|
[1]M. C. Potter, Electrical effects accompanying the decomposition of organic compounds, Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, vol. 84, pp. 260-276, 1911. [2]G. H. Rohrback, W. R. Scott, and J. H. Canfield, Biochemical fuel cells, In Proceedings of the 16th Annual Power Sources Conference, p. 18, 1962. [3]R. M. Allen and H. P. Bennetto, Microbial Fuel-Cells: Electricity Production from Carbohydrates, Applied Biochemistry and Biotechnology vol. 39, pp. 27-40, 1993. [4]H. Bennetto, J. Stirling, M. Dew, and K. Tanaka, Rates of reduction of phenothiazine 'redox' dyes by E. coli, Chemistry and Industry, pp. 776-8, 1981. [5]C. Thurston, H. Bennetto, G. Delaney, J. Mason, S. Roller, and J. Stirling, Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to coulombic yields, General Microbiology, vol. 131, p. 1393, 1985. [6]B. H. Kim, H. J. Kim, M. S. Hyun, and D. H. Park, Direct electrode reaction of Fe (III)-reducing bacterium, Shewanella putrefaciens, Microbiology and Biotechnology, vol. 9, pp. 127-131, 1999. [7]S. K. Chaudhuri and D. R. Lovley, Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells, Nature Biotechnology, vol. 21, pp. 1229-32, 2003. [8]B. E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey, Microbial fuel cells: methodology and technology, Environmental Science and Technology, vol. 40, pp. 5181-5192, 2006. [9]G. Reguera, K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen, and D. R. Lovley, Extracellular electron transfer via microbial nanowires, Nature, vol. 435, pp. 1098-1101, 2005. [10]Y. A. Gorby, S. Yanina, J. S. McLean, K. M. Rosso, D. Moyles, A. Dohnalkova, T. J. Beveridge, I. S. Chang, B. H. Kim, K. S. Kim, D. E. Culley, S. B. Reed, M. F. Romine, D. A. Saffarini, E. A. Hill, L. Shi, D. A. Elias, D. W. Kennedy, G. Pinchuk, K. Watanabe, S. Ishii, B. Logan, K. H. Nealson, and J. K. Fredrickson, Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms, Proceedings of the National Academy of Sciences, USA, vol. 103, pp. 11358-63, Jul 25 2006. [11]D. H. Park and J. G. Zeikus, Electricity generation in microbial fuel cells using neutral red as an electronophore, Applied and Environmental Microbiology, vol. 66, pp. 1292-1297, 2000. [12]I. A. Ieropoulos, J. Greenman, C. Melhuish, and J. Hart, Comparative study of three types of microbial fuel cell, Enzyme and Microbial Technology, vol. 37, pp. 238-245, 2005. [13]Y. Choi, E. Jung, S. Kim, and S. Jung, Membrane fluidity sensoring microbial fuel cell, Bioelectrochemistry, vol. 59, pp. 121-127, 2003. [14]D. R. Lovley, Bug juice: harvesting electricity with microorganisms, Nature Reviews Microbiology, vol. 4, pp. 497-508, 2006. [15]K. Rabaey, N. Boon, S. D. Siciliano, M. Verhaege, and W. Verstraete, Biofuel cells select for microbial consortia that self-mediate electron transfer, Applied Microbiology and Biotechnology, vol. 70, pp. 5373-82, Sep 2004. [16]K. P. Nevin and D. R. Lovley, Mechanisms for accessing insoluble Fe (III) oxide during dissimilatory Fe (III) reduction by Geothrix fermentans, Applied Microbiology and Biotechnology, vol. 68, pp. 2294-2299, 2002. [17]M. T. Madigan, Brock Biology of Microorganisms, 11th edn, International Microbiology, vol. 8, pp. 149-152, 2005. [18]A. J. Bard and L. R. Faulkner, Electrochemical methods: fundamentals and applications vol. 2: Wiley New York, 1980. [19]A. Dicks and J. Larminie, Fuel cell systems explained, ed: John Wiley & Sons, 2000. [20]I. S. Kim and M. J. Choi, Microbial fuel cells: recent advances, bacterial communities and application beyond electricity generation, Environmental Engineering Research, vol. 13, pp. 51-65, 2008. [21]K. Rabaey, N. Boon, M. Höfte, and W. Verstraete, Microbial phenazine production enhances electron transfer in biofuel cells, Environmental Science and Technology, vol. 39, pp. 3401-3408, 2005. [22]K. Rabaey and W. Verstraete, Microbial fuel cells: novel biotechnology for energy generation, Trends Biotechnology, vol. 23, pp. 291-298, 2005. [23]S. Cheng, H. Liu, and B. E. Logan, Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells, Environmental Science and Technology, vol. 40, pp. 364-369, 2006. [24]H. J. Kim, H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim, A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens, Enzyme and Microbial Technology, vol. 30, pp. 145-152, 2002. [25]D. R. Bond and D. R. Lovley, Electricity production by Geobacter sulfurreducens attached to electrodes, Applied Microbiology and Biotechnology, vol. 69, pp. 1548-1555, 2003. [26]B. Min, S. Cheng, and B. E. Logan, Electricity generation using membrane and salt bridge microbial fuel cells, Water Research, vol. 39, pp. 1675-1686, 2005. [27]D. Prasad, T. Sivaram, S. Berchmans, and V. Yegnaraman, Microbial fuel cell constructed with a micro-organism isolated from sugar industry effluent, Power Sources, vol. 160, pp. 991-996, 2006. [28]K. B. Gregory, D. R. Bond, and D. R. Lovley, Graphite electrodes as electron donors for anaerobic respiration, Environmental Microbiology, vol. 6, pp. 596-604, 2004. [29]Z. Du, H. Li, and T. Gu, A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy, Biotechnology Advances, vol. 25, pp. 464-82, 2007. [30]S. E. Oh and B. E. Logan, Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells, Applied Microbiology and Biotechnology, vol. 70, pp. 162-169, 2006. [31]B. Min and B. E. Logan, Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell, Environmental Science and Technology, vol. 38, pp. 5809-5814, 2004. [32]D. H. Park and J. G. Zeikus, Improved fuel cell and electrode designs for producing electricity from microbial degradation, Biotechnology and Bioengineering, vol. 81, pp. 348-355, 2003. [33]H. Liu and B. E. Logan, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane, Environmental Science and Technology, vol. 38, pp. 4040-4046, 2004. [34]H. Liu, R. Ramnarayanan, and B. E. Logan, Production of electricity during wastewater treatment using a single chamber microbial fuel cell, Environmental Science and Technology, vol. 38, pp. 2281-2285, 2004. [35]M. Rosenbaum, U. Schröder, and F. Scholz, Investigation of the electrocatalytic oxidation of formate and ethanol at platinum black under microbial fuel cell conditions, Solid State Electrochemistry, vol. 10, pp. 872-878, 2006. [36]M. Chiao, K. B. Lam, Y. C. Su, and L. Lin, A miniaturized microbial fuel cell, 2002. [37]H. Liu, S. Grot, and B. E. Logan, Electrochemically assisted microbial production of hydrogen from acetate, Environmental Science and Technology, vol. 39, pp. 4317-4320, 2005. [38]W. Habermann and E. Pommer, Biological fuel cells with sulphide storage capacity, Applied Microbiology and Biotechnology, vol. 35, pp. 128-133, 1991. [39]B. Min, J. Kim, S. Oh, J. M. Regan, and B. E. Logan, Electricity generation from swine wastewater using microbial fuel cells, Water Research, vol. 39, pp. 4961-8, 2005. [40]J. R. Kim, B. Min, and B. E. Logan, Evaluation of procedures to acclimate a microbial fuel cell for electricity production, Applied Microbiology and Biotechnology, vol. 68, pp. 23-30, 2005. [41]J. K. Jang, T. H. Pham, I. S. Chang, K. H. Kang, H. Moon, K. S. Cho, and B. H. Kim, Construction and operation of a novel mediator- and membrane-less microbial fuel cell, Process Biochemistry, vol. 39, pp. 1007-1012, 2004. [42]I. S. Chang, J. K. Jang, G. C. Gil, M. Kim, H. J. Kim, B. W. Cho, and B. H. Kim, Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor, Biosensors and Bioelectronics, vol. 19, pp. 607-613, 2004. [43]B. H. Kim, I. S. Chang, G. Cheol Gil, H. S. Park, and H. J. Kim, Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell, Biotechnology Letters, vol. 25, pp. 541-545, 2003. [44]H. Y. Wang, A. Bernarda, C. Y. Huang, D. J. Lee, and J. S. Chang, Micro-sized microbial fuel cell: a mini-review, Bioresource Technology, vol. 102, pp. 235-43, 2011. [45]F. Qian and D. E. Morse, Miniaturizing microbial fuel cells, Trends Biotechnology, vol. 29, pp. 62-9, 2011. [46]C. P. B. Siu and M. Chiao, A microfabricated PDMS microbial fuel cell, Microelectromechanical Systems, vol. 17, pp. 1329-1341, 2008. [47]F. Qian, M. Baum, Q. Gu, and D. E. Morse, A 1.5 microL microbial fuel cell for on-chip bioelectricity generation, Lab Chip, vol. 9, pp. 3076-81, 2009. [48]E. R. Choban, L. J. Markoski, A. Wieckowski, and P. J. A. Kenis, Microfluidic fuel cell based on laminar flow, Power Sources, vol. 128, pp. 54-60, 2004.
|