跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/27 14:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃詩方
研究生(外文):Shih-FangHuang
論文名稱:可鑲嵌式幾丁聚醣微針於長效性經皮傳輸生物大分子之應用
論文名稱(外文):Fully Embeddable Chitosan Microneedles for Transdermal Sustained Delivery of Macromolecules
指導教授:陳美瑾陳美瑾引用關係
指導教授(外文):Mei-Chin Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:86
中文關鍵詞:微針貼片幾丁聚醣經皮藥物傳輸
外文關鍵詞:Microneedle patchChitosanTransdermal drug delivery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
近年來,利用高分子微針貼片作為一種可自我施行且無痛之經皮藥物輸送裝置已廣為研究。然而,大多數的高分子微針皆在短時間內溶解,無法長效地釋放藥物,且由於高分子微針之機械強度較弱,微針往往無法完全刺進皮膚,降低藥物傳輸之效率。本研究將幾丁聚醣微針和機械強度較高的聚乳酸 [poly(L-lactide-co-DL-lactide), PLA] 支持軸陣列組合,製備出一具有生物可分解性且可將高分子微針完全刺入並鑲嵌於皮膚中的經皮微針貼片裝置。此鑲嵌式微針可於常溫常壓下,將幾丁聚醣溶液經離心灌模,並於半乾情形下與PLA支持軸組合而成。由體外豬皮穿刺結果證實,此鑲嵌式幾丁聚醣微針的穿刺比例可達100%,穿刺深度為550 ± 50 μm,可成功穿越皮膚角質層、到達有大量可引發免疫反應的抗原呈現細胞所存在的表皮層與真皮層。幾丁聚醣微針在穿刺後可與PLA支持軸分離,進而鑲嵌於皮膚中做為緩釋藥物的載體。由體外經皮藥物傳輸實驗證實,幾丁聚醣微針確實可長效釋放包覆的大分子藥物至少持續一週。進一步將幾丁聚醣微針刺入大鼠背部評估其體內降解特性,從組織切片結果可知,幾丁聚醣微針確實會在體內逐漸降解,植入後兩週仍可觀察到殘存的微針碎片。將包覆卵白蛋白 (model antigen) 之幾丁聚醣微針刺入大鼠中進行免疫測試,由分析血中特徵抗體IgG濃度發現,利用幾丁聚醣微針經皮傳輸相同劑量 (1 mg) 的卵白蛋白,可引發和傳統肌肉注射相當的抗體反應,證實由微針傳輸大分子活性物質之可行性。綜觀以上結果證實,此鑲嵌式幾丁聚醣微針裝置確實可有效突破角質層障礙,成功鑲嵌於皮膚中長效性傳輸生物巨分子藥物,可避免皮膚長期接觸貼片造成之不適,未來有潛力應用於疫苗與其他大分子藥物之經皮傳輸。
ABSTRACT
Recently, various polymeric microneedle devices have been developed for painless and self-administration transdermal delivery of biopharmaceuticals. However, most of polymer microneedles are rapidly dissolved and only for burst release. Additionally, these polymer materials are mechanically weaker than metal or silicon and thus result in incomplete insertion of microneedles and some waste of drugs. In this study, we developed a biodegradable transdermal microneedle device, which combined chitosan microneedles with a poly (L-lactide-co-DL-lactide) (PLA) supporting base, and it can be fully embedded inside the skin after insertion. To prevent damaging the integrity of encapsulated biomolecules, a gentle fabrication process for chitosan microneedle was developed. In vitro porcine skin insertion test showed that the insertion ratio and penetration depth of chitosan microneedle patch were 100% and 550 ± 50 μm, respectively. This penetration depth corresponded to insertion across the epidermis layer into the dermis layer where antigen-presenting cells are abundantly present. After insertion, the chitosan microneedle can be separated from the PLA supporting base and be left in the skin for sustained drug release. In vitro drug delivery study indicated that encapsulated model drugs can be released from chitosan microneedles for at least one week, indicating that the embeddable microneedle patch has potential for long-term drug treatment. In vivo degradability study showed that the embedded chitosan microneedle was gradually degraded within the rat skin over time for at least 2 weeks. In the rat immunization study, the model antigen—ovalbumin (OVA) released from the chitosan microneedles induced similar IgG antibody production with intramuscular injection at the same dosage (1 mg). This result indicated that the integrity of OVA still remained after the microneedle fabrication process. In conclusions, we believe that this embeddable and degradable microneedle patch can be an attractive alternative for transdermal delivery of vaccines or other macromolecular drugs.
ABSTRACT I
摘要 II
ACKNOWLEDGEMENT III
Table of Contents IV
List of Tables VI
List of Figures VII
CHAPTER 1 INTRODUCTION 1
1.1 Transdermal Drug Delivery 1
1.1.1 Skin structure 3
1.1.2 Currently available transdermal drug delivery products 6
1.1.3 Other transdermal delivery systems 8
1.2 Microneedle for Transdermal Delivery 13
1.2.1 Definition of Microneedle 14
1.2.2 Polymeric Microneedles 19
1.2.3 Chitosan 20
1.2.4 Trehalose 22
1.2.5 Poly (L-lactide) (PLA) 23
1.2.6 Polyvinylpyrrolidone (PVP) 24
1.3 Sustained Delivery System for Vaccine Delivery 25
1.4 Objective 26
CHAPTER 2 MATERIALS AND METHODS 28
2.1 Materials 28
2.2 Equipment 30
2.3 Methods 31
2.3.1 Fabrication of chitosan-PLA microneedle patch 31
2.3.2 Skin insertion: in vitro and in vivo evaluation 42
2.3.3 In vitro drug release study 44
2.3.4 In vivo skin recovery study 47
2.3.5 In vivo degradability study 48
2.3.6 In vivo immunization study of OVA microneedles 49
CHAPTER 3 RESULTS AND DISCUSSION 52
3.1 Fabrication of Embeddable Chitosan-PLA Microneedles Patch 53
3.2 Skin Insertion Study: In Vitro and In Vivo 61
3.3 In Vitro Drug Release Study 67
3.4 Skin Recovery after Applying Microneedle Patch in Rats 70
3.5 In Vivo Degradability of embedded Microneedles 73
3.6 Antibodies Titers after Immunization 75
CHAPTER 4 CONCLUSIONS 77
REFERENCES 78
Ambrose, C. G., & Clanton, T. O. (2004). Bioabsorbable implants: Review of clinical experience in orthopedic surgery. Annals of Biomedical Engineering, 32(1), 171-177.
Amorij, J. P., Meulenaar, J., Hinrichs, W. L., Stegmann, T., Huckriede, A., Coenen, F., & Frijlink, H. W. (2007). Rational design of an influenza subunit vaccine powder with sugar glass technology: preventing conformational changes of haemagglutinin during freezing and freeze-drying. Vaccine, 25(35), 6447-6457.
Andrianov, A. K., Marin, A., & DeCollibus, D. P. (2011). Microneedles with intrinsic immunoadjuvant properties: microfabrication, protein stability, and modulated release. Pharmaceutical Research, 28(1), 58-65.
Arora, A., Prausnitz, M. R., & Mitragotri, S. (2008). Micro-scale devices for transdermal drug delivery. Int J Pharm, 364(2), 227-236.
Auner, B. G., Valenta, C., & Hadgraft, J. (2003). Influence of phloretin and 6-ketocholestanol on the skin permeation of sodium-fluorescein. Journal of Controlled Release, 89(2), 321-328.
Balmayor, E., Azevedo, H., & Reis, R. (2011). Controlled Delivery Systems: From Pharmaceuticals to Cells and Genes. Pharmaceutical Research, 28(6), 1241-1258.
Barry, B. W. (2001). Novel mechanisms and devices to enable successful transdermal drug delivery. European Journal of Pharmaceutical Sciences, 14(2), 101-114.
Bergsma, J. E., Debruijn, W. C., Rozema, F. R., Bos, R. R. M., & Boering, G. (1995). Late Degradation Tissue-Response to Poly(L-Lactide) Bone Plates and Screws. Biomaterials, 16(1), 25-31.
Bieganski, R. M., Fowler, A., Morgan, J. R., & Toner, M. (1998). Stabilization of active recombinant retroviruses in an amorphous dry state with trehalose. Biotechnol Prog, 14(4), 615-620.
Bortolatto, J., Borducchi, É., Rodriguez, D., Keller, A. C., Faquim-Mauro, E., Bortoluci, K. R., Mucida, D., Gomes, E., Christ, A., Schnyder-Candrian, S., Schnyder, B., Ryffel, B., & Russo, M. (2008). Toll-like receptor 4 agonists adsorbed to aluminium hydroxide adjuvant attenuate ovalbumin-specific allergic airway disease: role of MyD88 adaptor molecule and interleukin-12/interferon-γ axis. Clinical & Experimental Allergy, 38(10), 1668-1679.
Boucaud, A., Machet, L., Arbeille, B., Machet, M. C., Sournac, M., Mavon, A., Patat, F., & Vaillant, L. (2001). In vitro study of low-frequency ultrasound-enhanced transdermal transport of fentanyl and caffeine across human and hairless rat skin. Int J Pharm, 228(1–2), 69-77.
Bouwstra, J. A., Honeywell-Nguyen, P. L., Gooris, G. S., & Ponec, M. (2003). Structure of the skin barrier and its modulation by vesicular formulations. Progress in Lipid Research, 42(1), 1-36.
Carpenter, J. F., & Crowe, J. H. (1989). An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry, 28(9), 3916-3922.
Cevc, G. (2004). Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Deliv Rev, 56(5), 675-711.
Cevc, G., & Vierl, U. (2007). Spatial distribution of cutaneous microvasculature and local drug clearance after drug application on the skin. Journal of Controlled Release, 118(1), 18-26.
Cevc, G., & Vierl, U. (2010). Nanotechnology and the transdermal route: A state of the art review and critical appraisal. Journal of Controlled Release, 141(3), 277-299.
Chandrasekaran, S., Brazzle, J. D., & Frazier, A. B. (2003). Surface micromachined metallic microneedles. Journal of Microelectromechanical Systems, 12(3), 281-288.
Chang, S.-L., Hofmann, G. A., Zhang, L., Deftos, L. J., & Banga, A. K. (2000). The effect of electroporation on iontophoretic transdermal delivery of calcium regulating hormones. Journal of Controlled Release, 66(2–3), 127-133.
Chu, L. Y., Choi, S.-O., & Prausnitz, M. R. (2010). Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: Bubble and pedestal microneedle designs. Journal of Pharmaceutical Sciences, 99(10), 4228-4238.
Chu, L. Y., & Prausnitz, M. R. (2011). Separable arrowhead microneedles. Journal of Controlled Release, 149(3), 242-249.
Conconi, M. T., De Coppi, P., Bellini, S., Zara, G., Sabatti, M., Marzaro, M., Zanon, G. F., Gamba, P. G., Parnigotto, P. P., & Nussdorfer, G. G. (2005). Homologous muscle acellular matrix seeded with autologous myoblasts as a tissue-engineering approach to abdominal wall-defect repair. Biomaterials, 26(15), 2567-2574.
Cormier, M., Johnson, B., Ameri, M., Nyam, K., Libiran, L., Zhang, D. D., & Daddona, P. (2004). Transdermal delivery of desmopressin using a coated microneedle array patch system. Journal of Controlled Release, 97(3), 503-511.
Crowe, J. H., Crowe, L. M., Carpenter, J. F., & Aurell Wistrom, C. (1987). Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J, 242(1), 1-10.
Davis, S. P., Landis, B. J., Adams, Z. H., Allen, M. G., & Prausnitz, M. R. (2004). Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. Journal of Biomechanics, 37(8), 1155-1163.
Dean, C. H., Alarcon, J. B., Waterston, A. M., Draper, K., Early, R., Guirakhoo, F., Monath, T. P., & Mikszta, J. A. (2005). Cutaneous Delivery of a Live, Attenuated Chimeric Flavivirus Vaccines against Japanese Encephalitis (ChimeriVaxTM-JE) in Non-Human Primates. Human Vaccines, 1(3), 106-111.
Denet, A.-R., Vanbever, R., & Préat, V. (2004). Skin electroporation for transdermal and topical delivery. Adv Drug Deliv Rev, 56(5), 659-674.
Donnelly, R. F., Morrow, D. I. J., Fay, F., Scott, C. J., Abdelghany, S., Singh, R. R. T., Garland, M. J., & David Woolfson, A. (2010). Microneedle-mediated intradermal nanoparticle delivery: Potential for enhanced local administration of hydrophobic pre-formed photosensitisers. Photodiagnosis and Photodynamic Therapy, 7(4), 222-231.
Dornish, M., Kaplan, D. S., & Arepalli, S. R. (2012). Regulatory Status of Chitosan and Derivatives Chitosan-Based Systems for Biopharmaceuticals (pp. 463-481): John Wiley & Sons, Ltd.
Dutta, P. K., Dutta, J., & Tripathi, V. S. (2004). Chitin and chitosan: Chemistry, properties and applications. Journal of Scientific & Industrial Research, 63(1), 20-31.
Elias, P. M. (1983). Epidermal Lipids, Barrier Function, and Desquamation. Journal of Investigative Dermatology, 80(1s), 44s-49s.
Gardeniers, H. J. G. E., Luttge, R., Berenschot, E. J. W., de Boer, M. J., Yeshurun, S. Y., Hefetz, M., van't Oever, R., & van den Berg, A. (2003). Silicon micromachined hollow microneedles for transdermal liquid transport. Journal of Microelectromechanical Systems, 12(6), 855-862.
Ge, Y., Zhang, Y., He, S., Nie, F., Teng, G., & Gu, N. (2009). Fluorescence Modified Chitosan-Coated Magnetic Nanoparticles for High-Efficient Cellular Imaging. Nanoscale Res Lett, 4(4), 287-295.
Ghendon, Y., Markushin, S., Akopova, I., Koptiaeva, I., & Krivtsov, G. (2011). Chitosan as an adjuvant for poliovaccine. Journal of Medical Virology, 83(5), 847-852.
Ghendon, Y., Markushin, S., Krivtsov, G., & Akopova, I. (2008). Chitosan as an adjuvant for parenterally administered inactivated influenza vaccines. Archives of Virology, 153(5), 831-837.
Gill, H. S., & Prausnitz, M. R. (2007). Coated microneedles for transdermal delivery. Journal of Controlled Release, 117(2), 227-237.
Griss, P., Enoksson, P., & Stemme, G. (2002). Micromachined barbed spikes for mechanical chip attachment. Sensors and Actuators a-Physical, 95(2-3), 94-99.
Haaf, F., Sanner, A., & Straub, F. (1985). Polymers of N-Vinylpyrrolidone - Synthesis, Characterization and Uses. Polymer Journal, 17(1), 143-152.
Henry, S., McAllister, D. V., Allen, M. G., & Prausnitz, M. R. (1998). Microfabricated microneedles: a novel approach to transdermal drug delivery. Journal of Pharmaceutical Sciences, 87(8), 922-925.
Higashiyama, T. (2002). Novel functions and applications of trehalose. Pure and Applied Chemistry, 74(7), 1263-1269.
Ignatius, A. A., & Claes, L. E. (1996). In vitro biocompatibility of bioresorbable polymers: poly(L, DL-lactide) and poly(L-lactide-co-glycolide). Biomaterials, 17(8), 831-839.
Ito, Y., Hagiwara, E., Saeki, A., Sugioka, N., & Takada, K. (2006). Feasibility of microneedles for percutaneous absorption of insulin. European Journal of Pharmaceutical Sciences, 29(1), 82-88.
Jayakumar, R., Chennazhi, K. P., Muzzarelli, R. A. A., Tamura, H., Nair, S. V., & Selvamurugan, N. (2010a). Chitosan conjugated DNA nanoparticles in gene therapy. Carbohydrate Polymers, 79(1), 1-8.
Jayakumar, R., Menon, D., Manzoor, K., Nair, S. V., & Tamura, H. (2010b). Biomedical applications of chitin and chitosan based nanomaterials-A short review. Carbohydrate Polymers, 82(2), 227-232.
Kaushik, S., Hord, A. H., Denson, D. D., McAllister, D. V., Smitra, S., Allen, M. G., & Prausnitz, M. R. (2001). Lack of pain associated with microfabricated microneedles. Anesth Analg, 92(2), 502-504.
Kean, T., & Thanou, M. (2010). Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev, 62(1), 3-11.
Kendall, M., Rishworth, S., Carter, F., & Mitchell, T. (2004). Effects of Relative Humidity and Ambient Temperature on the Ballistic Delivery of Micro-Particles to Excised Porcine Skin. Journal of Investigative Dermatology, 122(3), 739-746.
Kim, K., Park, D. S., Lu, H. M., Che, W., Kim, K., Lee, J. B., & Ahn, C. H. (2004). A tapered hollow metallic microneedle array using backside exposure of SU-8. Journal of Micromechanics and Microengineering, 14(4), 597-603.
Kim, Y. C., Quan, F. S., Compans, R. W., Kang, S. M., & Prausnitz, M. R. (2010). Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity. Journal of Controlled Release, 142(2), 187-195.
Kolli, C., & Banga, A. (2008). Characterization of Solid Maltose Microneedles and their Use for Transdermal Delivery. Pharmaceutical Research, 25(1), 104-113.
Lee, J. W., Choi, S.-O., Felner, E. I., & Prausnitz, M. R. (2011a). Dissolving Microneedle Patch for Transdermal Delivery of Human Growth Hormone. Small, 7(4), 531-539.
Lee, J. W., Park, J. H., & Prausnitz, M. R. (2008). Dissolving microneedles for transdermal drug delivery. Biomaterials, 29(13), 2113-2124.
Lee, K., Lee, C. Y., & Jung, H. (2011b). Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials, 32(11), 3134-3140.
Leslie, S. B., Israeli, E., Lighthart, B., Crowe, J. H., & Crowe, L. M. (1995). Trehalose and Sucrose Protect Both Membranes and Proteins in Intact Bacteria during Drying. Applied and Environmental Microbiology, 61(10), 3592-3597.
Leslie, S. B., Teter, S. A., Crowe, L. M., & Crowe, J. H. (1994). Trehalose lowers membrane phase transitions in dry yeast cells. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1192(1), 7-13.
Lin, W., Cormier, M., Samiee, A., Griffin, A., Johnson, B., Teng, C.-L., Hardee, G. E., & Daddona, P. E. (2001). Transdermal Delivery of Antisense Oligonucleotides with Microprojection Patch (macroflux®) Technology. Pharmaceutical Research, 18(12), 1789-1793.
Loan Honeywell-Nguyen, P., Wouter Groenink, H. W., & Bouwstra, J. A. (2006). Elastic Vesicles as a Tool for Dermal and Transdermal Delivery. Journal of Liposome Research, 16(3), 273-280.
MacNeil, S. (2008). Biomaterials for tissue engineering of skin. Materials Today, 11(5), 26-35.
Manmohan, S. (2007). Vaccine adjuvants and delivery systems. Hoboken, N.J.: Wiley-Interscience.
Martanto, W., Davis, S., Holiday, N., Wang, J., Gill, H., & Prausnitz, M. (2004). Transdermal Delivery of Insulin Using Microneedles in Vivo. Pharmaceutical Research, 21(6), 947-952.
Matriano, J. A., Cormier, M., Johnson, J., Young, W. A., Buttery, M., Nyam, K., & Daddona, P. E. (2002). Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharmaceutical Research, 19(1), 63-70.
McAllister, D. V., Allen, M. G., & Prausnitz, M. R. (2000). Microfabricated microneedles for gene and drug delivery. Annu Rev Biomed Eng, 2, 289-313.
McAllister, D. V., Wang, P. M., Davis, S. P., Park, J.-H., Canatella, P. J., Allen, M. G., & Prausnitz, M. R. (2003). Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication methods and transport studies. Proceedings of the National Academy of Sciences, 100(24), 13755-13760.
Migalska, K., Morrow, D. I., Garland, M. J., Thakur, R., Woolfson, A. D., & Donnelly, R. F. (2011). Laser-engineered dissolving microneedle arrays for transdermal macromolecular drug delivery. Pharmaceutical Research, 28(8), 1919-1930.
Mikszta, J. A., Alarcon, J. B., Brittingham, J. M., Sutter, D. E., Pettis, R. J., & Harvey, N. G. (2002). Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nature Medicine, 8(4), 415-419.
Mir, V. G., Heinämäki, J., Antikainen, O., Revoredo, O. B., Colarte, A. I., Nieto, O. M., & Yliruusi, J. (2008). Direct compression properties of chitin and chitosan. European Journal of Pharmaceutics and Biopharmaceutics, 69(3), 964-968.
Mitragotri, S. (2005). Immunization without needles. Nature Reviews Immunology, 5(12), 905-916.
Mitragotri, S., Ray, D., Farrell, J., Tang, H., Yu, B., Kost, J., Blankschtein, D., & Langer, R. (2000). Synergistic effect of low-frequency ultrasound and sodium lauryl sulfate on transdermal transport. Journal of Pharmaceutical Sciences, 89(7), 892-900.
Miyano, T., Tobinaga, Y., Kanno, T., Matsuzaki, Y., Takeda, H., Wakui, M., & Hanada, K. (2005). Sugar micro needles as transdermic drug delivery system. Biomed Microdevices, 7(3), 185-188.
Nestle, F. O., Di Meglio, P., Qin, J. Z., & Nickoloff, B. J. (2009). Skin immune sentinels in health and disease. Nature Reviews Immunology, 9(10), 679-691.
Park, J.-H., Allen, M., & Prausnitz, M. (2006). Polymer Microneedles for Controlled-Release Drug Delivery. Pharmaceutical Research, 23(5), 1008-1019.
Park, J. H., Allen, M. G., & Prausnitz, M. R. (2005). Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. Journal of Controlled Release, 104(1), 51-66.
Park, J. H., Choi, S. O., Seo, S., Choy, Y. B., & Prausnitz, M. R. (2010). A microneedle roller for transdermal drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 76(2), 282-289.
Pegoraro, C., MacNeil, S., & Battaglia, G. (2012). Transdermal drug delivery: from micro to nano. Nanoscale, 4(6), 1881-1894.
Pramudityo, E. (2011). Chitosan Microneedle Patches for Transdermal Delivery of Biomacromolecules. National Cheng Kung University, Taiwan. (U0026-3007201111024600)
Prausnitz, M. R. (2004). Microneedles for transdermal drug delivery. Adv Drug Deliv Rev, 56(5), 581-587.
Prausnitz, M. R., & Langer, R. (2008). Transdermal drug delivery. Nature Biotechnology, 26(11), 1261-1268.
Quan, F. S., Kim, Y. C., Yoo, D. G., Compans, R. W., Prausnitz, M. R., & Kang, S. M. (2009). Stabilization of influenza vaccine enhances protection by microneedle delivery in the mouse skin. PLoS One, 4(9), e7152.
Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603-632.
Ronnau, A. C., Wulferink, M., Gleichmann, E., Unver, E., Ruzicka, T., Krutmann, J., & Grewe, M. (2000). Anaphylaxis to polyvinylpyrrolidone in an analgesic preparation. Br J Dermatol, 143(5), 1055-1058.
Rosen, H., & Abribat, T. (2005). The rise and rise of drug delivery. Nat Rev Drug Discov, 4(5), 381-385.
Runyan, W. R., & Bean, K. E. (1990). Semiconductor integrated circuit processing technology. Reading, Mass.: Addison-Wesley.
Şenel, S. (2011). Chitosan-Based Particulate Systems for Non-Invasive Vaccine Delivery
Chitosan for Biomaterials I. In R. Jayakumar, M. Prabaharan & R. A. A. Muzzarelli (Eds.), (Vol. 243, pp. 111-137): Springer Berlin / Heidelberg.
Sivamani, R. K., Liepmann, D., & Maibach, H. I. (2007). Microneedles and transdermal applications. Expert Opin Drug Deliv, 4(1), 19-25.
Song, J. M., Kim, Y. C., Lipatov, A. S., Pearton, M., Davis, C. T., Yoo, D. G., Park, K. M., Chen, L. M., Quan, F. S., Birchall, J. C., Donis, R. O., Prausnitz, M. R., Compans, R. W., & Kang, S. M. (2010). Microneedle delivery of H5N1 influenza virus-like particles to the skin induces long-lasting B- and T-cell responses in mice. Clin Vaccine Immunol, 17(9), 1381-1389.
Sullivan, S. P., Koutsonanos, D. G., del Pilar Martin, M., Lee, J. W., Zarnitsyn, V., Choi, S.-O., Murthy, N., Compans, R. W., Skountzou, I., & Prausnitz, M. R. (2010). Dissolving polymer microneedle patches for influenza vaccination. Nature Medicine, 16(8), 915-920.
Sullivan, S. P., Murthy, N., & Prausnitz, M. R. (2008). Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Advanced Materials, 20(5), 933-+.
Sun, W. Q., Leopold, A. C., Crowe, L. M., & Crowe, J. H. (1996). Stability of dry liposomes in sugar glasses. Biophys J, 70(4), 1769-1776.
Takeda, Y., & Wakabayashi, I. (2012). Alteration in lymphocyte population and humoral immune response in type 2 diabetic Goto-Kakizaki rats. Life Sci, 90(13-14), 545-552.
Tsioris, K., Raja, W. K., Pritchard, E. M., Panilaitis, B., Kaplan, D. L., & Omenetto, F. G. (2012). Fabrication of Silk Microneedles for Controlled-Release Drug Delivery. Advanced Functional Materials, 22(2), 330-335.
Walsh, G. (2006). Biopharmaceutical benchmarks 2006. Nature Biotechnology, 24(7), 769-776.
Wang, H., Yu, T., Zhao, C., & Du, Q. (2009). Improvement of hydrophilicity and blood compatibility on polyethersulfone membrane by adding polyvinylpyrrolidone. Fibers and Polymers, 10(1), 1-5.
Wang, P. M., Cornwell, M., Hill, J., & Prausnitz, M. R. (2006). Precise microinjection into skin using hollow microneedles. Journal of Investigative Dermatology, 126(5), 1080-1087.
Warner, R. R., Stone, K. J., & Boissy, Y. L. (2003). Hydration Disrupts Human Stratum Corneum Ultrastructure. Journal of Investigative Dermatology, 120(2), 275-284.
Wermeling, D. P., Banks, S. L., Hudson, D. A., Gill, H. S., Gupta, J., Prausnitz, M. R., & Stinchcomb, A. L. (2008). Microneedles permit transdermal delivery of a skin-impermeant medication to humans. Proceedings of the National Academy of Sciences, 105(6), 2058-2063.
Xu, Y., M. M. Chen, Z. Li, C. Y. Lim, P. Y. J. Tan. (2009). United States Patent.
Yang, Y. M., Hu, W., Wang, X. D., & Gu, X. S. (2007). The controlling biodegradation of chitosan fibers by N-acetylation in vitro and in vivo. J Mater Sci Mater Med, 18(11), 2117-2121.
Zaharoff, D. A., Rogers, C. J., Hance, K. W., Schlom, J., & Greiner, J. W. (2007). Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination. Vaccine, 25(11), 2085-2094.
Zahn, J. D., Talbot, N. H., Liepmann, D., & Pisano, A. P. (2000). Microfabricated Polysilicon Microneedles for Minimally Invasive Biomedical Devices. Biomed Microdevices, 2(4), 295-303.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top