跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 17:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:唐可縈
研究生(外文):Ke-YingTang
論文名稱:石墨烯應用在直接甲醇燃料電池觸媒擔體之研究—碳材混摻及親水修飾
論文名稱(外文):A Study on the Application of Graphene as Catalyst Support in Direct Methanol Fuel Cell—Blending with Other Carbon Materials and Hydrophilic Modification
指導教授:楊明長
指導教授(外文):Ming-Chang Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:154
中文關鍵詞:直接甲醇燃料電池觸媒擔體石墨烯親水修飾碳材混摻
外文關鍵詞:direct methanol fuel cellcatalyst supportgraphenehydrophilic modificationblended with other carbon materials
相關次數:
  • 被引用被引用:1
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
直接甲醇燃料電池 (DMFC) 陽極端的觸媒擔體,須具有高表面積、高導電度及些微親水性。本研究主要探討以石墨烯作為DMFC陽極觸媒擔體,也加以親水修飾及與其他種類碳材混摻,並與商用觸媒做電池性能比較。比較方式包含以半電池系統探討觸媒活性,以及使用三極式系統進行放電測試,分別得到陰陽兩極極化曲線,並比較在單電池系統與半電池系統的差異。
觸媒特性分析方面,以接觸角量測儀判定親水修飾的強度;使用傅立葉轉換紅外線光譜儀 (FTIR) 分析親水修飾時在觸媒上產生的官能基;以穿透式電子顯微鏡 (TEM) 及X-射線繞射儀 (XRD) 分析觸媒中PtRu的分散性與粒徑;並以能譜儀 (EDS) 分析觸媒中PtRu的原子比。由FTIR顯示將氧化石墨烯 (GO) 與白金、釕一同以硼氫化鈉還原的觸媒 (PtRu/G)具有少數親水官能基 (C-O及O-H) 適合用在DMFC;由TEM觀察PtRu/G,顯示親水的氧化石墨烯與金屬前驅物在溶液中一起還原,能使PtRu在石墨烯上具較佳分散性,平均粒徑2.3 nm;以聯胺還原後的石墨烯作為觸媒擔體PtRu/G(N),所得的觸媒分散性則較差,但其平均粒徑並沒有因此變大。以親水性分子修飾石墨烯或是將氧化石墨烯與其他碳材進行混摻作為觸媒擔體,得到的觸媒性能始終無法超越PtRu/G。
電化學分析結果顯示PtRu/G的活性面積是商用觸媒Johnson Matthey與E-TEK的1.42倍,且是PtRu/G(N)觸媒的2.17倍;而PtRu/G在峰電位的質量活性是Johnson Matthey觸媒的1.42倍,是E-TEK觸媒的1.54倍,且是PtRu/G(N)觸媒的3.03倍。而以循環伏安法得到之If/Ib比例,PtRu/GO得到之值為2.19,是Johnson Matthey觸媒的1.24倍。顯示在甲醇溶液中,PtRu/GO觸媒使甲醇氧化反應中副產物產生的比例較低。
PtRu/G的單電池最大放電功率是Johnson Matthey觸媒的0.74倍,但表現地與E-TEK接近,而且是PtRu/G(N)觸媒的1.37倍。

The catalyst support used in the anode of Direct Methanol Fuel Cell (DMFC) was needed to have a large surface area, high conductivity and some hydrophile. This research were focused on the effects of graphene as catalyst support for the anode of DMFC. The investigated graphenes included of pure graphene and graphene, modified by hydrophilic materials or blended with other carbon materials. And the activity of these catalysts, with PtRu supported on graphene, were compared with that of commercial catalysts in DMFC system. The comparison were performed in half cell system and in three-electrodes single cell system. And the resultsin these two system were also compared to the other.
The hydrophile and the functional groups on catalyst were analyzed by contact angle goniometer and Fourier transfer infrared spectroscopy (FTIR), respectively. The dispersion and particle size of PtRu were analyzed by Transmission Electron Microsope (TEM) and X-ray diffratometer (XRD). The atomic ratio of Pt and Ru were analyzed by Energy Dispersive Spectrometer (EDS). From FTIR, the catalyst (PtRu/G) that graphene oxide (GO) and metal precusors were reduced together by sodium borohydride had hydrophilic functional groups,C-O and O-H, and was suitable in DMFC. According to the observation on PtRu/G by TEM, hydrophilic GO reduced with matal precusors in aqueous solution could improve the dispersion of PtRu, with a particle size of 2.30 nm. PtRu/G(N) was the catalyst that graphene was reduced by hydrazine, and then PtRu were reduced on this support. The dispersion of PtRu in PtRu/G(N) was worse than that in PtRu/G catalyst, but the particle size of PtRu was remained the same. The performance of catalysts with graphenes modified by hydrophilic materials and blended with other carbon materials were worse than that of PtRu/G.
Electrochemical surface area of PtRu/G was 1.42 times of that of any commercial catalyst, Johnson Matthey and E-TEK, and 2.17 times of that of PtRu/G(N). The mass activity at peak potential of PtRu/G was 1.42 times of that of Johnson Matthey, 1.54 times of that of E-TEK, and 3.03 times of that of PtRu/G(N). The If/Ib ratio of PtRu/G was 2.19 which was 1.24 times of Johnson Matthey. In methanol aqueous solution, PtRu/G perduced smaller ratio of side product after mathanol oxidation reaction.
In the single cell test, the maximun power density with PtRu/G was 0.74 times of that with Johnson Matthey, similar to that with E-TEK, and 1.37 times of that with PtRu/G(N).

摘要………………………………………………………………………… Ⅰ
Abstract……………………………………………………………………Ⅲ
致謝…………………………………………………………………………Ⅴ
目錄………………………………………………………………………Ⅵ
圖目錄………………………………………………………………………Ⅹ
表目錄……………………………………………………………………ⅩⅨ
第一章 緒論……………………………………………………………… 1
1.1前言…………………………………………………………………… 1
1.2燃料電池……………………………………………………………… 1
1.2.1燃料電池特點……………………………………………………2
1.2.2燃料電池種類……………………………………………………3
1.2.3現況與挑戰………………………………………………………6
1.3直接甲醇燃料電池 ………………………………………………… 8
1.3.1甲醇滲透 (Methanol Crossover)……………………………… 8
1.3.2陽極觸媒材料……………………………………………………8
1.3.3陰極觸媒材料…………………………………………………10
1.3.4觸媒擔體………………………………………………………10
1.3.5觸媒擔載於石墨烯之製備方法………………………………14
1.3.6碳材表面親水處理……………………………………………16
1.3.7膜電極組 (Membrane Electrode Assembly, MEA) ………… 18
1.4研究動機……………………………………………………………23
第二章 原理………………………………………………………………24
2.1直接甲醇燃料電池工作原理………………………………………24
2.2甲醇電催化機制……………………………………………………25
2.3電池放電的極化現象………………………………………………26
2.3.1活性過電壓……………………………………………………28
2.3.2歐姆過電壓……………………………………………………29
2.3.3質傳過電壓……………………………………………………29
2.3.4 電池阻抗的計算………………………………………………30
2.4參考電極的應用……………………………………………………31
2.5線性掃描法……………………………………………………………35
2.6循環伏安法…………………………………………………………36
第三章 實驗步驟………………………………………………………… 39
3.1實驗架構……………………………………………………………39
3.1.1修飾石墨烯 ……………………………………………………39
3.1.2觸媒製備………………………………………………………40
3.2藥品與材料…………………………………………………………42
3.3儀器設備……………………………………………………………44
3.4質子交換膜前處理…………………………………………………45
3.5參考電極製備………………………………………………………45
3.6石墨烯製備…………………………………………………………47
3.7碳材親水處理………………………………………………………47
3.7.1聚乙烯比咯烷酮 (PVP) 修飾碳材……………………………47
3.7.2聚苯乙烯磺酸鈉 (PSS) 修飾碳材……………………………48
3.7.3重氮鹽 (diazonium salt) 修飾碳材……………………………49
3.7.4酸處理…………………………………………………………50
3.8鉑-釕/碳觸媒製備……………………………………………………51
3.8.1鉑-釕/碳觸媒……………………………………………………51
3.8.2還原鉑-釕/碳觸媒後加入修飾物………………………………52
3.9電極漿料製備………………………………………………………54
3.9.1半電池電極製備………………………………………………54
3.9.2單電池電極製備………………………………………………55
3.10觸媒之電化學活性分析……………………………………………55
3.10.1觸媒預活化……………………………………………………56
3.10.2線性掃描法……………………………………………………56
3.10.3循環伏安法……………………………………………………56
3.11單電池放電測試…………………………………………………56
3.11.1熱壓法製備膜電極組…………………………………………56
3.11.2單電池組裝……………………………………………………57
3.11.3單電池放電測試………………………………………………58
3.12觸媒物性分析………………………………………………………60
3.12.1傅立葉轉換紅外線光譜分析…………………………………60
3.12.2接觸角分析……………………………………………………60
3.12.3 穿透式電子顯微鏡分析……………………………………60
3.12.4 X光繞射儀分析 …………………………………………… 60
3.12.5熱重分析………………………………………………………60
3.12.6能量散射光譜儀分析…………………………………………61
第四章 結果與討論……………………………………………………… 62
4.1以石墨烯為擔體之觸媒特性分析………………………………… 62
4.1.1 傅立葉轉換紅外線光譜分析 ……………………………… 62
4.1.2 接觸角分析…………………………………………………… 64
4.1.3 穿透式電子顯微鏡與X光繞射儀分析……………………… 66
4.1.4 能量散射光譜儀分析………………………………………… 71
4.1.5 觸媒之電化學活性分析……………………………………… 72
4.2以親水性分子修飾石墨烯擔體之觸媒特性分析………………… 76
4.2.1 傅立葉轉換紅外線光譜分析………………………………… 76
4.2.2 接觸角分析…………………………………………………… 79
4.2.3 穿透式電子顯微鏡與 X光繞射儀分析…………………… 82
4.2.4能量散射光譜儀分析………………………………………… 86
4.2.5 觸媒之電化學活性分析……………………………………… 86
4.3石墨烯與其他碳材混摻作為擔體之觸媒特性分析……………… 91
4.3.1 接觸角分析與傅立葉轉換紅外線光譜分析………………… 91
4.3.2 穿透式電子顯微鏡與 X光繞射儀分析…………………… 93
4.3.3能量散射光譜儀分析………………………………………… 99
4.3.4 觸媒之電化學活性分析……………………………………100
4.4單電池效能分析……………………………………………………109
4.4.1 以石墨烯為擔體之觸媒……………………………………109
4.4.2 以親水性分子修飾石墨烯擔體之觸媒……………………111
4.4.3 石墨烯與其他碳材混摻作為擔體之觸媒………………… 118
4.5綜合討論…………………………………………………………… 126
4.5.1 觸媒特性分析……………………………………………… 126
4.5.2 電化學活性分析…………………………………………… 130
4.5.3 單電池效能分析…………………………………………… 133
第五章 結論…………………………………………………………… 138
參考文獻………………………………………………………………… 140
附錄……………………………………………………………………… 152
自述……………………………………………………………………… 154

[1]楊志忠、林頌恩、韋文誠, 燃料電池發展現況, 科學發展, 367期, pp. 30-33, 2003.
[2]石井弘毅, 圖解燃料電池, 世茂出版有限公司, 2008.
[3]TLP Library, Website of University of Cambridge, http://www.doitpoms.ac.uk/tlplib/fuel-cells/types.php.
[4]J. Giner, Model of a hydrogen-air fuel cell with alkaline electrolyte, Journal of the Electrochemical Society, vol. 116, p. 124, 1969.
[5]楊顯整, 燃料電池應用與產業發展現況, 綠基會通訊, pp. 2-5, 2012.
[6]馬承九, 燃料電池札記, 三民書局, 2008.
[7]陳振源, 未來的綠色能源---燃料電池, 科學發展, 391期, pp. 63-65, 2005.
[8]T. J. Schmidt, M. Noeske, H. A. Gasteiger, R. J. Behm, P. Britz, and H. Bonnemann, PtRu alloy colloids as precursors for fuel cell catalysts - A combined XPS, AFM, HRTEM, and RDE study, Journal of the Electrochemical Society, vol. 145, pp. 925-931, 1998.
[9]D. R. Rolison, P. L. Hagans, K. E. Swider, and J. W. Long, Role of hydrous ruthenium oxide in Pt−Ru direct methanol fuel cell anode electrocatalysts:  the importance of mixed electron/proton conductivity, Langmuir, vol. 15, pp. 774-779, 1999.
[10]T. Iwasita, H. Hoster, A. John-Anacker, W. F. Lin, and W. Vielstich, Methanol oxidation on PtRu electrodes. Influence of surface structure and Pt−Ru atom distribution, Langmuir, vol. 16, pp. 522-529, 1999.
[11]S. Ball, A. Hodgkinson, G. Hoogers, S. Maniguet, D. Thompsett, and B. Wong, The proton exchange membrane fuel cell performance of a carbon supported PtMo catalyst operating on reformate, Electrochemical and Solid-State Letters, vol. 5, pp. A31-A34, 2002.
[12]S. Mukerjee, R. C. Urian, S. J. Lee, E. A. Ticianelli, and J. McBreen, Electrocatalysis of CO tolerance by carbon-supported PtMo electrocatalysts in PEMFCs, Journal of the Electrochemical Society, vol. 151, pp. A1094-A1103, 2004.
[13]W. J. Zhou, B. Zhou, W. Z. Li, Z. H. Zhou, S. Q. Song, G. Q. Sun, Q. Xin, S. Douvartzides, M. Goula, and P. Tsiakaras, Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts, Journal of Power Sources, vol. 126, pp. 16-22, 2004.
[14]R. Liu, H. Iddir, Q. Fan, G. Hou, A. Bo, K. L. Ley, E. S. Smotkin, Y. E. Sung, H. Kim, S. Thomas, and A. Wieckowski, Potential-dependent infrared absorption spectroscopy of adsorbed CO and X-ray photoelectron spectroscopy of arc-melted single-phase Pt, PtRu, PtOs, PtRuOs, and Ru electrodes, The Journal of Physical Chemistry B, vol. 104, pp. 3518-3531, 2000.
[15]K. R. Lee, M. K. Jeon, and S. I. Woo, Composition optimization of PtRuM/C (M=Fe and Mo) catalysts for methanol electro-oxidation via combinatorial method, Applied Catalysis B: Environmental, vol. 91, pp. 428-433, 2009.
[16]K. L. Ley, R. Liu, C. Pu, Q. Fan, N. Leyarovska, C. Segre, and E. S. Smotkin, Methanol oxidation on single-phase Pt-Ru-Os ternary alloys, Journal of the Electrochemical Society, vol. 144, pp. 1543-1548, 1997.
[17]A. S. Aricò, Z. Poltarzewski, H. Kim, A. Morana, N. Giordano, and V. Antonucci, Investigation of a carbon-supported quaternary PtRuSnW catalyst for direct methanol fuel cells, Journal of Power Sources, vol. 55, pp. 159-166, 1995.
[18]V. Neburchilov, H. Wang, and J. Zhang, Low Pt content Pt–Ru–Ir–Sn quaternary catalysts for anodic methanol oxidation in DMFC, Electrochemistry Communications, vol. 9, pp. 1788-1792, 2007.
[19]S. D. Lin, T.-C. Hsiao, J.-R. Chang, and A. S. Lin, Morphology of carbon supported Pt−Ru electrocatalyst and the CO tolerance of anodes for PEM fuel cells, The Journal of Physical Chemistry B, vol. 103, pp. 97-103, 1999/01/01 1998.
[20]T. E. Shubina and M. T. M. Koper, Quantum-chemical calculations of CO and OH interacting with bimetallic surfaces, Electrochimica Acta, vol. 47, pp. 3621-3628, 2002.
[21]M. Watanabe and S. Motoo, Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 60, pp. 267-273, 1975.
[22]M. Watanabe and S. Motoo, Electrocatalysis by ad-atoms: Part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 60, pp. 275-283, 1975.
[23]M. Watanabe, M. Uchida, and S. Motoo, Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 229, pp. 395-406, 1987.
[24]D. Chu and S. Gilman, Methanol electro-oxidation on unsupported Pt-Ru alloys at different temperatures, Journal of the Electrochemical Society, vol. 143, pp. 1685-1690, 1996.
[25]M. S. Löffler, H. Natter, R. Hempelmann, and K. Wippermann, Preparation and characterisation of Pt–Ru model electrodes for the direct methanol fuel cell, Electrochimica Acta, vol. 48, pp. 3047-3051, 2003.
[26]L. Xiong and A. Manthiram, Effect of atomic ordering on the catalytic activity of carbon supported PtM (M = Fe, Co, Ni, and Cu) alloys for oxygen reduction in PEMFCs, Journal of the Electrochemical Society, vol. 152, pp. A697-A703, 2005.
[27]Y. Qian, Wen, P. A. Adcock, Z. Jiang, N. Hakim, M. S. Saha, and S. Mukerjee, PtM/C catalyst prepared using reverse micelle method for oxygen reduction reaction in PEM fuel cells, The Journal of Physical Chemistry C, vol. 112, pp. 1146-1157, 2008.
[28]X. W. Li, Q. H. Huang, Z. Q. Zou, B. J. Xia, and H. Yang, Low temperature preparation of carbon-supported Pd-Co alloy electrocatalysts for methanol-tolerant oxygen reduction reaction, Electrochimica Acta, vol. 53, pp. 6662-6667, Sep 2008.
[29]T. S. Olson, B. Blizanac, B. Piela, J. R. Davey, P. Zelenay, and P. Atanassov, Electrochemical evaluation of porous non-platinum oxygen reduction catalysts for polymer electrolyte fuel cells, Fuel Cells, vol. 9, pp. 547-553, Oct 2009.
[30]B. Piela, T. S. Olson, P. Atanassov, and P. Zelenay, Highly methanol-tolerant non-precious metal cathode catalysts for direct methanol fuel cell, Electrochimica Acta, vol. 55, pp. 7615-7621, 2010.
[31]J.-Y. Choi, D. Higgins, and Z. Chen, Highly durable graphene nanosheet supported Iron catalyst for oxygen reduction reaction in PEM Fuel Cells, Journal of the Electrochemical Society, vol. 159, pp. B87-B90, 2012.
[32]Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, and H. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction, Nature Materials, vol. 10, pp. 780-786, 2011.
[33]K. R. Lee, K. U. Lee, J. W. Lee, B. T. Ahn, and S. I. Woo, Electrochemical oxygen reduction on nitrogen doped graphene sheets in acid media, Electrochemistry Communications, vol. 12, pp. 1052-1055, 2010.
[34]R. I. Jafri, N. Rajalakshmi, and S. Ramaprabhu, Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell, Journal of Materials Chemistry, vol. 20, pp. 7114-7117, 2010.
[35]E. Antolini, Carbon supports for low-temperature fuel cell catalysts, Applied Catalysis B: Environmental, vol. 88, pp. 1-24, 2009.
[36]A. Eitan, K. Jiang, D. Dukes, R. Andrews, and L. S. Schadler, Surface modification of multiwalled carbon nanotubes:  toward the tailoring of the interface in polymer composites, Chemistry of Materials, vol. 15, pp. 3198-3201, 2003.
[37]K. I. Han, J. S. Lee, S. O. Park, S. W. Lee, Y. W. Park, and H. Kim, Studies on the anode catalysts of carbon nanotube for DMFC, Electrochimica Acta, vol. 50, pp. 791-794, 2004.
[38]K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Two-dimensional atomic crystals, Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 10451-10453, Jul 2005.
[39]莊鎮宇, 石墨烯簡介與熱裂解化學氣相合成方法合成石墨烯的近期發展, 物理雙月刊, 33卷2期, pp. 155-162, 2011.
[40]蘇清源, 石墨烯氧化物之特性與應用前景, 物理雙月刊, 33 卷2 期, pp. 163-167, 2011.
[41]C. Hontorialucas, A. J. Lopezpeinado, J. D. D. Lopezgonzalez, M. L. Rojascervantes, and R. M. Martinaranda, Study of oxygen-containing groups in a series of graphite oxides - physical and chemical characterization, Carbon, vol. 33, pp. 1585-1592, 1995.
[42]W. S. Hummers and R. E. Offeman, Preparation of Graphitic Oxide, Journal of the American Chemical Society, vol. 80, pp. 1339-1339, 1958.
[43]Y. X. Xu, H. Bai, G. W. Lu, C. Li, and G. Q. Shi, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets, Journal of the American Chemical Society, vol. 130, pp. 5856-5857, 2008.
[44]M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Graphene-based ultracapacitors, Nano Letters, vol. 8, pp. 3498-3502, 2008.
[45]E. Yoo, T. Okada, T. Akita, M. Kohyama, I. Honma, and J. Nakamura, Sub-nano-Pt cluster supported on graphene nanosheets for CO tolerant catalysts in polymer electrolyte fuel cells, Journal of Power Sources, vol. 196, pp. 110-115, 2011.
[46]Y. Xin, J.-g. Liu, Y. Zhou, W. Liu, J. Gao, Y. Xie, Y. Yin, and Z. Zou, Preparation and characterization of Pt supported on graphene with enhanced electrocatalytic activity in fuel cell, Journal of Power Sources, vol. 196, pp. 1012-1018, 2011.
[47]劉偉仁、郭信良, 下世紀能源材料---石墨烯, 物理雙月刊, 33卷2期, pp. 178-182, 2011.
[48]B. Seger and P. V. Kamat, Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells, Journal of Physical Chemistry C, vol. 113, pp. 7990-7995, 2009.
[49]Y. M. Li, L. H. Tang, and J. H. Li, Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites, Electrochemistry Communications, vol. 11, pp. 846-849, 2009.
[50]Y. J. Li, W. Gao, L. J. Ci, C. M. Wang, and P. M. Ajayan, Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation, Carbon, vol. 48, pp. 1124-1130, 2010.
[51]L. F. Dong, R. R. S. Gari, Z. Li, M. M. Craig, and S. F. Hou, Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation, Carbon, vol. 48, pp. 781-787, 2010.
[52]E. Antolini, Graphene as a new carbon support for low-temperature fuel cell catalysts, Applied Catalysis B: Environmental, vol. 123–124, pp. 52-68, 2012.
[53]S. Park, Y. Shao, H. Wan, P. C. Rieke, V. V. Viswanathan, S. A. Towne, L. V. Saraf, J. Liu, Y. Lin, and Y. Wang, Design of graphene sheets-supported Pt catalyst layer in PEM fuel cells, Electrochemistry Communications, vol. 13, pp. 258-261, 2011.
[54]N. Jha, R. I. Jafri, N. Rajalakshmi, and S. Ramaprabhu, Graphene-multi walled carbon nanotube hybrid electrocatalyst support material for direct methanol fuel cell, International Journal of Hydrogen Energy, vol. 36, pp. 7284-7290, 2011.
[55]S. Yoon and I. In, Role of poly(N-vinyl-2-pyrrolidone) as stabilizer for dispersion of graphene via hydrophobic interaction, Journal of Materials Science, vol. 46, pp. 1316-1321, 2011.
[56]V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, High-throughput solution processing of large-scale graphene, Nature Nanotechnology, vol. 4, pp. 25-29, Jan 2009.
[57]X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, and F. Zhang, Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation, Advanced Materials, vol. 20, pp. 4490-4493, 2008.
[58]Y. Hu, P. Wu, Y. Yin, H. Zhang, and C. Cai, Effects of structure, composition, and carbon support properties on the electrocatalytic activity of Pt-Ni-graphene nanocatalysts for the methanol oxidation, Applied Catalysis B: Environmental, vol. 111-112, pp. 208-217, 2012.
[59]A. B. Bourlinos, V. Georgakilas, R. Zboril, T. A. Steriotis, A. K. Stubos, and C. Trapalis, Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes, Solid State Communications, vol. 149, pp. 2172-2176, 2009.
[60]J. Zhang, G. Shen, W. Wang, X. Zhou, and S. Guo, Individual nanocomposite sheets of chemically reduced graphene oxide and poly(N-vinyl pyrrolidone): preparation and humidity sensing characteristics, Journal of Materials Chemistry, vol. 20, 2010.
[61]Y. L. Hsin, K. C. Hwang, and C. T. Yeh, Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells, Journal of the American Chemical Society, vol. 129, pp. 9999-10010, 2007.
[62]H.-K. Jeong, M. H. Jin, K. H. An, and Y. H. Lee, Structural stability and variable dielectric constant in poly Sodium 4-styrensulfonate intercalated graphite oxide, Journal of Physical Chemistry C, vol. 113, pp. 13060-13064, 2009.
[63]G. Wang, X. Shen, B. Wang, J. Yao, and J. Park, Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets, Carbon, vol. 47, pp. 1359-1364, 2009.
[64]G. Wang, B. Wang, J. Park, Y. Wang, B. Sun, and J. Yao, Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation, Carbon, vol. 47, pp. 3242-3246, 2009.
[65]J. R. Lomeda, C. D. Doyle, D. V. Kosynkin, W. F. Hwang, and J. M. Tour, Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets, Journal of the American Chemical Society, vol. 130, pp. 16201-16206, 2008.
[66]Y. Si and E. T. Samulski, Synthesis of water soluble graphene, Nano Letters, vol. 8, pp. 1679-1682, 2008.
[67]P. Urchaga, M. Weissmann, S. v. Baranton, T. Girardeau, and C. Coutanceau, Improvement of the platinum nanoparticles−carbon substrate interaction by insertion of a thiophenol molecular bridge, Langmuir, vol. 25, pp. 6543-6550, 2009.
[68]Y. Q. Liu, L. Gao, J. Sun, Y. Wang, and J. Zhang, Stable Nafion-functionalized graphene dispersions for transparent conducting films, Nanotechnology, vol. 20, 2009.
[69]D. W. Lee, T. Kim, and M. Lee, An amphiphilic pyrene sheet for selective functionalization of graphene, Chemical Communications, vol. 47, pp. 8259-8261, 2011.
[70]M. H. Ghatee and F. Moosavi, Physisorption of hydrophobic and hydrophilic 1-Alkyl-3-methylimidazolium ionic liquids on the graphenes, Journal of Physical Chemistry C, vol. 115, pp. 5626-5636, 2011.
[71]J. Shen, M. Shi, H. Ma, B. Yan, N. Li, Y. Hu, and M. Ye, Synthesis of hydrophilic and organophilic chemically modified graphene oxide sheets, Journal of Colloid and Interface Science, vol. 352, pp. 366-370, 2010.
[72]X. Y. Qi, K. Y. Pu, X. Z. Zhou, H. Li, B. Liu, F. Boey, W. Huang, and H. Zhang, Conjugated-polyelectrolyte-functionalized reduced graphene oxide with excellent solubility and stability in polar solvents, Small, vol. 6, pp. 663-669, 2010.
[73]S. Z. Zu and B. H. Han, Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: formation of supramolecular hydrogel, Journal of Physical Chemistry C, vol. 113, pp. 13651-13657, 2009.
[74]G. Wang, B. Wang, J. Park, J. Yang, X. Shen, and J. Yao, Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method, Carbon, vol. 47, pp. 68-72, 2009.
[75]A. Guha, W. Lu, T. A. Zawodzinski Jr, and D. A. Schiraldi, Surface-modified carbons as platinum catalyst support for PEM fuel cells, Carbon, vol. 45, pp. 1506-1517, 2007.
[76]S. Kim and S.-J. Park, Effect of acid/base treatment to carbon blacks on preparation of carbon-supported platinum nanoclusters, Electrochimica Acta, vol. 52, pp. 3013-3021, 2007.
[77]C. K. Poh, S. H. Lim, H. Pan, J. Lin, and J. Y. Lee, Citric acid functionalized carbon materials for fuel cell applications, Journal of Power Sources, vol. 176, pp. 70-75, 2008.
[78]S.-K. Wang, F. Tseng, T.-K. Yeh, and C.-C. Chieng, Electrocatalytic properties improvement on carbon-nanotubes coated reaction surface for micro-DMFC, Journal of Power Sources, vol. 167, pp. 413-419, 2007.
[79]Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Applied Energy, vol. 88, pp. 981-1007, 2011.
[80]F. Barbir, PEM fuel cells: theory and practice, Elsevier Academic Press, p. 94, 2005.
[81]K. A. Mauritz, R. F. Storey, and C. K. Jones, Perfluorinated-ionomer-membrane-based microcomposites, in Multiphase Polymers: Blends and Ionomers. vol. 395, ed: American Chemical Society, 1989, pp. 401-417.
[82]L. J. Hobson, H. Ozu, M. Yamaguchi, and S. Hayase, Modified Nafion 117 as an improved polymer electrolyte membrane for direct methanol fuel cells, Journal of the Electrochemical Society, vol. 148, pp. A1185-A1190, 2001.
[83]A. K. Shukla and R. K. Raman, Methanol-resistant oxygen-reduction catalysis for direct methanol fuel cells, Annual Review of Materials Research, vol. 33, pp. 155-168, 2003.
[84]M. Bonnemay, G. Bronoel, E. Levart, and G. Peslerbe, The application of radiography to the study of the structure and operation of porous electrodes, Journal of the Electrochemical Society, vol. 111, pp. 265-269, 1964.
[85]T. E. Springer, T. A. Zawodzinski, and S. Gottesfeld, Polymer electrolyte fuel cell model, Journal of the Electrochemical Society, vol. 138, pp. 2334-2342, 1991.
[86]T. Frelink, W. Visscher, and J. A. R. van Veen, On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt, Surface Science, vol. 335, pp. 353-360, 1995.
[87]B. Gurau, R. Viswanathan, R. Liu, T. J. Lafrenz, K. L. Ley, E. S. Smotkin, E. Reddington, A. Sapienza, B. C. Chan, T. E. Mallouk, and S. Sarangapani, Structural and electrochemical characterization of binary, ternary, and quaternary platinum alloy catalysts for methanol electro-oxidation, The Journal of Physical Chemistry B, vol. 102, pp. 9997-10003, 1998.
[88]Y. X. Chen, A. Miki, S. Ye, H. Sakai, and M. Osawa, Formate, an active intermediate for direct oxidation of methanol on Pt electrode, Journal of the American Chemical Society, vol. 125, pp. 3680-3681, 2003.
[89]Y. W. Rho, O. A. Velev, S. Srinivasan, and Y. T. Kho, Mass transport phenomena in proton exchange membrane fuel cells using O2/He, O2/Ar, and O2/N2 mixtures, Journal of the Electrochemical Society, vol. 141, pp. 2084-2089, 1994.
[90]L. R. F. Allen J. Bard, Electrochemical methods: fundamentals and applications, Wiley, p. 103, 2000.
[91]D. M. Bernardi and M. W. Verbrugge, A mathematical model of the solid-polymer-electrolyte fuel cell, Journal of the Electrochemical Society, vol. 139, pp. 2477-2490, 1992.
[92]T. A. J. Zawodzinski, T. E. Springer, J. Davey, R. Jestel, C. Lopez, J. Valerio, and S. Gottesfeld, A comparative study of water uptake by and transport through ionomeric fuel cell membranes, Journal of the Electrochemical Society, vol. 140, pp. 1981-1985, 1993.
[93]A. Oedegaard, C. Hebling, A. Schmitz, S. Møller-Holst, and R. Tunold, Influence of diffusion layer properties on low temperature DMFC, Journal of Power Sources, vol. 127, pp. 187-196, 2004.
[94]K.-W. Park, B.-K. Kwon, J.-H. Choi, I.-S. Park, Y.-M. Kim, and Y.-E. Sung, New RuO2 and carbon–RuO2 composite diffusion layer for use in direct methanol fuel cells, Journal of Power Sources, vol. 109, pp. 439-445, 2002.
[95]T. Bewer, T. Beckmann, H. Dohle, J. Mergel, and D. Stolten, Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution, Journal of Power Sources, vol. 125, pp. 1-9, 2004.
[96]J. Kim, S.-M. Lee, S. Srinivasan, and C. E. Chamberlin, Modeling of proton exchange membrane fuel cell performance with an empirical equation, Journal of the Electrochemical Society, vol. 142, pp. 2670-2674, 1995.
[97]L. R. F. Allen J. Bard, Electrochemical methods: fundamentals and applications, Wiley, p. 27, 2000.
[98]J. T. Müller, P. M. Urban, and W. F. Hölderich, Impedance studies on direct methanol fuel cell anodes, Journal of Power Sources, vol. 84, pp. 157-160, 1999.
[99]J. C. Amphlett, B. A. Peppley, E. Halliop, and A. Sadiq, The effect of anode flow characteristics and temperature on the performance of a direct methanol fuel cell, Journal of Power Sources, vol. 96, pp. 204-213, 2001.
[100]J. Newman, Electrochemical systems prentice-hall, Englewood Cliffs, p. 380, 1991.
[101]M. P. Hogarth and T. R. Ralph, Catalysis for low temperature fuel cells, Platinum Metals Review, vol. 46, pp. 146-164, 2002.
[102]Z. Wei, H. Guo, and Z. Tang, Methanol electro-oxidation on platinum and platinum-tin alloy catalysts dispersed on active carbon, Journal of Power Sources, vol. 58, pp. 239-242, 1996.
[103]陳慕辰, 參考電極在直接甲醇燃料電池分析上之應用, 成功大學化學工程所碩士論文, 2004.
[104]S. J. Guo, S. J. Dong, and E. W. Wang, Three-Dimensional Pt-on-Pd Bimetallic Nanodendrites Supported on Graphene Nanosheet: Facile Synthesis and Used as an Advanced Nanoelectrocatalyst for Methanol Oxidation, Acs Nano, vol. 4, pp. 547-555, 2010.
[105]賴韋翔, 碳擔體型態及表面處理對直接甲醇燃料電池性能之影響, 成功大學化學工程所碩士論文, 2008.
[106]A. G. Osorio, I. C. L. Silveira, V. L. Bueno, and C. P. Bergmann, H2SO4/HNO3/HCl—Functionalization and its effect on dispersion of carbon nanotubes in aqueous media, Applied Surface Science, vol. 255, pp. 2485-2489, 2008.
[107]L. Tzong-Ming, C. Kuo-Chan, T. Feng-Po, and H. Chia-Chi, High thermal efficiency carbon nanotube-resin matrix for thermal interface materials, in Electronic Components and Technology Conference, 2005. Proceedings. 55th, 2005, pp. 55-59.
[108]M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud'homme, and I. A. Aksay, Single sheet functionalized graphene by oxidation and thermal expansion of graphite, Chemistry of Materials, vol. 19, pp. 4396-4404, 2007.
[109]Y. Zhang, W. Hu, B. Li, C. Peng, C. Fan, and Q. Huang, Synthesis of polymer-protected graphene by solvent-assisted thermal reduction process, Nanotechnology, vol. 22, 2011.
[110]S. Z. Chen, F. Ye, and W. M. Lin, Effect of operating conditions on the performance of a direct methanol fuel cell with PtRuMo/CNTs as anode catalyst, International Journal of Hydrogen Energy, vol. 35, pp. 8225-8233, 2010.
[111]陸瑞東, 以十二烷基胺修飾之碳材及海膽型碳材為質子交換膜燃料電池觸媒載體之研究, 成功大學化學工程所博士論文, 2012.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top