跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 20:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃庭誼
研究生(外文):Ting-YiHuang
論文名稱:3-甲基噻吩/噻吩-3-乙酸共聚物固定化酵素電極應用於葡萄糖/氧氣生物燃料電池之研究
論文名稱(外文):On the study of immobilization of enzyme by poly(3-methylthiophene-co-thiophene-3-acetic acid) on electrodes for glucose/oxygen biofuel cell
指導教授:楊明長
指導教授(外文):Ming-Chang Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:127
中文關鍵詞:酵素燃料電池3-甲基噻吩噻吩-3-乙酸葡萄糖氧化酵素
外文關鍵詞:enzymatic biofuel cell3-methylthiophenethiophene-3-acetic acidglucose oxidase
相關次數:
  • 被引用被引用:1
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
燃料電池將化學能直接轉換成電能,可持續且穩定供電以及產生無汙染的水。酵素燃料電池在應用於生物體內或一般環境方面有很大的潛在發展能力,因此具有發展性。在自然界中,葡萄糖廣泛存在於食物及生物體中,故常被當作燃料。
本研究探討酵素固定化生物燃料電池中陽極電極製備條件對電池性能影響,研究中以電聚合法在金電極表面製備 3-甲基噻吩/噻吩-3-乙酸(3MT/T3A) 共聚物,T3A 的羧基再與酵素產生共價鍵結而固定酵素。選用葡萄糖氧化酵素 (GOx) 作為陽極酵素,漆氧化酵素 (laccase) 作為陰極酵素,8-hydroxyquinoline-5-sulfonic acid (HQS) 與 N,N,N’,N’-tetramethyl-p-phenylendiamine (TMPD) 為陽極媒介子,2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) 為陰極媒介子。探討固定化程序、聚合電量、3MT/T3A 單體比例及媒介子濃度對陽極半電池葡萄糖氧化電流與單電池性質的影響。
由掃描式電子顯微鏡 (SEM) 可觀察,3MT/T3A 共聚物為膨鬆結構,隨著聚合電量增加,3MT/T3A 共聚物結構由顆粒狀變成細長狀。由傅立葉轉換紅外線光譜儀 (FTIR) 光譜圖可觀察到共聚物具有 C=O 之特徵峰,而觀察copolymer/GOx 電極,具有肽鍵的特徵峰。
半電池測試結果顯示,酵素電極使用enzyme-precipitated crosslinking (EPC) 固定化方式在聚合電位1.77 (V vs Ag/Ag+)、聚合電量 1.6 C、3MT:T3A比 9:1 在 20 mM HQS 電解液條件時,具有較高葡萄糖氧化電流。此外,使用 TMPD 為媒介子具有較負的葡萄糖氧化起始電位。
電極在聚合電位 1.77 (V vs Ag/Ag+)、聚合電量 1.6 C、3MT:T3A比 9:1、EPC 方式固定化酵素及 1 mM TMPD 媒介子條件下,單電池有較大功率密度 83.29 μW/cm2,比使用 HQS 為媒介子時的最大功率高了約 11.7 倍。
電極在聚合電位 1.77 (V vs Ag/Ag+)、陽極聚合電量 1.6 C、陰極聚合電量 2.0 C及 3MT:T3A比例為 9:1,EPC 方式固定化酵素在陽極電解液TMPD 媒介子濃度1 mM,陰極電解液 ABTS 媒介子濃度為 10 mM 的條件下,單電池的最大功率密度可達186.90 μW/cm2。

Fuel cell is a device which transform chemical energy directly into electrical energy, and generates power and water continuously. The enzymatic biofuel cells become a promising technology because of its vast potential applications of in vivo and ex vivo aspects. Because glucose widely present in food and living organisms, it is used as the fuel in enzymatic biofuel cell.
This project investigate the effects of the preparation conditions for enzyme-immobilized anode on the cell performance of biofuel cells. 3-methylthiophene/thiophene-3-acetic acid (3MT/T3A) copolymer were prepared on the gold electrode by electropolymerization, and enzymes were immobilized covalently by condensation reaction with the carboxyl groups in T3A. Glucose oxidase (GOx) and laccase were used as the anodic and cathodic enzymes, respectively. 8-hydroxyquinoline-5-sulfonic acid (HQS), N,N,N’,N’-tetramethyl-p-phenylenediamine (TMPD) were used as the anodic redox mediators and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) was used as the cathodic redox mediator. The effects of enzyme immobilization method, electropolymerizing charge, 3MT/T3A monomer ratio and concentration of mediator on the glucose oxidation current of half cell and the current of single cell were investigated.
According to scanning electron microscope (SEM) images, the structure of 3MT/T3A was fluffy. when electropolymerizing charge increased, the structure of 3MT/T3A changed from granular to slender form. According to Fourier Transform Infrared Spectrometer (FTIR) spectra, 3MT/T3A copolymer had C=O band, and copolymer/GOx electrode had peptide band.
From half cell experiments, the enzymatic electrode, prepared with enzyme-precipitated crosslinking (EPC) method at electropolymerizing potential of 1.77 (V vs Ag/Ag+) with charge of 1.6 C in an electrolyte containing 3MT:T3A monomer ratio 9:1 and 20 mM HQS had the highest oxidation current of glucose. Moreover, the electrode with TMPD as mediator gave more negative onset potential for glucose oxidation.
In a single cell, the enzymatic electrode, prepared via EPC method at electropolymerizing potential of 1.77 (V vs Ag/Ag+) with charge of 1.6 C in an electrolyte containing 3MT:T3A monomer ratio 9:1 and 1 mM TMPD gave the larger maximum power density of 83.29 μW/cm2, which was about 11.7 times higher than that with HQS as mediator condition.
In a single cell, the enzymatic electrode, prepared via EPC method at electropolymerizing potential of 1.77 (V vs Ag/Ag+) with charge of 1.6 C of anode and 2.0 C of cathode in an electrolyte containing 3MT:T3A monomer ratio 9:1, 1 mM TMPD and 10 mM ABTS gave the largest maximum power density of 186.90 μW/cm2.

摘要……………………………………………………………I
Abstract…………………………………………………………………………………III
致謝……………………………………………………………V
目錄…………………………………………………………VII
圖目錄………………………………………………………XIII
表目錄………………………………………………………XIX
第一章 緒論……………………………………………………1
1.1前言…………………………………………………………1
1.2生物燃料電池………………………………………………1
1.2.1生物燃料電池起源………………………………………1
1.2.2生物燃料電池特性………………………………………2
1.2.3生物燃料電池種類………………………………………4
1.2.4生物燃料電池應用………………………………………7
1.3酵素燃料電池………………………………………………11
1.3.1陽極觸媒…………………………………………………11
1.3.2陰極觸媒…………………………………………………16
1.3.3 電子傳遞機制…………………………………………19
第二章 文獻回顧………………………………………………23
2.1 酵素燃料電池工作原理…………………………………23
2.2 燃料電池之極化曲線………………………………………26
2.2.1活性過電壓………………………………………………28
2.2.2 歐姆過電壓……………………………………………29
2.2.3 質傳過電壓……………………………………………30
2.3 導電性高分子 (conducting polymers)…………………30
2.3.1 導電性高分子簡介………………………………………30
2.3.2 導電性高分子結構與導電性……………………………31
2.3.3 3-甲基噻吩/噻吩-3-乙酸 共聚物聚合機制………32
2.4 奈米結構於酵素燃料電池之應用…………………………34
2.4.1 奈米顆粒…………………………………………………35
2.4.2 奈米纖維與奈米管………………………………………35
2.4.3 中孔洞介質………………………………………………37
2.5 酵素固定化方法……………………………………………38
2.5.1 物理吸附法………………………………………………38
2.5.2 化學鍵結法………………………………………………39
2.5.3 交聯法……………………………………………………39
2.5.4 包埋法……………………………………………………39
2.6 電化學測定原理……………………………………………40
2.6.1 線性掃描法………………………………………………40
2.6.2 循環伏安法………………………………………………42
2.6.3 定電位法…………………………………………………43
2.7 研究動機與目的……………………………………………44
第三章 實驗設備與步驟…………………………………………45
3.1 藥品與材料…………………………………………………45
3.2 儀器設備……………………………………………………47
3.3 質子交換膜前處理…………………………………………48
3.4 金電極之製備………………………………………………48
3.5 3MT/T3A 共聚物電極之製備……………………………49
3.6 酵素電極之製備……………………………………………52
3.6.1 陽極酵素電極製備……………………………………52
3.6.1.1 共價鍵結法 (Covanlent-attaching method)……………52
3.6.1.2 酵素交聯法 (enzyme-crossliking method)………………52
3.6.1.3 酵素凝聚交聯法 (enzyme-precipitated crosslinking method)……………………………………………………………………………………………………………………53
3.6.2 陰極酵素電極製備-酵素凝聚交聯法 (EPC)……………………………54
3.7 電極特性分析………………………………………………59
3.7.1 掃描式電子顯微鏡 (scanning electron microscope)……………59
3.7.2 傅立葉紅外線光譜儀 (FTIR)………………………………………………59
3.8 電化學測式……………………………………………………59
3.8.1 半電池測試-線性掃描法………………………………59
3.8.2 單電池測試………………………………………………61
第四章 結果與討論………………………………………………63
4.1 3MT 及 T3A 電化學特性…………………………………63
4.2 電極修飾物之鑑定…………………………………………66
4.2.1 共聚物電極………………………………………………66
4.2.2 copolymer/ GOx 電極………………………………69
4.3 以 HQS 為媒介子之陽極半電池特性分析…………………70
4.3.1 固定化程序對葡萄糖氧化電流之影響…………………70
4.3.2 聚合電位對葡萄糖氧化電流之影響……………………73
4.3.3 聚合電量對葡萄糖氧化電流之影響……………………77
4.3.4 單體比例對葡萄糖氧化電流之影響……………………81
4.3.5 HQS濃度對葡萄糖氧化電流之影響……………………84
4.4 以HQS為媒介子之單電池特性分析…………………………87
4.4.1 固定化程序對單電池放電效能之影響…………………87
4.4.2 聚合電量對單電池放電效能之影響……………………89
4.4.3 單體比例對單電池放電效能之影響……………………91
4.4.4 HQS濃度對單電池放電效能之影響……………………93
4.5 以TMPD為媒介子的系統………………………………………97
4.5.1 陰極聚合電量對單電池放電效能之影響………………101
4.5.2 陰極媒介子濃度對單電池放電效能之影響……………103
第五章 結論與建議………………………………………………107
5.1 結論…………………………………………………………107
5.2 建議…………………………………………………………108
參考文獻……………………………………………………………109
附錄一…………………………………………………………………117
附錄二…………………………………………………………………119
附錄三…………………………………………………………………125
自述……………………………………………………………………127

[1]M. C. Potter, “Electrical effects accompanying the decomposition of organic compounds, Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, Vol. 84, pp. 260-276, (1911).
[2]F. Davis and S. P. J. Higson, “Biofuel cells—recent advances and applications, Biosensors and Bioelectronics, Vol. 22, pp. 1224-1235, (2007).
[3]P. Wang and H. Jia, Chapter 20 - power-generation from biorenewable resources: biocatalysis in biofuel cells, in Bioprocessing for Value-Added Products from Renewable Resources, Y. Shang-Tian, Ed., ed Amsterdam: Elsevier, pp. 507-525, (2007).
[4]A. T. Yahiro, S. M. Lee, and D. O. Kimble, “Bioelectrochemistry: I. enzyme utilizing bio-fuel cell studies, Biochimica et Biophysica Acta (BBA) - Specialized Section on Biophysical Subjects, Vol. 88, pp. 375-383, (1964).
[5]M. C. Beilke, T. L. Klotzbach, B. L. Treu, D. Sokic-Lazic, J. Wildrick, E. R. Amend, L. M. Gebhart, R. L. Arechederra, M. N. Germain, M. J. Moehlenbrock, Sudhanshu, and S. D. Minteer, Chapter 5 -enzymatic biofuel cells, in Micro Fuel Cells, T. S. Zhao, Ed., ed Boston: Academic Press, pp. 179-241 (2009).
[6]陳建孝,吳彥宥,畢修平,“酵素燃料電池簡介與應用, 化工技術, 16卷,頁186-205,(2008).
[7]J. Shim, G.-Y. Kim, and S.-H. Moon, “Covalent co-immobilization of glucose oxidase and ferrocenedicarboxylic acid for an enzymatic biofuel cell, Journal of Electroanalytical Chemistry, Vol. 653, pp. 14-20, (2011).
[8]A. Heller, “Miniature biofuel cells, Physical Chemistry Chemical Physics, Vol. 6, pp. 209-216, (2004).
[9]J. Kim, H. Jia, and P. Wang, “Challenges in biocatalysis for enzyme-based biofuel cells, Biotechnology Advances, Vol. 24, pp. 296-308, (2006).
[10]林勝賢,“酵素型生物燃料電池奈米質傳模擬與實作實驗量測, 國立清華大學動力機械工程學系碩士論文,(2009).
[11]S. Neto, J. Forti, and A. De Andrade, “An overview of enzymatic biofuel cells, Electrocatalysis, Vol. 1, pp. 87-94, (2010).
[12]R. L. Arechederra, K. Boehm, and S. D. Minteer, “Mitochondrial bioelectrocatalysis for biofuel cell applications, Electrochimica Acta, Vol. 54, pp. 7268-7273, (2009).
[13]D. H. Park and J. G. Zeikus, “Electricity generation in microbial fuel cells using neutral red as an electronophore, Applied and Environmental Microbiology, Vol. 66, pp. 1292-1297, (2000).
[14]B. H. Kim, I. S. Chang, G. Cheol Gil, H. S. Park, and H. J. Kim, “Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell, Biotechnology Letters, Vol. 25, pp. 541-545, (2003).
[15]D. R. Bond and D. R. Lovley, “Evidence for Involvement of an electron shuttle in electricity generation by geothrix fermentans, Applied and Environmental Microbiology, Vol. 71, pp. 2186-2189, (2005).
[16]M. H. Osman, A. A. Shah, and F. C. Walsh, “Recent progress and continuing challenges in bio-fuel cells. Part II: microbial, Biosensors and Bioelectronics, Vol. 26, pp. 953-963, (2010).
[17]S. D. Minteer, B. Y. Liaw, and M. J. Cooney, “Enzyme-based biofuel cells, Current Opinion in Biotechnology, Vol. 18, pp. 228-234, (2007).
[18]M. B. Fischback, J. K. Youn, X. Zhao, P. Wang, H. G. Park, H. N. Chang, J. Kim, and S. Ha, “Miniature biofuel cells with improved stability under continuous operation, Electroanalysis, Vol. 18, pp. 2016-2022, (2006).
[19]E. Hao Yu and K. Scott, “Enzymatic biofuel cells—fabrication of enzyme electrodes, Energies, Vol. 3, pp. 23-42, (2010).
[20]N. Mano, F. Mao, and A. Heller, “Characteristics of a miniature compartment-less glucose−O2 biofuel cell and Its operation in a living plant, Journal of the American Chemical Society, Vol. 125, pp. 6588-6594, (2003).
[21]Available: http://news.mongabay.com/bioenergy/2007/08/bioeconomy-at-work-sony-develops-most.html
[22]P. Atanassov, C. Apblett, S. Banta, S. Brozik, S. C. Barton, M. Cooney, B. Y. Liaw, S. Mukerjee, and S. D. Minteer, “Enzymatic biofuel cells, The Electrochemical Society Interface, pp. 28-31, (2007).
[23]B. E. Logan, “Simultaneous wastewater treatment and biological electricity generation, Water Science and Technology, Vol. 52, pp. 31-37, (2005).
[24]A. Heller, “Electrical connection of enzyme redox centers to electrodes, The Journal of Physical Chemistry, Vol. 96, pp. 3579-3587, (1992).
[25]M. H. Osman, A. A. Shah, and F. C. Walsh, “Recent progress and continuing challenges in bio-fuel cells. Part I: enzymatic cells, Biosensors and Bioelectronics, Vol. 26, pp. 3087-3102, (2011).
[26]S. Nakamura and Y. Ogura, “Mode of Inhibition of glucose oxidase by metal Ions, Journal of Biochemistry, Vol. 64, pp. 439-447, (1968).
[27]R. Wilson and A. P. F. Turner, “Glucose oxidase: an ideal enzyme, Biosensors and Bioelectronics, Vol. 7, pp. 165-185, (1992).
[28]Q. H. Gibson, B. E. P. Swoboda, and V. Massey, “Kinetics and mechanism of action of glucose oxidase, Journal of Biological Chemistry, Vol. 239, pp. 3927-3934, (1964).
[29]Z. Tang, R. F. Louie, J. H. Lee, D. M. Lee, E. E. Miller, and G. J. Kost, “Oxygen effects on glucose meter measurements with glucose dehydrogenase- and oxidase-based test strips for point-of-care testing, Critical Care Medicine, Vol. 29, pp. 1062-1070, (2001).
[30]B. Janik and P. J. Elving, “Polarographic behavior of nucleosides and nucleotides of purines, pyrimidines, pyridines, and flavines, Chemical Reviews, Vol. 68, pp. 295-319, (1968).
[31]F. Barrière, P. Kavanagh, and D. Leech, “A laccase–glucose oxidase biofuel cell prototype operating in a physiological buffer, Electrochimica Acta, Vol. 51, pp. 5187-5192, (2006).
[32]R. A. Bullen, T. C. Arnot, J. B. Lakeman, and F. C. Walsh, “Biofuel cells and their development, Biosensors and Bioelectronics, Vol. 21, pp. 2015-2045, (2006).
[33]Available: http://zh.wikipedia.org/wiki/FAD
[34]E. I. Solomon, U. M. Sundaram, and T. E. Machonkin, “Multicopper oxidases and oxygenases, Chemical Reviews, Vol. 96, pp. 2563-2606, (1996).
[35]A. M. da Silva, A. P. M. Tavares, C. M. R. Rocha, R. O. Cristóvão, J. A. Teixeira, and E. A. Macedo, “Immobilization of commercial laccase on spent grain, Process Biochemistry, Vol. 47, pp. 1095-1101, (2012).
[36]K. Piontek, M. Antorini, and T. Choinowski, “Crystal structure of a laccase from the fungusTrametes versicolor at 1.90-Å resolution containing a full complement of coppers, Journal of Biological Chemistry, Vol. 277, pp. 37663-37669, (2002).
[37]W. Shin, U. M. Sundaram, J. L. Cole, H. H. Zhang, B. Hedman, K. O. Hodgson, and E. I. Solomon, “Chemical and spectroscopic definition of the peroxide-level Intermediate in the multicopper oxidases:  relevance to the catalytic mechanism of dioxygen reduction to water, Journal of the American Chemical Society, Vol. 118, pp. 3202-3215, (1996).
[38]S. Calabrese Barton, J. Gallaway, and P. Atanassov, “Enzymatic biofuel cells for implantable and microscale devices, Chemical Reviews, Vol. 104, pp. 4867-4886, (2004).
[39]C. Liu, S. Alwarappan, Z. F. Chen, X. X. Kong, and C. Z. Li, “Membraneless enzymatic biofuel cells based on graphene nanosheets, Biosensors & Bioelectronics, Vol. 25, pp. 1829-1833, (2010).
[40]L. Brunel, J. Denele, K. Servat, K. B. Kokoh, C. Jolivalt, C. Innocent, M. Cretin, M. Rolland, and S. Tingry, “Oxygen transport through laccase biocathodes for a membrane-less glucose/O2 biofuel cell, Electrochemistry Communications, Vol. 9, pp. 331-336, (2007).
[41]C. Tanne, G. Göbel, and F. Lisdat, “Development of a (PQQ)-GDH-anode based on MWCNT-modified gold and its application in a glucose/O2-biofuel cell, Biosensors and Bioelectronics, Vol. 26, pp. 530-535, (2010).
[42]J. Lim, P. Malati, F. Bonet, and B. Dunn, “Nanostructured sol-gel Electrodes for Biofuel Cells, Journal of The Electrochemical Society, Vol. 154, pp. A140-A145, (2007).
[43]G. T. R. Palmore and H.-H. Kim, “Electro-enzymatic reduction of dioxygen to water in the cathode compartment of a biofuel cell, Journal of Electroanalytical Chemistry, Vol. 464, pp. 110-117, (1999).
[44]T. Le Bahers, C. Adamo, and I. Ciofini, “Theoretical determination of the pKas of the 8-hydroxyquinoline-5-sulfonic acid: a DFT based approach, Chemical Physics Letters, Vol. 472, pp. 30-34, (2009).
[45]S. Tsujimura, H. Tatsumi, J. Ogawa, S. Shimizu, K. Kano, and T. Ikeda, “Bioelectrocatalytic reduction of dioxygen to water at neutral pH using bilirubin oxidase as an enzyme and 2,2′-azinobis (3-ethylbenzothiazolin-6-sulfonate) as an electron transfer mediator, Journal of Electroanalytical Chemistry, Vol. 496, pp. 69-75, (2001).
[46]J.H. Hirschenhofer, D.B. Stauffer, R.R. Engleman, and M. G. Klett, Fuel cell handbook. pp. 2-20: Parsons Corporation, (1998).
[47]Y. W. Rho, S. Srinivasan, and Y. T. Kho, “Mass transport phenomena in proton exchange membrane fuel cells using O2/He, O2/Ar, and O2/N2 mixtures, Journal of The Electrochemical Society, Vol. 141, pp. 2089-2096, (1994).
[48]A. J. Bard and L. R. Faulkner, “Electrochemical methodes: fundamentals and applications, John Wiley & Sons, inc., p. 100, (2001).
[49]D. M. Bernardi and M. W. Verbrugge, “A mathematical model of the solid-polymer-electrolyte fuel cell, Journal of The Electrochemical Society, Vol. 139, pp. 2477-2491, (1992).
[50]H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH), Journal of the Chemical Society, Chemical Communications, pp. 578-580, (1977).
[51]N. K. Guimard, N. Gomez, and C. E. Schmidt, “Conducting polymers in biomedical engineering, Progress in Polymer Science, Vol. 32, pp. 876-921, (2007).
[52]周宗華,“高分子材料, 516頁, 台灣: 新文京,(2002)
[53]G. Harsányi, Polymer Films in Sensor Applications, Technomic Publishing Company ed. p. 209, (1995).
[54]W. Chen and G. Xue, “Low potential electrochemical syntheses of heteroaromatic conducting polymers in a novel solvent system based on trifluroborate–ethyl ether, Progress in Polymer Science, Vol. 30, pp. 783-811, (2005).
[55]J. Roncali, “Conjugated poly(thiophenes): synthesis, functionalization, and applications, Chemical Reviews, Vol. 92, pp. 711-738, (1992).
[56]H.-P. Welzel, G. Kossmehl, G. Engelmann, B. Neumann, U. Wollenberger, F. Scheller, and W. Plieth, “Electrochemical polymerization of functionalized thiophene derivatives for the immobilization of proteins, Macromolecular Symposia, Vol. 126, pp. 283-293, (1998).
[57]Y. Wei, C. C. Chan, J. Tian, G. W. Jang, and K. F. Hsueh, “Electrochemical polymerization of thiophenes in the presence of bithiophene or terthiophene: kinetics and mechanism of the polymerization, Chemistry of Materials, Vol. 3, pp. 888-897, (1991).
[58]S. Andreescu, J. Njagi, and C. Ispas, Chapter 7 - nanostructured materials for enzyme immobilization and biosensors, in The New Frontiers of Organic and Composite Nanotechnology, E. Victor, R. Manoj Kumar, M. K. R. Ozlem YavuzA2 - Victor Erokhin, and Y. Ozlem, Eds., ed Amsterdam: Elsevier, 2008, pp. 355-394.
[59]H. Jia, G. Zhu, and P. Wang, “Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility, Biotechnology and Bioengineering, Vol. 84, pp. 406-414, (2003).
[60]J.-P. Chen and D.-R. Su, “Latex particles with thermo-flocculation and magnetic properties for immobilization of α-Chymotrypsin, Biotechnology Progress, Vol. 17, pp. 369-375, (2001).
[61]A. Dyal, K. Loos, M. Noto, S. W. Chang, C. Spagnoli, K. V. P. M. Shafi, A. Ulman, M. Cowman, and R. A. Gross, “Activity of Candida rugosa Lipase Immobilized on γ-Fe2O3 magnetic nNanoparticles, Journal of the American Chemical Society, Vol. 125, pp. 1684-1685, (2003).
[62]B. C. Kim, S. Nair, J. Kim, J. H. Kwak, J. W. Grate, S. H. Kim, and M. B. Gu, “Preparation of biocatalytic nanofibres with high activity and stability via enzyme aggregate coating on polymer nanofibres, Nanotechnology, Vol. 16, pp. S382-S388, (2005).
[63]B. C. Kim, X. Zhao, H.-K. Ahn, J. H. Kim, H.-J. Lee, K. W. Kim, S. Nair, E. Hsiao, H. Jia, M.-K. Oh, B. I. Sang, B.-S. Kim, S. H. Kim, Y. Kwon, S. Ha, M. B. Gu, P. Wang, and J. Kim, “Highly stable enzyme precipitate coatings and their electrochemical applications, Biosensors and Bioelectronics, Vol. 26, pp. 1980-1986, (2011).
[64]A. Habrioux, G. Merle, K. Servat, K. B. Kokoh, C. Innocent, M. Cretin, and S. Tingry, “Concentric glucose/O2 biofuel cell, Journal of Electroanalytical Chemistry, Vol. 622, pp. 97-102, (2008).
[65]A. Merkoçi, M. Pumera, X. Llopis, B. Pérez, M. del Valle, and S. Alegret, “New materials for electrochemical sensing VI: Carbon nanotubes, TrAC Trends in Analytical Chemistry, Vol. 24, pp. 826-838, (2005).
[66]J. F. Díaz and K. J. Balkus Jr, “Enzyme immobilization in MCM-41 molecular sieve, Journal of Molecular Catalysis B: Enzymatic, Vol. 2, pp. 115-126, (1996).
[67]J. Kim, J. W. Grate, and P. Wang, “Nanostructures for enzyme stabilization, Chemical Engineering Science, Vol. 61, pp. 1017-1026, (2006).
[68]A. J. Bard and L. R. Faulkner, “Electrochemical methodes: fundamentals and applications, John Wiley & Sons, inc., p. 231, (2001).
[69]M. Ates, “Monomer concentration effects of poly (3-methylthiopene) on electrochemical impedance spectroscopy, International Journal of Electrochemical Science, Vol. 4, pp. 1004-1014, (2009).
[70]H.-P. Welzel, G. Kossmehl, H.-J. Stein, J. Schneider, and W. Plieth, “Reactive groups on polymer covered electrodes—I. electrochemical copolymerization of thiophene-3-acetic acid with 3-methylthiophene, Electrochimica Acta, Vol. 40, pp. 577-584, (1995).
[71]T. Kuwahara, K. Oshima, M. Shimomura, and S. Miyauchi, “Glucose sensing with glucose oxidase immobilized covalently on the films of thiophene copolymers, Synthetic Metals, Vol. 152, pp. 29-32, (2005).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top