwells, Applied Physics Letters 100, 133106. (2012)
[25] J. Rowlinson, B. Widom. Molecular Theory of Capillarity. Oxford U.K.: Oxford University Press. (1982)
[26] P.G. deGennes, Wetting - statics and dynamics, Reviews of Modern Physics 57, 827-863. (1985)
[27] P.G. deGennes, F. Brochard-Wyart, D. Quéré. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. New York: Springer. (2003)
[28] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley, Wetting and spreading, Reviews of Modern Physics 81, 739-805. (2009)
[29] R.B. Bird, W.E. Stewart, E.N. Lightfoot. Transport Phenomena. New York: Wiley. (2007)
[30] M.J. Rosen. Surfactants and Interfacial Phenomena. 3rd ed. Hoboken, N.J.: Wiley-Interscience. (2004)
[31] W.J. Moore. Physical Chemistry. 4th ed. Prentice-Hall. Inc. (1972)
[32] A.W. Adamson, A.P. Gast. Physical Chemistry of Surfaces. 6th ed. New York: Wiley. (1997)
[33] Y.-T. Peng, K.-F. Lo, Y.-J. Juang, Constructing a Superhydrophobic Surface on Polydimethylsiloxane via Spin Coating and Vapor-Liquid Sol-Gel Process, Langmuir 26, 5167-5171. (2010)
[34] S.M. Rowan, G. McHale, M.I. Newton, M. Toorneman, Evaporation of microdroplets of three alcohols, Journal of Physical Chemistry B 101, 1265-1267. (1997)
[35] M. Cachile, O. Benichou, C. Poulard, A.M. Cazabat, Evaporating droplets, Langmuir 18, 8070-8078. (2002)
[36] H. Hu, R.G. Larson, Evaporation of a sessile droplet on a substrate, Journal of Physical Chemistry B 106, 1334-1344. (2002)
[37] G. Guena, C. Poulard, M. Voue, J. De Coninck, A.M. Cazabat, Evaporation of sessile liquid droplets, Colloids and Surfaces a-Physicochemical and Engineering Aspects 291, 191-196. (2006)
[38] N. Shahidzadeh-Bonn, S. Rafai, A. Azouni, D. Bonn, Evaporating droplets, Journal of Fluid Mechanics 549, 307-313. (2006)
[39] J.P. Burelbach, S.G. Bankoff, S.H. Davis, Nonlinear stability of evaporating condensing liquid-films, Journal of Fluid Mechanics 195, 463-494. (1988)
[40] C.A. Ward, D. Stanga, Interfacial conditions during evaporation or condensation of water, Physical Review E 64, 051509. (2001)
[41] E. Widjaja, M.T. Harris, Numerical study of vapor phase-diffusion driven sessile drop evaporation, Computers & Chemical Engineering 32, 2169-2178. (2008)
[42] R.G. Picknett, R. Bexon, Evaporation of sessile or pendant drops in still air, Journal of Colloid and Interface Science 61, 336-350. (1977)
[43] A. Prosperetti, M.S. Plesset, The stability of an evaporating liquid surface, Physics of Fluids 27, 1590-1602. (1984)
[44] H.Y. Erbil, G. McHale, S.M. Rowan, M.I. Newton, Analysis of evaporating droplets using ellipsoidal cap geometry, Journal of Adhesion Science and Technology 13, 1375-1391. (1999)
[45] G. McHale, H.Y. Erbil, M.I. Newton, S. Natterer, Analysis of shape distortions in sessile drops, Langmuir 17, 6995-6998. (2001)
[46] H.Y. Erbil, G. McHale, M.I. Newton, Analysis of evaporating thick liquid films on solids, Journal of Adhesion Science and Technology 16, 1869-1881. (2002)
[47] H.Y. Erbil, G. McHale, M.I. Newton, Drop evaporation on solid surfaces: Constant contact angle mode, Langmuir 18, 2636-2641. (2002)
[48] S.M. Rowan, M.I. Newton, G. McHale, Evaporation of microdroplets and the wetting of solid-surfaces, Journal of Physical Chemistry 99, 13268-13271. (1995)
[49] R. Burghaus, Diffusional growth of wetting droplets, Journal of Physics-Condensed Matter 12, L705-L710. (2000)
[50] M.R. Shadnam, A. Amirfazli, Generalized mechanical equilibrium condition for multiphase contact lines and multiphase contact points, Langmuir 19, 4658-4665. (2003)
[51] E. Bormashenko, Y. Bormashenko, T. Stein, G. Whyman, R. Pogreb, Environmental scanning electron microscopy study of the fine structure of the triple line and Cassie-Wenzel wetting transition for sessile drops deposited on rough polymer substrates, Langmuir 23, 4378-4382. (2007)
[52] G. Guena, C. Poulard, A.M. Cazabat, The leading edge of evaporating droplets, Journal of Colloid and Interface Science 312, 164-171. (2007)
[53] K. Sefiane, S. David, M.E.R. Shanahan, Wetting and evaporation of binary mixture drops, Journal of Physical Chemistry B 112, 11317-11323. (2008)
[54] T. Furuta, M. Sakai, T. Isobe, A. Nakajima, Evaporation behavior of microliter- and sub-nanoliter-scale water droplets on two different fluoroalkylsilane coatings, Langmuir 25, 11998-12001. (2009)
[55] T.S. Wong, A.P.H. Huang, C.M. Ho, Wetting Behaviors of Individual Nanostructures, Langmuir 25, 6599-6603. (2009)
[56] X.H. Fang, M. Pimentel, J. Sokolov, M. Rafailovich, Dewetting of the Three-Phase Contact Line on Solids, Langmuir 26, 7682-7685. (2010)
[57] F. Doumenc, B. Guerrier, A model coupling the liquid and gas phases for a totally wetting evaporative meniscus, European Physical Journal-Special Topics 197, 281-293. (2011)
[58] C. Parneix, P. Vandoolaeghe, V.S. Nikolayev, D. Quere, J. Li, B. Cabane, Dips and Rims in Dried Colloidal Films, Physical Review Letters 105, 266103. (2010)
[59] Z. Zhao, D. Poulikakos, J. Fukai, Heat transfer and fluid dynamics during the collision of a liquid droplet on a substrate .1. Modeling, International Journal of Heat and Mass Transfer 39, 2771-2789. (1996)
[60] Z. Zhao, D. Poulikakos, J. Fukai, Heat transfer and fluid dynamics during the collision of a liquid droplet on a substrate .2. Experiments, International Journal of Heat and Mass Transfer 39, 2791-2802. (1996)
[61] M. Dube, M. Rost, M. Alava, Conserved dynamics and interface roughening in spontaneous imbibition: A critical overview, European Physical Journal B 15, 691-699. (2000)
[62] B.W. van de Fliert, A free boundary problem for evaporating layers, Nonlinear Analysis-Theory Methods & Applications 47, 1785-1796. (2001)
[63] H. Hu, R.G. Larson, Analysis of the microfluid flow in an evaporating sessile droplet, Langmuir 21, 3963-3971. (2005)
[64] C. Poulard, G. Guena, A.M. Cazabat, Diffusion-driven evaporation of sessile drops, Journal of Physics-Condensed Matter 17, S4213-S4227. (2005)
[65] C. Poulard, G. Guena, A.M. Cazabat, A. Boudaoud, M. Ben Amar, Rescaling the dynamics of evaporating drops, Langmuir 21, 8226-8233. (2005)
[66] G. Guena, C. Poulard, A.M. Cazabat, The dynamics of evaporating sessile droplets, Colloid Journal 69, 1-8. (2007)
[67] E. Widjaja, N.C. Liu, M.F. Li, R.T. Collins, O.A. Basaran, M.T. Harris, Dynamics of sessile droplet evaporation: A comparison of the spine and the elliptic mesh generation methods, Computers & Chemical Engineering 31, 219-232. (2007)
[68] F. Duan, Local evaporation flux affected by thermocapillary convection transition at an evaporating droplet, Journal of Physics D-Applied Physics 42, 102004. (2009)
[69] G.F. Li, S.M. Flores, C. Vavilala, M. Schmittel, K. Graf, Evaporation Dynamics of Microdroplets on Self-Assembled Monolayers of Dialkyl Disulfides, Langmuir 25, 13438-13447. (2009)
[70] H. Masoud, J.D. Felske, Analytical solution for Stokes flow inside an evaporating sessile drop: Spherical and cylindrical cap shapes, Physics of Fluids 21, 042102. (2009)
[71] Y. Hamamoto, J.R.E. Christy, K. Sefiane, Order-of-magnitude increase in flow velocity driven by mass conservation during the evaporation of sessile drops, Physical Review E 83, 051602. (2011)
[72] P.L. Kelly-Zion, C.J. Pursell, S. Vaidya, J. Batra, Evaporation of sessile drops under combined diffusion and natural convection, Colloids and Surfaces a-Physicochemical and Engineering Aspects 381, 31-36. (2011)
[73] A.V. Getling, Rayleigh-Bénard Convection : Structures and Dynamics, in Advanced Series in Nonlinear Dynamics. vol. 11, ed: World Scientific Publishing Company, 1998.
[74] H. Hu, R.G. Larson, Marangoni effect reverses coffee-ring depositions, Journal of Physical Chemistry B 110, 7090-7094. (2006)
[75] A.V. Getling, O. Brausch, Cellular flow patterns and their evolutionary scenarios in three-dimensional Rayleigh-Benard convection, Physical Review E 67, 046313. (2003)
[76] M. Maillard, L. Motte, A.T. Ngo, M.P. Pileni, Rings and hexagons made of nanocrystals: A Marangoni effect, Journal of Physical Chemistry B 104, 11871-11877. (2000)
[77] P. Kavehpour, B. Ovryn, G.H. McKinley, Evaporatively-driven Marangoni instabilities of volatile liquid films spreading on thermally conductive substrates, Colloids and Surfaces a-Physicochemical and Engineering Aspects 206, 409-423. (2002)
[78] W.D. Ristenpart, P.G. Kim, C. Domingues, J. Wan, H.A. Stone, Influence of substrate conductivity on circulation reversal in evaporating drops, Physical Review Letters 99, 234502. (2007)
[79] M. Yamamura, K. Nagai, T. Kajiwara, K. Adachi, Stripe pattern breakup in evaporating liquid layer on a plane with horizontal temperature gradient, Chemical Engineering and Processing 42, 395-402. (2003)
[80] S. Petrovic, T. Robinson, R.L. Judd, Marangoni heat transfer in subcooled nucleate pool boiling, International Journal of Heat and Mass Transfer 47, 5115-5128. (2004)
[81] H. Hu, R.G. Larson, Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet, Langmuir 21, 3972-3980. (2005)
[82] F. Girard, M. Antoni, S. Faure, A. Steinchen, Evaporation and Marangoni driven convection in small heated water droplets, Langmuir 22, 11085-11091. (2006)
[83] F. Girard, M. Antoni, K. Sefiane, On the effect of Marangoni flow on evaporation rates of heated water drops, Langmuir 24, 9207-9210. (2008)
[84] G. Guena, C. Poulard, A.M. Cazabat, Evaporating drops of alkane mixtures, Colloids and Surfaces a-Physicochemical and Engineering Aspects 298, 2-11. (2007)
[85] X.F. Xu, J.B. Luo, Marangoni flow in an evaporating water droplet, Applied Physics Letters 91, 124102. (2007)
[86] X. Xu, J. Luo, D. Guo, Criterion for Reversal of Thermal Marangoni Flow in Drying Drops, Langmuir 26, 1918-1922. (2010)
[87] D.J. Harris, J.A. Lewis, Marangoni effects on evaporative lithographic patterning of colloidal films, Langmuir 24, 3681-3685. (2008)
[88] J.A. Lim, W.H. Lee, H.S. Lee, J.H. Lee, Y.D. Park, K. Cho, Self-organization of ink-jet-printed triisopropylsilylethynyl pentacene via evaporation-induced flows in a drying droplet, Advanced Functional Materials 18, 229-234. (2008)
[89] N. Bassou, Y. Rharbi, Role of Benard-Marangoni Instabilities during Solvent Evaporation in Polymer Surface Corrugations, Langmuir 25, 624-632. (2009)
[90] Y.J. Cai, B.M.Z. Newby, Porous Polymer Films Templated by Marangoni Flow-Induced Water Droplet Arrays, Langmuir 25, 7638-7645. (2009)
[91] H. Ma, R. Dong, J.D. Van Horn, J. Hao, Spontaneous formation of radially aligned microchannels, Chemical Communications 47, 2047-2049. (2011)
[92] R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Contact line deposits in an evaporating drop, Physical Review E 62, 756-765. (2000)
[93] K.M. Reese, Behavior of coffee stains is due to capillary flow, Chemical & Engineering News 75, 64-64. (1997)
[94] P. Ball, Fluid dynamics - How coffee leaves its mark, Nature 389, 788-788. (1997)
[95] R.D. Deegan, Pattern formation in drying drops, Physical Review E 61, 475-485. (2000)
[96] Y.O. Popov, Evaporative deposition patterns: Spatial dimensions of the deposit, Physical Review E 71, 036313. (2005)
[97] J.J. Dyreby, G.F. Nellis, K.T. Turner, Simulating fluid flow in lithographically directed, evaporation driven self-assembly systems, Microelectronic Engineering 84, 1519-1522. (2007)
[98] T. Kajiya, D. Kaneko, M. Doi, Dynamical Visualization of Coffee Stain Phenomenon in Droplets of Polymer Solution via Fluorescent Microscopy, Langmuir 24, 12369-12374. (2008)
[99] R. Zheng, A study of the evaporative deposition process: Pipes and truncated transport dynamics, European Physical Journal E 29, 205-218. (2009)
[100] X.Y. Shen, C.M. Ho, T.S. Wong, Minimal Size of Coffee Ring Structure, Journal of Physical Chemistry B 114, 5269-5274. (2010)
[101] T.-S. Wong, T.-H. Chen, X. Shen, C.-M. Ho, Nanochromatography Driven by the Coffee Ring Effect, Analytical Chemistry 83, 1871-1873. (2011)
[102] A.G. Marin, H. Gelderblom, D. Lohse, J.H. Snoeijer, Rush-hour in evaporating coffee drops, Physics of Fluids 23, 091111. (2011)
[103] P.J. Yunker, T. Still, M.A. Lohr, A.G. Yodh, Suppression of the coffee-ring effect by shape-dependent capillary interactions, Nature 476, 308-311. (2011)
[104] J. Vermant, FLUID MECHANICS When shape matters, Nature 476, 286-287. (2011)
[105] E. Bormashenko, Y. Bormashenko, R. Pogreb, O. Stanevsky, G. Whyman, Droplet behavior on flat and textured surfaces: Co-occurrence of Deegan outward flow with Marangoni solute instability, Journal of Colloid and Interface Science 306, 128-132. (2007)
[106] B.M. Weon, J.H. Je, Capillary force repels coffee-ring effect, Physical Review E 82, 015305. (2010)
[107] J. Leiterer, F. Emmerling, U. Panne, W. Christen, K. Rademann, Tracing coffee tabletop traces, Langmuir 24, 7970-7978. (2008)
[108] D. Soltman, V. Subramanian, Inkjet-printed line morphologies and temperature control of the coffee ring effect, Langmuir 24, 2224-2231. (2008)
[109] F.C. Chen, J.P. Lu, W.K. Huang, Using Ink-Jet Printing and Coffee Ring Effect to Fabricate Refractive Microlens Arrays, Ieee Photonics Technology Letters 21, 648-650. (2009)
[110] R. Dou, T. Wang, Y. Guo, B. Derby, Ink-Jet Printing of Zirconia: Coffee Staining and Line Stability, Journal of the American Ceramic Society 94, 3787-3792. (2011)
[111] C. Nobile, L. Carbone, A. Fiore, R. Cingolani, L. Manna, R. Krahne, Self-assembly of highly fluorescent semiconductor nanorods into large scale smectic liquid crystal structures by coffee stain evaporation dynamics, Journal of Physics-Condensed Matter 21, 264013. (2009)
[112] S. Choi, S. Stassi, A.P. Pisano, T.I. Zohdi, Coffee-Ring Effect-Based Three Dimensional Patterning of Micro/Nanoparticle Assembly with a Single Droplet, Langmuir 26, 11690-11698. (2010)
[113] Y.-C. Lin, Y.-Y. Lin, D.S.H. Wong, T.-J. Liu, S.-H. Wen, K.-T. Huang, Stripe Coating with a Coffee-Ring Effect for Color Filter Solutions, Journal of Applied Polymer Science 120, 1555-1565. (2011)
[114] H.B. Eral, D.M. Augustine, M.H.G. Duits, F. Mugele, Suppressing the coffee stain effect: how to control colloidal self-assembly in evaporating drops using electrowetting, Soft Matter 7, 4954-4958. (2011)
[115] B.V. Derjaguin, L. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes, Acta Physico Chemica URSS 14, 633-662. (1941)
[116] E.J.W. Verwey, J.T.G. Overbeek. Theory of the stability of lyophobic colloids. Amsterdam: Elsevier. (1948)
[117] P.A. Steward, J. Hearn, M.C. Wilkinson, An overview of polymer latex film formation and properties, Advances in Colloid and Interface Science 86, 195-267. (2000)
[118] B.G. Prevo, D.M. Kuncicky, O.D. Velev, Engineered deposition of coatings from nano- and micro-particles: A brief review of convective assembly at high volume fraction, Colloids and Surfaces a-Physicochemical and Engineering Aspects 311, 2-10. (2007)
[119] V. Sharma, K. Park, M. Srinivasarao, Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly, Materials Science & Engineering R-Reports 65, 1-38. (2009)
[120] H. Ma, J. Hao, Ordered patterns and structures via interfacial self-assembly: superlattices, honeycomb structures and coffee rings, Chemical Society Reviews 40, 5457-5471. (2011)
[121] P.C. Ohara, D.V. Leff, J.R. Heath, W.M. Gelbart, Crystallization of opals from polydisperse nanoparticles, Physical Review Letters 75, 3466-3469. (1995)
[122] C.P. Collier, T. Vossmeyer, J.R. Heath, Nanocrystal superlattices, Annual Review of Physical Chemistry 49, 371-404. (1998)
[123] B.A. Korgel, D. Fitzmaurice, Condensation of ordered nanocrystal thin films, Physical Review Letters 80, 3531-3534. (1998)
[124] Z.L. Wang, Structural analysis of self-assembling nanocrystal superlattices, Advanced Materials 10, 13-30. (1998)
[125] G.L. Ge, L. Brus, Evidence for spinodal phase separation in two-dimensional nanocrystal self-assembly, Journal of Physical Chemistry B 104, 9573-9575. (2000)
[126] A.D. Dinsmore, M.F. Hsu, M.G. Nikolaides, M. Marquez, A.R. Bausch, D.A. Weitz, Colloidosomes: Selectively permeable capsules composed of colloidal particles, Science 298, 1006-1009. (2002)
[127] J. Tang, G.L. Ge, L.E. Brus, Gas-liquid-solid phase transition model for two-dimensional nanocrystal self-assembly on graphite, Journal of Physical Chemistry B 106, 5653-5658. (2002)
[128] Y. Lin, H. Skaff, T. Emrick, A.D. Dinsmore, T.P. Russell, Nanoparticle assembly and transport at liquid-liquid interfaces, Science 299, 226-229. (2003)
[129] E. Rabani, D.R. Reichman, P.L. Geissler, L.E. Brus, Drying-mediated self-assembly of nanoparticles, Nature 426, 271-274. (2003)
[130] V. Santhanam, J. Liu, R. Agarwal, R.P. Andres, Self-assembly of uniform monolayer arrays of nanoparticles, Langmuir 19, 7881-7887. (2003)
[131] T.P. Bigioni, X.M. Lin, T.T. Nguyen, E.I. Corwin, T.A. Witten, H.M. Jaeger, Kinetically driven self assembly of highly ordered nanoparticle monolayers, Nature Materials 5, 265-270. (2006)
[132] Q. Li, U. Jonas, X.S. Zhao, M. Kapp, The forces at work in collodial self-assembly: a review on fundamental interactions between collodial particels, Asia-Pacific Journal of Chemical Engineering 3, 255-268. (2008)
[133] M.P. Pileni, Nanocrystal self-assemblies: Fabrication and collective properties, Journal of Physical Chemistry B 105, 3358-3371. (2001)
[134] B.G. Prevo, O.D. Velev, Controlled, rapid deposition of structured coatings from micro- and nanoparticle suspensions, Langmuir 20, 2099-2107. (2004)
[135] M. Layani, M. Gruchko, O. Milo, I. Balberg, D. Azulay, S. Magdassi, Transparent Conductive Coatings by Printing coffee Ring Arrays Obtained at Room Temperature, Acs Nano 3, 3537-3542. (2009)
[136] S. Darwich, K. Mougin, L. Vidal, E. Gnecco, H. Haidara, Nanobubble and nanodroplet template growth of particle nanorings versus nanoholes in drying nanofluids and polymer films, Nanoscale 3, 1211-1217. (2011)
[137] S. Maenosono, C.D. Dushkin, S. Saita, Y. Yamaguchi, Growth of a semiconductor nanoparticle ring during the drying of a suspension droplet, Langmuir 15, 957-965. (1999)
[138] C. Querner, M.D. Fischbein, P.A. Heiney, M. Drndic, Millimeter-scale assembly of CdSe nanorods into smectic superstructures by solvent drying kinetics, Advanced Materials 20, 2308-2314. (2008)
[139] X.F. Zhang, G.L. Tang, S.H. Yang, J.J. Benattar, Two-Dimensional Self-Assemblies of Silica Nanoparticles Formed Using the Bubble Deposition Technique, Langmuir 26, 16828-16832. (2010)
[140] A.M. Hung, N.A. Konopliv, J.N. Cha, Solvent-Based Assembly of CdSe Nanorods in Solution, Langmuir 27, 12322-12328. (2011)
[141] R. Duggal, F. Hussain, M. Pasquali, Self-assembly of single-walled carbon nanotubes into a sheet by drop drying, Advanced Materials 18, 29-34. (2006)
[142] S.J. Zhang, Q.W. Li, I.A. Kinloch, A.H. Windle, Ordering in a Droplet of an Aqueous Suspension of Single-Wall Carbon Nanotubes on a Solid Substrate, Langmuir 26, 2107-2112. (2010)
[143] L.D. Lipscomb, P. Vichchulada, N.P. Bhatt, Q. Zhang, M.D. Lay, Methods for enhanced control over the density and electrical properties of SWNT networks, Journal of Materials Science 46, 6812-6822. (2011)
[144] Y. Ma, B. Wang, Y. Wu, Y. Huang, Y. Chen, The production of horizontally aligned single-walled carbon nanotubes, Carbon 49, 4098-4110. (2011)
[145] C.-J. Shih, A. Vijayaraghavan, R. Krishnan, R. Sharma, J.-H. Han, M.-H. Ham, Z. Jin, S. Lin, G.L.C. Paulus, N.F. Reuel, Q.H. Wang, D. Blankschtein, M.S. Strano, Bi- and trilayer graphene solutions, Nature Nanotechnology 6, 439-445. (2011)
[146] T. Okuzono, M. Doi, Effects of elasticity on drying processes of polymer solutions, Physical Review E 77, 030501. (2008)
[147] L. Pauchard, C. Allain, Stable and unstable surface evolution during the drying of a polymer solution drop, Physical Review E 68, 052801. (2003)
[148] D.A. Head, Volume-controlled buckling of thin elastic shells: application to crusts formed on evaporating partially wetted droplets, Journal of Physics-Condensed Matter 18, L485-L491. (2006)
[149] T. Kajiya, E. Nishitani, T. Yamaue, M. Doi, Piling-to-buckling transition in the drying process of polymer solution drop on substrate having a large contact angle, Physical Review E 73, 011601. (2006)
[150] T. Kajiya, W. Kobayashi, T. Okuzono, M. Doi, Controlling Profiles of Polymer Dots by Switching between Evaporation and Condensation, Langmuir 26, 10429-10432. (2010)
[151] P.G. de Gennes, Solvent evaporation of spin cast films: crust effects, European Physical Journal E 7, 31-34. (2002)
[152] D.A. Head, Modeling the elastic deformation of polymer crusts formed by sessile droplet evaporation, Physical Review E 74, 021601. (2006)
[153] T. Okuzono, K. Ozawa, M. Doi, Simple model of skin formation caused by solvent evaporation in polymer solutions, Physical Review Letters 97, 136103. (2006)
[154] K. Ozawa, T. Okuzon, M. Doi, Diffusion-process during drying to cause the skin formation in polymer solutions, Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 45, 8817-8822. (2006)
[155] C. Monteux, Y. Elmaallem, T. Narita, F. Lequeux, Advancing-drying droplets of polymer solutions: Local increase of the viscosity at the contact line, Epl 83, 34005. (2008)
[156] J.D. McGraw, J.F. Li, D.L. Tran, A.C. Shi, K. Dalnoki-Veress, Plateau-Rayleigh instability in a torus: formation and breakup of a polymer ring, Soft Matter 6, 1258-1262. (2010)
[157] T. Kajiya, M. Doi, Dynamics of Drying Process of Polymer Solution Droplets: Analysis of Polymer Transport and Control of Film Profiles, Nihon Reoroji Gakkaishi 39, 17-28. (2011)
[158] M. Gonuguntla, A. Sharma, Polymer patterns in evaporating droplets on dissolving substrates, Langmuir 20, 3456-3463. (2004)
[159] E. Bonaccurso, H.J. Butt, B. Hankeln, B. Niesenhaus, K. Graf, Fabrication of microvessels and microlenses from polymers by solvent droplets, Applied Physics Letters 86, 124101. (2005)
[160] S. Karabasheva, S. Baluschev, K. Graf, Microstructures on soluble polymer surfaces via drop deposition of solvent mixtures, Applied Physics Letters 89, 031110. (2006)
[161] G.F. Li, H.J. Butt, K. Graf, Microstructures by solvent drop evaporation on polymer surfaces: Dependence on molar mass, Langmuir 22, 11395-11399. (2006)
[162] G.F. Li, K. Graf, E. Bonaccurso, D.S. Golovko, A. Best, H.J. Butt, Evaporation structures of solvent drops evaporating from polymer surfaces: Influence of molar mass, Macromolecular Chemistry and Physics 208, 2134-2144. (2007)
[163] X.H. Zhang, X.X. Wei, W. Ducker, Formation of Nanodents by Deposition of Nanodroplets at the Polymer-Liquid Interface, Langmuir 26, 4776-4781. (2010)
[164] I.A. Grimaldi, A.D.G. Del Mauro, G. Nenna, F. Loffredo, C. Minarini, F. Villani, Microstructuring of Polymer Films by Inkjet Etching, Journal of Applied Polymer Science 122, 3637-3643. (2011)
[165] C.C. Annarelli, J. Fornazero, J. Bert, J. Colombani, Crack patterns in drying protein solution drops, European Physical Journal E 5, 599-603. (2001)
[166] O. Younes-Metzler, R.N. Ben, J.B. Giorgi, Pattern formation of antifreeze glycoproteins via solvent evaporation, Langmuir 23, 11355-11359. (2007)
[167] D.R. Adams, M. Toner, R. Langer, Microflow and crack formation patterns in drying sessile droplets of liposomes suspended in trehalose solutions, Langmuir 24, 7688-7697. (2008)
[168] G. Chen, G.J. Mohamed, Complex protein patterns formation via salt-induced self-assembly and droplet evaporation, European Physical Journal E 33, 19-26. (2010)
[169] A. Accardo, M. Burghammer, E. Di Cola, M. Reynolds, E. Di Fabrizio, C. Riekel, Lysozyme fibrillation induced by convective flow under quasi contact-free conditions, Soft Matter 7, 6792-6796. (2011)
[170] L. Latterini, R. Blossey, J. Hofkens, P. Vanoppen, F.C. De Schryver, A.E. Rowan, R.J.M. Notle, Ring formation in evaporating porphyrin derivative solutions, Langmuir 15, 3582-3588. (1999)
[171] L. Vonna, L. Limozin, A. Roth, E. Sackmann, Single-filament dynamics and long-range ordering of semiflexible biopolymers under flow and confinement, Langmuir 21, 9635-9643. (2005)
[172] S.S. Abramchuk, A.R. Khokhlov, T. Iwataki, H. Oana, K. Yoshikawa, Direct observation of DNA molecules in a convection flow of a drying droplet, Europhysics Letters 55, 294-300. (2001)
[173] V. Dugas, J. Broutin, E. Souteyrand, Droplet evaporation study applied to DNA chip manufacturing, Langmuir 21, 9130-9136. (2005)
[174] T. Heim, S. Preuss, B. Gerstmayer, A. Bosio, R. Blossey, Deposition from a drop: morphologies of unspecifically bound DNA, Journal of Physics-Condensed Matter 17, S703-S716. (2005)
[175] Smalyukh, II, O.V. Zribi, J.C. Butler, O.D. Lavrentovich, G.C.L. Wong, Structure and dynamics of liquid crystalline pattern formation in drying droplets of DNA, Physical Review Letters 96, 177801. (2006)
[176] T.T. Nellimoottil, P.N. Rao, S.S. Ghosh, A. Chattopadhyay, Evaporation-induced patterns from droplets containing motile and nonmotile bacteria, Langmuir 23, 8655-8658. (2007)
[177] E. Berthier, J. Warrick, H. Yu, D.J. Beebe, Managing evaporation for more robust microscale assays - Part 2. Characterization of convection and diffusion for cell biology, Lab on a Chip 8, 860-864. (2008)
[178] K.F. Baughman, R.M. Maier, T.A. Norris, B.M. Beam, A. Mudalige, J.E. Pemberton, J.E. Curry, Evaporative Deposition Patterns of Bacteria from a Sessile Drop: Effect of Changes in Surface Wettability Due to Exposure to a Laboratory Atmosphere, Langmuir 26, 7293-7298. (2010)
[179] D. Brutin, B. Sobac, B. Loquet, J. Sampol, Pattern formation in drying drops of blood, Journal of Fluid Mechanics 667, 85-95. (2011)
[180] Y. Lin, Z. Su, G. Xiao, E. Balizan, G. Kaur, Z. Niu, Q. Wang, Self-Assembly of Virus Particles on Flat Surfaces via Controlled Evaporation, Langmuir 27, 1398-1402. (2011)
[181] B. Sobac, D. Brutin, Structural and evaporative evolutions in desiccating sessile drops of blood, Physical Review E 84, 011603. (2011)
[182] F.Q. Fan, K.J. Stebe, Assembly of colloidal particles by evaporation on surfaces with patterned hydrophobicity, Langmuir 20, 3062-3067. (2004)
[183] A.P. Sommer, N. Rozlosnik, Formation of crystalline ring patterns on extremely hydrophobic supersmooth substrates: Extension of ring formation paradigms, Crystal Growth & Design 5, 551-557. (2005)
[184] X.Y. Zhang, S.X. Tan, N. Zhao, X.L. Guo, X.L. Zhang, Y.J. Zhang, J. Xu, Evaporation of sessile water droplets on superhydrophobic natural lotus and biomimetic polymer surfaces, Chemphyschem 7, 2067-2070. (2006)
[185] M. Kaneda, K. Hyakuta, Y. Takao, H. Ishizuka, J. Fukai, Internal flow in polymer solution droplets deposited on a lyophobic surface during a receding process, Langmuir 24, 9102-9109. (2008)
[186] C.H. Choi, C.J. Kim, Droplet evaporation of pure water and protein solution on nanostructured superhydrophobic surfaces of varying heights, Langmuir 25, 7561-7567. (2009)
[187] L.F. Chen, J.R.G. Evans, Drying of colloidal droplets on superhydrophobic surfaces, Journal of Colloid and Interface Science 351, 283-287. (2010)
[188] F.F. Shao, A. Neild, T.W. Ng, Hydrophobicity effect in the self assembly of particles in an evaporating droplet, Journal of Applied Physics 108, 034512. (2010)
[189] H. Gelderblom, A.G. Marin, H. Nair, A. van Houselt, L. Lefferts, J.H. Snoeijer, D. Lohse, How water droplets evaporate on a superhydrophobic substrate, Physical Review E 83, 026306. (2011)
[190] N. Murisic, L. Kondic, On evaporation of sessile drops with moving contact lines, Journal of Fluid Mechanics 679, 219-246. (2011)
[191] M.E.R. Shanahan, K. Sefiane, J.R. Moffat, Dependence of Volatile Droplet Lifetime on the Hydrophobicity of the Substrate, Langmuir 27, 4572-4577. (2011)
[192] H. Song, Y. Lee, S. Jin, H.-Y. Kim, J.Y. Yoo, Prediction of sessile drop evaporation considering surface wettability, Microelectronic Engineering 88, 3249-3255. (2011)
[193] J.G. Petrov, H. Kuhn, D. Mobius, Three-phase contact line motion in the deposition of spread monolayers, Journal of Colloid and Interface Science 73, 66-75. (1980)
[194] K. Keseroglu, M. Culha, Assembly of nanoparticles at the contact line of a drying droplet under the influence of a dipped tip, Journal of Colloid and Interface Science 360, 8-14. (2011)
[195] M.A. Ray, H. Kim, L. Jia, Dynamic self-assembly of polymer colloids to form linear patterns, Langmuir 21, 4786-4789. (2005)
[196] L. Frastia, A.J. Archer, U. Thiele, Dynamical Model for the Formation of Patterned Deposits at Receding Contact Lines, Physical Review Letters 106, 077801. (2011)
[197] H. Bodiguel, F. Doumenc, B. Guerrier, Stick-Slip Patterning at Low Capillary Numbers for an Evaporating Colloidal Suspension, Langmuir 26, 10758-10763. (2010)
[198] D. Orejon, K. Sefiane, M.E.R. Shanahan, Stick-Slip of Evaporating Droplets: Substrate Hydrophobicity and Nanoparticle Concentration, Langmuir 27, 12834-12843. (2011)
[199] A. Dong, J. Chen, S.J. Oh, W.-k. Koh, F. Xiu, X. Ye, D.-K. Ko, K.L. Wang, C.R. Kagan, C.B. Murray, Multiscale Periodic Assembly of Striped Nanocrystal Super lattice Films on a Liquid Surface, Nano Letters 11, 841-846. (2011)
[200] M. Gleiche, L.F. Chi, H. Fuchs, Nanoscopic channel lattices with controlled anisotropic wetting, Nature 403, 173-175. (2000)
[201] S.W. Hong, J. Xu, J.F. Xia, Z.Q. Lin, F. Qiu, Y.L. Yang, Drying mediated pattern formation in a capillary-held organometallic polymer solution, Chemistry of Materials 17, 6223-6226. (2005)
[202] Z.Q. Lin, S. Granick, Patterns formed by droplet evaporation from a restricted geometry, Journal of the American Chemical Society 127, 2816-2817. (2005)
[203] S.W. Hong, S. Giri, V.S.Y. Lin, Z.Q. Lin, Simple route to gradient concentric metal and metal oxide rings, Chemistry of Materials 18, 5164-5166. (2006)
[204] S.W. Hong, J. Xu, Z.Q. Lin, Template-assisted formation of gradient concentric gold rings, Nano Letters 6, 2949-2954. (2006)
[205] J. Xu, J.F. Xia, S.W. Hong, Z.Q. Lin, F. Qiu, Y.L. Yang, Self-assembly of gradient concentric rings via solvent evaporation from a capillary bridge, Physical Review Letters 96, 066104. (2006)
[206] S.W. Hong, J.F. Xia, Z.Q. Lin, Spontaneous formation of mesoscale polymer patterns in an evaporating bound solution, Advanced Materials 19, 1413-1417. (2007)
[207] J. Xu, J.F. Xia, Z.Q. Lin, Evaporation-induced self-assembly of nanoparticles from a sphere-on-flat geometry, Angewandte Chemie-International Edition 46, 1860-1863. (2007)
[208] M. Byun, S.W. Hong, L. Zhu, Z.Q. Lin, Self-assembling semicrystalline polymer into highly ordered, microscopic concentric rings by evaporation, Langmuir 24, 3525-3531. (2008)
[209] S.W. Hong, W. Jeong, H. Ko, M.R. Kessler, V.V. Tsukruk, Z.Q. Lin, Directed self-assembly of gradient concentric carbon nanotube rings, Advanced Functional Materials 18, 2114-2122. (2008)
[210] M. Byun, R.L. Laskowski, M. He, F. Qiu, M. Jeffries-El, Z.Q. Lin, Controlled evaporative self-assembly of hierarchically structured regioregular conjugated polymers, Soft Matter 5, 1583-1586. (2009)
[211] M. Byun, N.B. Bowden, Z.Q. Lin, Hierarchically Organized Structures Engineered from Controlled Evaporative Self-Assembly, Nano Letters 10, 3111-3117. (2010)
[212] M. Byun, W. Han, F. Qiu, N.B. Bowden, Z.Q. Lin, Hierarchically Ordered Structures Enabled by Controlled Evaporative Self-Assembly, Small 6, 2250-2255. (2010)
[213] W. Han, M. Byun, L. Zhao, J. Rzayev, Z. Lin, Controlled evaporative self-assembly of hierarchically structured bottlebrush block copolymer with nanochannels, Journal of Materials Chemistry 21, 14248-14253. (2011)
[214] T.Y. Kim, S.W. Kwon, S.J. Park, D.H. Yoon, K.S. Suh, W.S. Yang, Self-Organized Graphene Patterns, Advanced Materials 23, 2734-2738. (2011)
[215] S.W. Kwon, T.Y. Kim, Y. Kim, M. Byun, Z. Lin, K.S. Suh, D.H. Yoon, W.S. Yang, Micro-patterns of reduced graphene oxide (RG-O) platelets crafted by a self-assembled template, Soft Matter 7, 6811-6815. (2011)
[216] Z. Wang, R. Bao, X. Zhang, X. Ou, C.-S. Lee, J.C. Chang, X. Zhang, One-Step Self-Assembly, Alignment, and Patterning of Organic Semiconductor Nanowires by Controlled Evaporation of Confined Microfluids, Angewandte Chemie-International Edition 50, 2811-2815. (2011)
[217] J.X. Huang, A.R. Tao, S. Connor, R.R. He, P.D. Yang, A general method for assembling single colloidal particle lines, Nano Letters 6, 524-529. (2006)
[218] M. Ghosh, F.Q. Fan, K.J. Stebe, Spontaneous pattern formation by dip coating of colloidal suspensions on homogeneous surfaces, Langmuir 23, 2180-2183. (2007)
[219] C.Y. Zhang, X.J. Zhang, X.H. Zhang, X. Fan, J.S. Jie, J.C. Chang, C.S. Lee, W.J. Zhang, S.T. Lee, Facile one-step growth and patterning of aligned squaraine nanowires via evaporation-induced self-assembly, Advanced Materials 20, 1716-1720. (2008)
[220] M. Engel, J.P. Small, M. Steiner, M. Freitag, A.A. Green, M.C. Hersam, P. Avouris, Thin Film Nanotube Transistors Based on Self-Assembled, Aligned, Semiconducting Carbon Nanotube Arrays, Acs Nano 2, 2445-2452. (2008)
[221] N.L. Liu, Y. Zhou, L. Wang, J.B. Peng, J.A. Wang, J.A. Pei, Y. Cao, In Situ Growing and Patterning of Aligned Organic Nanowire Arrays via Dip Coating, Langmuir 25, 665-671. (2009)
[222] S. Watanabe, K. Inukai, S. Mizuta, M.T. Miyahara, Mechanism for Stripe Pattern Formation on Hydrophilic Surfaces by Using Convective Self-Assembly, Langmuir 25, 7287-7295. (2009)
[223] Y. Mino, S. Watanabe, M.T. Miyahara, Fabrication of Colloidal Grid Network by Two-Step Convective Self-Assembly, Langmuir 27, 5290-5295. (2011)
[224] O.E. Ruiz, W.Z. Black, Evaporation of water droplets placed on a heated horizontal surface, Journal of Heat Transfer-Transactions of the Asme 124, 854-863. (2002)
[225] E.F. Crafton, W.Z. Black, Heat transfer and evaporation rates of small liquid droplets on heated horizontal surfaces, International Journal of Heat and Mass Transfer 47, 1187-1200. (2004)
[226] R. Mollaret, K. Sefiane, J.R.E. Christy, D. Veyret, Experimental and numerical investigation of the evaporation into air of a drop on a heated surface, Chemical Engineering Research & Design 82, 471-480. (2004)
[227] M. Dietzel, D. Poulikakos, Laser-induced motion in nanoparticle suspension droplets on a surface, Physics of Fluids 17, 102106. (2005)
[228] K. Sefiane, J. Cameron, Modelling of heat and fluid flow during the evaporation of volatile drops on hot substrates, Progress in Computational Fluid Dynamics 6, 363-370. (2006)
[229] C. Bain, Nanostructures - Drip painting on a hot canvas, Nature Nanotechnology 2, 344-345. (2007)
[230] S. David, K. Sefiane, L. Tadrist, Experimental investigation of the effect of thermal properties of the substrate in the wetting and evaporation of sessile drops, Colloids and Surfaces a-Physicochemical and Engineering Aspects 298, 108-114. (2007)
[231] M. Elbahri, D. Paretkar, K. Hirmas, S. Jebril, R. Adelung, Anti-Lotus effect for nanostructuring at the Leidenfrost temperature, Advanced Materials 19, 1262-1266. (2007)
[232] K. Lee, M. Duchamp, G. Kulik, A. Magrez, J.W. Seo, S. Jeney, A.J. Kulik, L. Forro, R.S. Sundaram, J. Brugger, Uniformly dispersed deposition of colloidal nanoparticles and nanowires by boiling, Applied Physics Letters 91, 173112. (2007)
[233] F. Girard, M. Antoni, Influence of Substrate Heating on the Evaporation Dynamics of Pinned Water Droplets, Langmuir 24, 11342-11345. (2008)
[234] F. Girard, M. Antoni, S. Faure, A. Steinchen, Influence of heating temperature and relative humidity in the evaporation of pinned droplets, Colloids and Surfaces a-Physicochemical and Engineering Aspects 323, 36-49. (2008)
[235] H. Wang, J.Y. Murthy, S.V. Garimella, Transport from a volatile meniscus inside an open microtube, International Journal of Heat and Mass Transfer 51, 3007-3017. (2008)
[236] K.S. Das, Steady parallel flow in an evaporating fluid heated from sidewalls, Physica B-Condensed Matter 404, 3986-3990. (2009)
[237] F. Duan, C.A. Ward, Investigation of Local Evaporation Flux and Vapor-Phase Pressure at an Evaporative Droplet Interface, Langmuir 25, 7424-7431. (2009)
[238] Y.C. Ou, K.S. Zhuravelv, J.Y. Fang, W.B. Jian, Interplay of Spinodal and Diffusion-Limited Aggregation in Formation of Nanocrystal Assembled 2D Islands, Journal of Physical Chemistry C 114, 17416-17421. (2010)
[239] J.-H. Kim, S.-B. Park, J.H. Kim, W.-C. Zin, Polymer Transports Inside Evaporating Water Droplets at Various Substrate Temperatures, Journal of Physical Chemistry C 115, 15375-15383. (2011)
[240] T. Okubo, D. Suzuki, T. Yamagata, A. Katsuno, M. Mizutani, H. Kimura, A. Tsuchida, Drying dissipative structures of thermo-sensitive gel spheres of poly(N-isopropylacrylamide), Colloid and Polymer Science 289, 807-816. (2011)
[241] J.M. Patete, X. Peng, J.M. Serafin, S.S. Wong, Quantitatively Probing the Means of Controlling Nanoparticle Assembly on Surfaces, Langmuir 27, 5792-5805. (2011)
[242] L. Pena, M. Varon, Z. Konstantinovic, L. Balcells, B. Martinez, V. Puntes, Large 2D self-assembled domains of cobalt nanoparticles onto silicon wafers, Journal of Materials Chemistry 21, 16973-16977. (2011)
[243] H. Wang, Z. Pan, S.V. Garimella, Numerical investigation of heat and mass transfer from an evaporating meniscus in a heated open groove, International Journal of Heat and Mass Transfer 54, 3015-3023. (2011)
[244] B.D. Caddock, D. Hull, Influence of humidity on the cracking patterns formed during the drying of sol-gel drops, Journal of Materials Science 37, 825-834. (2002)
[245] F. Doumenc, B. Guerrier, Drying of a Solution in a Meniscus: A Model Coupling the Liquid and the Gas Phases, Langmuir 26, 13959-13967. (2010)
[246] V.H. Chhasatia, A.S. Joshi, Y. Sun, Effect of relative humidity on contact angle and particle deposition morphology of an evaporating colloidal drop, Applied Physics Letters 97, 231909. (2010)
[247] T. Kajiya, W. Kobayashi, T. Okuzono, M. Doi, Controlling the Drying and Film Formation Processes of Polymer Solution Droplets with Addition of Small Amount of Surfactants, Journal of Physical Chemistry B 113, 15460-15466. (2009)
[248] T.H.P. Chang, M.G.R. Thomson, M.L. Yu, E. Kratschmer, H.S. Kim, K.Y. Lee, S.A. Rishton, S. Zolgharnain, Electron beam technology—SEM to microcolumn, Microelectronic Engineering 32, 113-130. (1996)
[249] M. Shinji, O. Yukinori, Focused ion beam applications to solid state devices, Nanotechnology 7, 247-258. (1996)
[250] H.I. Smith, M.L. Schattenburg, S.D. Hector, J. Ferrera, E.E. Moon, I.Y. Yang, M. Burkhardt, X-ray nanolithography: Extension to the limits of the lithographic process, Microelectronic Engineering 32, 143-158. (1996)
[251] C.R.K. Marrian, E.S. Snow, Proximal probe lithography and surface modification, Microelectronic Engineering 32, 173-189. (1996)
[252] E. Kim, Y.N. Xia, G.M. Whitesides, Polymer microstructures formed by molding in capillaries, Nature 376, 581-584. (1995)
[253] Y.N. Xia, M. Mrksich, E. Kim, G.M. Whitesides, Microcontact printing of octadecylsiloxane on the surface of silicon dioxide and its application in microfabrication, Journal of the American Chemical Society 117, 9576-9577. (1995)
[254] X.M. Zhao, Y.N. Xia, G.M. Whitesides, Soft lithographic methods for nano-fabrication, Journal of Materials Chemistry 7, 1069-1074. (1997)
[255] Y.N. Xia, G.M. Whitesides, Soft lithography, Annual Review of Materials Science 28, 153-184. (1998)
[256] Y.N. Xia, G.M. Whitesides, Soft lithography, Angewandte Chemie-International Edition 37, 551-575. (1998)
[257] R.S. Kane, S. Takayama, E. Ostuni, D.E. Ingber, G.M. Whitesides, Patterning proteins and cells using soft lithography, Biomaterials 20, 2363-2376. (1999)
[258] Y.N. Xia, J.A. Rogers, K.E. Paul, G.M. Whitesides, Unconventional methods for fabricating and patterning nanostructures, Chemical Reviews 99, 1823-1848. (1999)
[259] S.R. Quake, A. Scherer, From Micro- to Nanofabrication with Soft Materials, Science 290, 1536-1540. (2000)
[260] R. Mukherjee, A. Sharma, G. Patil, D. Faruqui, P.S.G. Pattader, Soft lithography meets self-organization: Some new developments in meso-patterning, Bulletin of Materials Science 31, 249-261. (2008)
[261] R.D. Piner, J. Zhu, F. Xu, S.H. Hong, C.A. Mirkin, Dip-pen nanolithography, Science 283, 661-663. (1999)
[262] S.H. Hong, J. Zhu, C.A. Mirkin, Multiple ink nanolithography: Toward a multiple-pen nano-plotter, Science 286, 523-525. (1999)
[263] S.H. Hong, C.A. Mirkin, A nanoplotter with both parallel and serial writing capabilities, Science 288, 1808-1811. (2000)
[264] B.J. de Gans, P.C. Duineveld, U.S. Schubert, Inkjet printing of polymers: State of the art and future developments, Advanced Materials 16, 203-213. (2004)
[265] E. Tekin, P.J. Smith, U.S. Schubert, Inkjet printing as a deposition and patterning tool for polymers and inorganic particles, Soft Matter 4, 703-713. (2008)
[266] S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint of sub‐25 nm vias and trenches in polymers, Applied Physics Letters 67, 3114-3116. (1995)
[267] S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-nanometer resolution, Science 272, 85-87. (1996)
[268] S.Y. Chou, P.R. Krauss, P.J. Renstrom, Nanoimprint lithography, Journal of Vacuum Science & Technology B 14, 4129-4133. (1996)
[269] B.D. Gates, Q.B. Xu, M. Stewart, D. Ryan, C.G. Willson, G.M. Whitesides, New approaches to nanofabrication: Molding, printing, and other techniques, Chemical Reviews 105, 1171-1196. (2005)
[270] J.J. Guan, J. Lee, Generating highly ordered DNA nanostrand arrays, Proceedings of the National Academy of Sciences of the United States of America 102, 18321-18325. (2005)
[271] J. Guan, N. Ferrell, B. Yu, D.J. Hansford, L.J. Lee, Simultaneous fabrication of hybrid arrays of nanowires and micro/nanoparticles by dewetting on micropillars, Soft Matter 3, 1369-1371. (2007)
[272] J. Guan, B. Yu, L.J. Lee, Forming highly ordered arrays of functionalized polymer nanowires by dewetting on micropillars, Advanced Materials 19, 1212-1217. (2007)
[273] J.-J. Cheng, Y.-H. Chang, W.-Y. Huang, Y.-J. Juang, Effect of solution viscosity on generating long DNA nanostrands array via patterned molecular combing, Applied Physics Letters 94, 244101. (2009)
[274] K.Y. Suh, Y.S. Kim, H.H. Lee, Capillary force lithography, Advanced Materials 13, 1386-1389. (2001)
[275] K.Y. Suh, H.H. Lee, Capillary force lithography: Large-area patterning, self-organization, and anisotropic dewetting, Advanced Functional Materials 12, 405-413. (2002)
[276] D.Y. Khang, H.H. Lee, Pressure-assisted capillary force lithography, Advanced Materials 16, 176-179. (2004)
[277] K.Y. Suh, Surface-tension-driven patterning: Combining tailored physical self-organization with microfabrication methods, Small 2, 832-834. (2006)
[278] X.J. Wang, M. Ostblom, T. Johansson, O. Inganas, PEDOT surface energy pattern controls fluorescent polymer deposition by dewetting, Thin Solid Films 449, 125-132. (2004)
[279] C.A. Fustin, G. Glasser, H.W. Spiess, U. Jonas, Parameters influencing the templated growth of colloidal crystals on chemically patterned surfaces, Langmuir 20, 9114-9123. (2004)
[280] C.P.R. Dockendorf, T.Y. Choi, D. Poulikakos, A. Stemmer, Size reduction of nanoparticle ink patterns by fluid-assisted dewetting, Applied Physics Letters 88, 131903. (2006)
[281] R. Sharma, C.Y. Lee, J.H. Choi, K. Chen, M.S. Strano, Nanometer positioning, parallel alignment, and placement of single anisotropic nanoparticles using hydrodynamic forces in cylindrical droplets, Nano Letters 7, 2693-2700. (2007)
[282] S.W. Lee, Y.J. Na, Y. Cho, S.D. Lee, Site-selective assembly and fixation of colloidal particles into two-dimensional array on wettability-patterned surface, Japanese Journal of Applied Physics Part 2-Letters & Express Letters 46, L1129-L1131. (2007)
[283] A. Heyen, C.C. Buron, Q. Tianshi, R. Bauer, A.M. Jonas, K. Mullen, F.C. De Schryver, S. De Feyter, Guiding the self-assembly of a second-generation polyphenytene dendrimer into well-defined patterns, Small 4, 1160-1167. (2008)
[284] Y. Ikezoe, Y. Kumashiro, K. Tamada, T. Matsui, I. Yamashita, K. Shiba, M. Hara, Growth of giant two-dimensional crystal of protein molecules from a three-phase contact line, Langmuir 24, 12836-12841. (2008)
[285] R. Sharma, M.S. Strano, Centerline Placement and Alignment of Anisotropic Nanotubes in High Aspect Ratio Cylindrical Droplets of Nanometer Diameter, Advanced Materials 21, 60-65. (2009)
[286] M. Cha, J. Yoo, J. Lee, Bacterial cell manipulation by dielectrophoresis on a hydrophobic guide structure, Electrochemistry Communications 13, 600-604. (2011)
[287] B. Dan, T.B. Wingfield, J.S. Evans, F. Mirri, C.L. Pint, M. Pasquali, I.I. Smalyukh, Templating of Self-Alignment Patterns of Anisotropic Gold Nanoparticles on Ordered SWNT Macrostructures, Acs Applied Materials & Interfaces 3, 3718-3724. (2011)
[288] L. Xue, Y. Han, Pattern formation by dewetting of polymer thin film, Progress in Polymer Science 36, 269-293. (2011)
[289] J.H. Park, S. Hwang, J. Kwak, Ordered Polymeric Microhole Array Made by Selective Wetting and Applications for Electrochemical Microelectrode Array, Langmuir 27, 8548-8553. (2011)
[290] K. Hisatake, S. Tanaka, Y. Aizawa, Evaporation rate of water in a vessel, Journal of Applied Physics 73, 7395-7401. (1993)
[291] K.T. Hjelt, R. van den Doel, W. Lubking, M.J. Vellekoop, Measuring liquid evaporation from micromachined wells, Sensors and Actuators a-Physical 85, 384-389. (2000)
[292] R. Blossey, A. Bosio, Contact line deposits on cDNA microarrays: A twin-spot effect, Langmuir 18, 2952-2954. (2002)
[293] B. Rieger, L.R. van den Doel, L.J. van Vliet, Ring formation in nanoliter cups: Quantitative measurements of flow in micromachined wells, Physical Review E 68, 036312. (2003)
[294] F. Clement, J. Leng, Evaporation of liquids and solutions in confined geometry, Langmuir 20, 6538-6541. (2004)
[295] K. Mertens, V. Putkaradze, D.Y. Xia, S.R.J. Brueck, Theory and experiment for one-dimensional directed self-assembly of nanoparticles, Journal of Applied Physics 98, 034309. (2005)
[296] Y. Jung, T. Kajiya, T. Yamaue, M. Doi, Film Formation Kinetics in the Drying Process of Polymer Solution Enclosed by Bank, Japanese Journal of Applied Physics 48, 031502. (2009)
[297] M. Le Berre, Y. Chen, D. Baigl, From Convective Assembly to Landau-Levich Deposition of Multilayered Phospholipid Films of Controlled Thickness, Langmuir 25, 2554-2557. (2009)
[298] N.S. Lynn, C.S. Henry, D.S. Dandy, Evaporation from microreservoirs, Lab on a Chip 9, 1780-1788. (2009)
[299] T. Okuzono, M. Kobayashi, M. Doi, Final shape of a drying thin film, Physical Review E 80, 021603. (2009)
[300] L. Xu, A. Neild, T.W. Ng, F.F. Shao, Continuous particle assembly in a capillary cell, Applied Physics Letters 95, 153501. (2009)
[301] L. Daubersies, J.B. Salmon, Evaporation of solutions and colloidal dispersions in confined droplets, Physical Review E 84, 031406. (2011)
[302] R.J. Jackman, D.C. Duffy, E. Ostuni, N.D. Willmore, G.M. Whitesides, Fabricating large arrays of microwells with arbitrary dimensions and filling them using discontinuous dewetting, Analytical Chemistry 70, 2280-2287. (1998)
[303] T. Ondarcuhu, C. Joachim, Combing a nanofibre in a nanojunction, Nanotechnology 10, 39-44. (1999)
[304] E. Ostuni, C.S. Chen, D.E. Ingber, G.M. Whitesides, Selective deposition of proteins and cells in arrays of microwells, Langmuir 17, 2828-2834. (2001)
[305] M. Massi, M. Cavallini, S. Stagni, A. Palazzi, F. Biscarini, Fabrication of material patterns by grid-assisted deposition, Materials Science & Engineering C-Biomimetic and Supramolecular Systems 23, 923-925. (2003)
[306] N. Chakrapani, B.Q. Wei, A. Carrillo, P.M. Ajayan, R.S. Kane, Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams, Proceedings of the National Academy of Sciences of the United States of America 101, 4009-4012. (2004)
[307] J.A. Liddle, Y. Cui, P. Alivisatos, Lithographically directed self-assembly of nanostructures, Journal of Vacuum Science & Technology B 22, 3409-3414. (2004)
[308] M.H. Kim, S.H. Im, O.O. Park, Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly, Advanced Functional Materials 15, 1329-1335. (2005)
[309] I. Viola, M. Mazzeo, A. Passabi, S. D'Amone, R. Cingolani, G. Gigli, Positive/negative arrays of organic light-emitting diodes by a surface-tension-driven approach, Advanced Materials 17, 2935-2939. (2005)
[310] H. Yabu, M. Shimomura, Preparation of self-organized mesoscale polymer patterns on a solid substrate: Continuous pattern formation from a receding meniscus, Advanced Functional Materials 15, 575-581. (2005)
[311] H. Celio, E. Barton, K.J. Stevenson, Patterned assembly of colloidal particles by confined dewetting lithography, Langmuir 22, 11426-11435. (2006)
[312] I. Viola, F. Della Sala, M. Piacenza, L. Favaretto, M. Gazzano, M. Anni, G. Barbarella, R. Cingolani, G. Gigli, Bicolor pixels from a single active molecular material by surface-tension-driven deposition, Advanced Materials 19, 1597-1602. (2007)
[313] S. Kaur, S. Sahoo, P. Ajayan, R.S. Kane, Capillarity-driven assembly of carbon nanotubes on substrates into dense vertically aligned arrays, Advanced Materials 19, 2984-2987. (2007)
[314] E. Fisslthaler, A. Blumel, K. Landfester, U. Scherf, E.J.W. List, Printing functional nanostructures: a novel route towards nanostructuring of organic electronic devices via soft embossing, inkjet printing and colloidal self assembly of semiconducting polymer nanospheres, Soft Matter 4, 2448-2453. (2008)
[315] T. Nakagawa, H. Torii, T. Kawashima, T. Saitoh, Controlled deposition of silicon nanowires on chemically patterned substrate by capillary force using a blade-coating method, Journal of Physical Chemistry C 112, 5390-5396. (2008)
[316] T. Pinedo Rivera, O. Lecarme, J. Hartmann, E. Rossitto, K. Berton, D. Peyrade, Assisted convective-capillary force assembly of gold colloids in a microfluidic cell: Plasmonic properties of deterministic nanostructures, Journal of Vacuum Science & Technology B 26, 2513-2519. (2008)
[317] M. Cavallini, Inhomogeneous thin deposits: a strategy to exploit their functionality, Journal of Materials Chemistry 19, 6085-6092. (2009)
[318] M. Cavallini, C. Albonetti, F. Biscarini, Nanopatterning Soluble Multifunctional Materials by Unconventional Wet Lithography, Advanced Materials 21, 1043-1053. (2009)
[319] A. Cerf, C. Vieu, Transfer printing of sub-100 nm nanoparticles by soft lithography with solvent mediation, Colloids and Surfaces a-Physicochemical and Engineering Aspects 342, 136-140. (2009)
[320] L.V. Govor, G.H. Bauer, J. Parisi, A simple method for filling nanogap electrodes with polymer, Review of Scientific Instruments 80, 033902. (2009)
[321] S.H. Lee, H.N. Kim, R.K. Kwak, K.Y. Suh, Effects of Mold Rising Angle and Polymer Concentration in Solvent-Assisted Molding, Langmuir 25, 12024-12029. (2009)
[322] S.W. Lee, S.C. Park, Y. Lim, B. Lee, S.D. Leek, Polymorphic Meniscus Convergence for Construction of Quasi-Periodic Assemblies and Networks of Colloidal Nanoparticles, Advanced Materials 22, 4172-4175. (2010)
[323] B. Radha, G.U. Kulkarni, Micro- and Nanostripes of Self-Assembled Au Nanocrystal Superlattices by Direct Micromolding, Nano Research 3, 537-544. (2010)
[324] S. Sambandan, G. Whiting, A. Arias, R.A. Street, Fast polymer semiconductor transistor by nano-particle self assembly, Organic Electronics 11, 1935-1941. (2010)
[325] C.C. Zheng, X.J. Xu, F. He, L.D. Li, B. Wu, G. Yu, Y.Q. Liu, Preparation of High-Quality Organic Semiconductor Nanoparticle Films by Solvent-Evaporation-Induced Self-Assembly, Langmuir 26, 16730-16736. (2010)
[326] M. Byun, W. Han, B. Li, S.W. Hong, J.W. Cho, Q. Zou, Z. Lin, Guided Organization of lambda-DNA into Microring Arrays from Liquid Capillary Bridges, Small 7, 1641-1646. (2011)
[327] M. Cavallini, I. Bergenti, S. Milita, J.C. Kengne, D. Gentili, G. Ruani, I. Salitros, V. Meded, M. Ruben, Thin Deposits and Patterning of Room-Temperature-Switchable One-Dimensional Spin-Crossover Compounds, Langmuir 27, 4076-4081. (2011)
[328] C.-T. Chen, C.-L. Chiu, C.-Y. Hsu, Z.-F. Tseng, C.-T. Chuang, Inkjet-Printed Polymeric Microstructures in n-Sided Regular Polygonal Cavities, Journal of Microelectromechanical Systems 20, 1001-1009. (2011)
[329] K. Higashitani, C.E. McNamee, M. Nakayama, Formation of Large-Scale Flexible Transparent Conductive Films Using Evaporative Migration Characteristics of Au Nanoparticles, Langmuir 27, 2080-2083. (2011)
[330] S.H. Kang, N. Wu, A. Grinthal, J. Aizenberg, Meniscus Lithography: Evaporation-Induced Self-Organization of Pillar Arrays into Moire Patterns, Physical Review Letters 107, 177802. (2011)
[331] M. Layani, S. Magdassi, Flexible transparent conductive coatings by combining self-assembly with sintering of silver nanoparticles performed at room temperature, Journal of Materials Chemistry 21, 15378-15382. (2011)
[332] M.B. Mikkelsen, R. Marie, J.H. Hansen, D. Wencel, C. McDonagh, H.O. Nielsen, A. Kristensen, Controlled deposition of sol-gel sensor material using hemiwicking, Journal of Micromechanics and Microengineering 21, 115008. (2011)
[333] M.J. Pavan, R. Shenhar, Two-dimensional nanoparticle organization using block copolymer thin films as templates, Journal of Materials Chemistry 21, 2028-2040. (2011)
[334] H. Zeng, K. Kristiansen, P. Wang, J. Bergli, J. Israelachvili, Surface-Induced Patterns from Evaporating Droplets of Aqueous Carbon Nanotube Dispersions, Langmuir 27, 7163-7167. (2011)
[335] D.A. Weinberger, S.G. Hong, C.A. Mirkin, B.W. Wessels, T.B. Higgins, Combinatorial generation and analysis of nanometer- and micrometer-scale silicon features via dip-pen nanolithography and wet chemical etching, Advanced Materials 12, 1600-1603. (2000)
[336] C.A. Mirkin, S.H. Hong, L. Demers, Dip-pen nanolithography: Controlling surface architecture on the sub-100 nanometer length scale, Chemphyschem 2, 37-39. (2001)
[337] D.L. Wilson, R. Martin, S. Hong, M. Cronin-Golomb, C.A. Mirkin, D.L. Kaplan, Surface organization and nanopatterning of collagen by dip-pen nanolithography, Proceedings of the National Academy of Sciences of the United States of America 98, 13660-13664. (2001)
[338] X.G. Liu, L. Fu, S.H. Hong, V.P. Dravid, C.A. Mirkin, Arrays of magnetic nanoparticles patterned via dip-pen nanolithography, Advanced Materials 14, 231-234. (2002)
[339] M. Zhang, D. Bullen, S.W. Chung, S. Hong, K.S. Ryu, Z.F. Fan, C.A. Mirkin, C. Liu, A MEMS nanoplotter with high-density parallel dip-pen manolithography probe arrays, Nanotechnology 13, 212-217. (2002)
[340] A.P. Sommer, Controlling arrangement of 60 nm nanospheres in evaporating sessile drops with low level laser light, Crystal Growth & Design 5, 559-563. (2005)
[341] J.T. Bahns, S.K.R.S. Sankaranarayanan, S.K. Gray, L. Chen, Optically Directed Assembly of Continuous Mesoscale Filaments, Physical Review Letters 106, 095501. (2011)
[342] S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, M.-a. Haga, Fabrication and Placement of a Ring Structure of Nanoparticles by a Laser-Induced Micronanobubble on a Gold Surface, Langmuir 27, 8605-8610. (2011)
[343] http://en.wikipedia.org/wiki/File:Wine_legs_shadow.jpg
[344] http://en.wikipedia.org/wiki/Rayleigh%E2%80%93B%C3%A9nard_convection
[345] H. Ko, V.V. Tsukruk, Liquid-crystalline processing of highly oriented carbon nanotube arrays for thin-film transistors, Nano Letters 6, 1443-1448. (2006)
[346] J.C. McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H.K. Wu, O.J.A. Schueller, G.M. Whitesides, Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis 21, 27-40. (2000)
[347] A.K. Wright, M.R. Thompson, Hydrodynamic structure of bovine serum albumin determined by transient electric birefringence, Biophysical Journal 15, 137-141. (1975)
[348] D.C. Carter, J.X. Ho, Structure of serum-albumin, Advances in Protein Chemistry, Vol 45 45, 153-203. (1994)
[349] K. Monkos, Viscosity of bovine serum albumin aqueous solutions as a function of temperature and concentration, International Journal of Biological Macromolecules 18, 61-68. (1996)
[350] R.H. Aebersold, D.B. Teplow, L.E. Hood, S.B.H. Kent, Electroblotting onto activated glass - High-efficiency preparation of proteins from analytical sodium dodecyl sulfate-polyacrylamide gels for direct sequence-analysis, Journal of Biological Chemistry 261, 4229-4238. (1986)
[351] K.G. Marinova, D. Christova, S. Tcholakova, E. Efremov, N.D. Denkov, Hydirophobization of glass surface by adsorption of poly(dimethylsiloxane), Langmuir 21, 11729-11737. (2005)
[352] 張瀞尹, 探討蛋白質溶液在微流道內之揮發沉積 (Investigation of Protein Solution Evaporation and Deposition inside Microchannels), 碩士論文, 化學工程學系, 國立成功大學, (2011)
[353] S.-M. Park, Y.S. Huh, H.G. Craighead, D. Erickson, A method for nanofluidic device prototyping using elastomeric collapse, Proceedings of the National Academy of Sciences of the United States of America 106, 15549-15554. (2009)
[354] J.O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W.W. Reisner, R. Riehn, Y.M. Wang, E.C. Cox, J.C. Sturm, P. Silberzan, R.H. Austin, The dynamics of genomic-length DNA molecules in 100-nm channels, Proceedings of the National Academy of Sciences of the United States of America 101, 10979-10983. (2004)
[355] K.J. Hsia, Y. Huang, E. Menard, J.U. Park, W. Zhou, J. Rogers, J.M. Fulton, Collapse of stamps for soft lithography due to interfacial adhesion, Applied Physics Letters 86, 154106. (2005)
[356] Y.Y. Huang, W.X. Zhou, K.J. Hsia, E. Menard, J.U. Park, J.A. Rogers, A.G. Alleyne, Stamp collapse in soft lithography, Langmuir 21, 8058-8068. (2005)
[357] J.M. Watson, M.G. Baron, The behaviour of water in poly(dimethylsiloxane), Journal of Membrane Science 110, 47-57. (1996)
[358] G.C. Randall, P.S. Doyle, Permeation-driven flow in poly(dimethylsiloxane) microfluidic devices, Proceedings of the National Academy of Sciences of the United States of America 102, 10813-10818. (2005)
[359] D.J. Tritton, Physical Fluid Dynamics, ed: Van Nostrand Reinhold, 1977.
[360] C.Y. Khripin, D. Pristinski, D.R. Dunphy, C.J. Brinker, B. Kaehr, Protein-Directed Assembly of Arbitrary Three-Dimensional Nanoporous Silica Architectures, Acs Nano 5, 1401-1409. (2011)
[361] D. Stein, M. Kruithof, C. Dekker, Surface-charge-governed ion transport in nanofluidic channels, Physical Review Letters 93, 035901. (2004)
[362] R. Karnik, R. Fan, M. Yue, D.Y. Li, P.D. Yang, A. Majumdar, Electrostatic control of ions and molecules in nanofluidic transistors, Nano Letters 5, 943-948. (2005)
[363] R. Karnik, K. Castelino, A. Majumdar, Field-effect control of protein transport in a nanofluidic transistor circuit, Applied Physics Letters 88, 123114. (2006)
[364] I. Vlassiouk, S. Smirnov, Z. Siwy, Ionic selectivity of single nanochannels, Nano Letters 8, 1978-1985. (2008)
[365] B.R. Cipriany, R. Zhao, P.J. Murphy, S.L. Levy, C.P. Tan, H.G. Craighead, P.D. Soloway, Single Molecule Epigenetic Analysis in a Nanofluidic Channel, Analytical Chemistry 82, 2480-2487. (2010)
[366] D. Huh, K.L. Mills, X.Y. Zhu, M.A. Burns, M.D. Thouless, S. Takayama, Tuneable elastomeric nanochannels for nanofluidic manipulation, Nature Materials 6, 424-428. (2007)
[367] S. Xu, Y. Zhao, Monolithic fabrication of nanochannels using core–sheath nanofibers as sacrificial mold, Microfluidics and Nanofluidics 11, 359-365. (2011)
[368] Y.-K. Fuh, H.-S. Hsu, Fabrication of monolithic polymer nanofluidic channels via near-field electrospun nanofibers as sacrificial templates, Journal of Micro/Nanolithography, MEMS and MOEMS 10, 043004. (2011)
[369] C.K. Fredrickson, Z.H. Fan, Macro-to-micro interfaces for microfluidic devices, Lab on a Chip 4, 526-533. (2004)
[370] S.K. Kim, H. Cho, H.K. Park, J.H. Kim, B.H. Chung, Fabrication of Nanochannels by Anisotropic Wet Etching on Silicon-on-Insulator Wafers and Their Application to DNA Stretch, Journal of Nanoscience and Nanotechnology 10, 637-642. (2010)
[371] T.C. Kuo, D.M. Cannon, Y.N. Chen, J.J. Tulock, M.A. Shannon, J.V. Sweedler, P.W. Bohn, Gateable nanofluidic interconnects for multilayered microfluidic separation systems, Analytical Chemistry 75, 1861-1867. (2003)
[372] A.L. Thangawng, R.S. Ruoff, M.A. Swartz, M.R. Glucksberg, An ultra-thin PDMS membrane as a bio/micro-nano interface: fabrication and characterization, Biomedical Microdevices 9, 587-595. (2007)
[373] B.-Y. Xu, X.-N. Yan, J.-D. Zhang, J.-J. Xu, H.-Y. Chen, Glass etching to bridge micro- and nanofluidics, Lab on a Chip 12, 381-386. (2012)
[374] K.R. Williams, R.S. Muller, Etch rates for micromachining processing, Journal of Microelectromechanical Systems 5, 256-269. (1996)
[375] B. Wu, A. Kumar, S. Pamarthy, High aspect ratio silicon etch: A review, Journal of Applied Physics 108, (2010)
[376] I. Korczagin, S. Golze, M.A. Hempenius, G.J. Vancso, Surface micropatterning and lithography with poly(ferrocenylmethylphenylsilane), Chemistry of Materials 15, 3663-3668. (2003)
[377] R.W. Stark, M.S. Stalder, A. Stemmer, Microfluidic etching driven by capillary forces for rapid prototyping of gold structures, Microelectronic Engineering 67-8, 229-236. (2003)
[378] C.M. Bruinink, M. Peter, P.A. Maury, M. De Boer, L. Kuipers, J. Huskens, D.N. Reinhoudt, Capillary force lithography: Fabrication of functional polymer templates as versatile tools for nanolithography, Advanced Functional Materials 16, 1555-1565. (2006)
[379] J.-M. Jung, F. Stellacci, H.-T. Jung, Generation of various complex patterned structures from a single ellipsoidal dot prepattern by capillary force lithography, Advanced Materials 19, 4392-4398. (2007)
[380] I. Korczagin, H. Xu, M.A. Hempenius, G.J. Vancso, Pattern transfer fidelity in capillary force lithography with poly(ferrocenylsilane) plasma etch resists, European Polymer Journal 44, 2523-2528. (2008)
[381] S.Y. Lee, J.-R. Jeong, S.-H. Kim, S. Kim, S.-M. Yang, Arrays of Ferromagnetic Nanorings with Variable Thickness Fabricated by Capillary Force Lithography, Langmuir 25, 12535-12540. (2009)
[382] S.-K. Lee, J.-M. Jung, J.-S. Lee, H.-T. Jung, Fabrication of Complex Patterns with a Wide Range of Feature Sizes from a Single Line Prepattern by Successive Application of Capillary Force Lithography, Langmuir 26, 14359-14363. (2010)
[383] A. Janshoff, S. Kunneke, Micropatterned solid-supported membranes formed by micromolding in capillaries, European Biophysics Journal with Biophysics Letters 29, 549-554. (2000)
[384] X. Ye, Y. Ding, Y. Duan, H. Liu, J. Shao, Making high-fidelity imprint template by resist patterns over a flexible conductive polymer substrate, Journal of Vacuum Science & Technology B 28, 86-89. (2010)
[385] T. Bailey, B.J. Choi, M. Colburn, M. Meissl, S. Shaya, J.G. Ekerdt, S.V. Sreenivasan, C.G. Willson, Step and flash imprint lithography: Template surface treatment and defect analysis, Journal of Vacuum Science & Technology B 18, 3572-3577. (2000)
[386] M.W. Lin, B. Chao, J. Hao, K. Osberg, P.S. Ho, C.G. Willson, Simulation and design of planarizing materials for reverse-tone step and flash imprint lithography, Journal of Micro-Nanolithography Mems and Moems 7, (2008)
[387] M.J. Gordon, D. Peyrade, Separation of colloidal nanoparticles using capillary immersion forces, Applied Physics Letters 89, (2006)
[388] S.M. Yang, S.G. Jang, D.G. Choi, S. Kim, H.K. Yu, Nanomachining by colloidal lithography, Small 2, 458-475. (2006)
[389] J. Shi, S.S. Guo, M.H. Sun, D. Baigl, Y. Chen, Fabrication of integrated patterns using lithography and particles assembling techniques, Microelectronic Engineering 84, 1471-1475. (2007)
[390] T.M. Blaettler, A. Binkert, M. Zimmermann, M. Textor, J. Voeroes, E. Reimhult, From particle self-assembly to functionalized sub-micron protein patterns, Nanotechnology 19, (2008)
[391] H. Oshima, H. Tamura, M. Takeuchi, A. Inomata, Y. Yanagida, N. Matsushita, H. Komoriya, T. Uzumaki, A. Tanaka, Nanopattern transfer from high-density self-assembled nanosphere arrays on prepatterned substrates, Nanotechnology 20, (2009)
[392] J. Zhang, Y. Li, X. Zhang, B. Yang, Colloidal Self-Assembly Meets Nanofabrication: From Two-Dimensional Colloidal Crystals to Nanostructure Arrays, Advanced Materials 22, 4249-4269. (2010)
[393] N. Vogel, S. Goerres, K. Landfester, C.K. Weiss, A Convenient Method to Produce Close- and Non-close-Packed Monolayers using Direct Assembly at the Air-Water Interface and Subsequent Plasma-Induced Size Reduction, Macromolecular Chemistry and Physics 212, 1719-1734. (2011)
[394] W. Fritzsche, K.J. Bohm, E. Unger, J.M. Kohler, Metallic nanowires created by biopolymer masking, Applied Physics Letters 75, 2854-2856. (1999)
[395] A.M. Bowen, R.G. Nuzzo, Fabrication of Flexible Binary Amplitude Masks for Patterning on Highly Curved Surfaces, Advanced Functional Materials 19, 3243-3253. (2009)
[396] Y. Zhang, J.C. Reed, S. Yang, Creating a Library of Complex Metallic Nanostructures via Harnessing Pattern Transformation of a Single PDMS Membrane, Acs Nano 3, 2412-2418. (2009)
[397] M. Bianchi, D.L. Herrero, F. Valle, P. Greco, G.M. Ingo, S. Kaciulis, F. Biscarini, M. Cavallini, One-step substrate nanofabrication and patterning of nanoparticles by lithographically controlled etching, Nanotechnology 22, (2011)
[398] Z. Huang, N. Geyer, P. Werner, J. de Boor, U. Goesele, Metal-Assisted Chemical Etching of Silicon: A Review, Advanced Materials 23, 285-308. (2011)
[399] R.S. Pai, M.M. Crain, K.M. Walsh, Maskless shaping of gold stud bumps as high aspect ratio microstructures, Microelectronic Engineering 88, 135-139. (2011)
[400] M. Sumiya, R. Bruce, S. Engelmann, F. Weilnboeck, G.S. Oehrlein, Study of 193 nm photoresist degradation during short time fluorocarbon plasma exposures. II. Plasma parameter trends for photoresist degradation, Journal of Vacuum Science & Technology B 26, 1647-1653. (2008)
[401] G.S. Oehrlein, R.J. Phaneuf, D.B. Graves, Plasma-polymer interactions: A review of progress in understanding polymer resist mask durability during plasma etching for nanoscale fabrication, Journal of Vacuum Science & Technology B 29, 010801. (2011)
[402] K.R. Williams, K. Gupta, M. Wasilik, Etch rates for micromachining processing - Part II, Journal of Microelectromechanical Systems 12, 761-778. (2003)
[403] 王英名, 運用高濃度電漿反應性離子蝕刻製作矽基微結構模具並進行高分子微熱成型加工之研究 (Investigation of Micro-Thermoforming Process Using Silicon Mold Fabricated by Deep Reactive Ion Etching), 碩士論文, 化學工程學系, 國立成功大學, (2008)
[404] P.H. Yih, V. Saxena, A.J. Steckl, A review of SiC reactive ion etching in fluorinated plasmas, Physica Status Solidi B-Basic Research 202, 605-642. (1997)
[405] F. Laermer, A. Schilp, Method of anisotropically etching silicon, United States Patent 5501893, (1996)
[406] S. Tachi, K. Tsujimoto, S. Okudaira, Low-temperature reactive ion etching and microwave plasma-etching of silicon, Applied Physics Letters 52, 616-618. (1988)
[407] H. Jansen, M. de Boer, H. Wensink, B. Kloeck, M. Elwenspoek, The black silicon method. VIII. A study of the performance of etching silicon using SF6/O-2-based chemistry with cryogenical wafer cooling and a high density ICP source, Microelectronics Journal 32, 769-777. (2001)
[408] C. Hedlund, H.O. Blom, S. Berg, Microloading effect in reactive ion etching Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 12, 1962-1965. (1994)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top