跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:2119:b261:d24c:ce10) 您好!臺灣時間:2025/01/21 07:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇建宇
研究生(外文):Jian-YuSu
論文名稱:台灣原生微生物混合族群在大型微生物燃料電池中的產電分析及發展微型微生物燃料電池進行產電微生物的快速篩選
論文名稱(外文):Electricity generation of indigenous mixed-culture microflora of Taiwan in macro-scale MFC and the development of microfluidic MFC for rapid screening of electroactive microbes
指導教授:王翔郁王翔郁引用關係
指導教授(外文):Hsiang-Yu Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:101
中文關鍵詞:微生物燃料電池微流體快速篩選
外文關鍵詞:Microbial fuel cellMicrofluidicsRapid-screening
相關次數:
  • 被引用被引用:0
  • 點閱點閱:822
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:1
微生物燃料電池是一種生物的電化學系統,可將化學能轉換為電能。本研究利用台灣原生混合微生物族群探討其在大型微生物燃料電池中產電的特性,並且探討微型微生物燃料電池對於產電活性微生物族群進行快速篩選的可能性。
在大型微生物燃料電池中,若陽極液中不加入微生物,產出的最大電流約為2 μA,而加入微生物後產出的最大電流為72 μA,可證明電池中的電流輸出大部分是由微生物貢獻。陽極環境若是在微氧的條件下操作,大型電池的產電週期較長且輸出電量較多,其庫侖效率約為有氧環境下的2.5倍(有氧:0.26 %, 微氧:0.63 %)。在產電周期中,外加電阻的大小對陰極電位的影響不大,但陽極電位在外接電阻由2 Ω增加至1 MΩ時減少了50%以上,證明陽極狀態是決定本電池產電輸出的主要因素。藉由測量陽極液中的醋酸濃度也可得知,微生物藉由分解醋酸進行代謝產生而產生電子。以掃描式電子顯微鏡觀察在不同產電時期的菌相,發現兩種不同形狀的微生物族群,分別為球狀和桿狀,且在有氧條件下,球狀微生物族群的數目與輸出電流為正相關,因此判斷球狀微生物產電能力在混合微生物族群中是較強的。
利用極化曲線和功率密度曲線可得大型電池的內電阻,內電阻在產電過程中會由1KΩ增加至10~50KΩ。有氧條件下操作的電池在外加電阻為1KΩ有最大輸出功率(8.97 mW/m2),而微氧條件下操作的電池的最大輸出功率(24.05 mW/m2)則出現在外加電阻為5KΩ時。此外,鐵氰化鉀濃度不足和質子交換膜的生物淤積皆會降低大型電池的輸出電壓。加入0.0025 mole的鐵氰化鉀可以提升19.7 %的輸出電壓;質子交換膜的更新則是提升41.5 %的輸出電壓。
微型微生物燃料電池在兩電解液的酸鹼值相等、電解液流量各為30 mL/hr時有最高的開路電壓。微型電池的開路電壓達到穩態的時間約為十分鐘。在陽極電解液中使用具有產電活性、去活性的微生物,以及純培養基時,可以產生246 mV、131 mV以及102 mV的開路電壓,顯示微型微生物燃料電池可鑑別出微生物族群的產電活性,證明微型微生物燃料電池可用於產電微生物族群的快速篩選。

Microbial fuel cell (MFC) is a bio-electrochemical system that converts chemical energy in organic matters to electricity. This study investigates the electricity generation of indigenous mixed-culture microflora of Taiwan in macro-scale microbial fuel cell as well as the development of microfluidic MFC for rapid screening of electroactive microbes.
The dual-chamber macro-scale (mL scale) MFC generated 2 μA without the mixed-culture microflora in the anode; however, when microflora was added, it generated a maximum current of 72 μA. This validates that the mixed-culture microflora contributed most of the electricity output. When operated under micro-aerobic conditions, the macroscale MFC had a longer electricity-generating cycle (aerobic: 4 days, micro-aerobic: 72 days) and a higher coulombic efficiency (aerobic: 0.26 %, micro-aerobic: 0.63 %). The external resistance had no significant effect on the cathode potential; however, when external resistance increased from 2 Ω to 1 MΩ, the anode potential decreased for more than 50%. This suggests that the efficiency of electricity output was determined by the anode. The electricity output stopped when acetate was depleted, indicating that the mixed-culture microflora used acetate as the substrate to produce electrons. Scanning electron microscope images showed that there were two groups of microorganisms in the mixed culture: one was globular and the other was rod-shaped. Under aerobic operation, the electricity generation was positively correlated to the number of globular microorganisms. Therefore, globular microorganism was recognized as the main electron contributor in this study.
Two methods were used to measure internal resistance of the macroscale MFC: polarization curve and power density curve. Internal resistances of macroscale MFC increased from 1KΩ to 10~50KΩ during electricity generation. Macro-scale MFC had a maximum power density output of 8.97 mW/m2 (1KΩ) in aerobic operation and 24.05 mW/m2 (5KΩ) in micro-aerobic operation. Additionally, the lack of ferricyanide and biofouling of proton exchange membrane (PEM) compromised the voltage output from the macro-scale MFC. Adding 0.0025 mole of ferricyanide resulted in a 19.7% higher voltage output and the renewal of PEM resulted in a 41.5% higher voltage.
Among different electrolytes and flow rates, microfluidic MFC (μMFC, μL scale) had higher open circuit voltage (OCV) when the pH value was identical in both streams and flow rate was 30 mL/hr for each stream. The OCVs from μMFC reached steady state in ten minutes and they were 102, 131, and 246 mV for fresh medium, inactivated microflora, and electroactive microflora, respectively. These results show that μMFC has great potential in serving as the rapid screening platform for electroactive microorganisms.

摘要 I
Abstract III
誌謝 V
總目錄 VI
表目錄 X
圖目錄 XI
第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究架構 2
第二章 文獻探討 3
2-1 微生物燃料電池的發展 3
2-2 微生物燃料電池的原理 4
2-3 微生物燃料電池的結構 9
2-4 微生物燃料電池的設計 10
2-4-1 雙槽式 10
2-4-2 單槽式 12
2-5 微生物燃料電池的應用 14
2-6 微生物燃料電池微型化 17
第三章 材料與方法 20
3-1 實驗材料 20
3-1-1 溶液配製 20
3-1-1-1 標準酸鹼溶液 20
3-1-1-2 陰極電解液 20
3-1-1-3 陽極電解液 21
3-1-1-3-1 原生混合菌液 21
3-1-1-3-2 微生物培養液 21
3-1-2 大型電池製備 23
3-1-2-1 參考電極製作 23
3-1-2-2 大型電池組裝 24
3-1-2-3 大型電池分析 25
3-1-3 微型電池製備 26
3-1-3-1 黃光微影製程 26
3-1-3-1-1 微電極製作 26
3-1-3-1-2 晶圓模板 30
3-1-3-2 高分子材料翻模 31
3-1-3-3 微型電池設置 32
3-2 實驗儀器 32
3-2-1 溶液配製 32
3-2-2 大型電池製備 33
3-2-2-1 參考電極製作 33
3-2-2-2 大型電池組裝 34
3-2-2-3 大型電池分析 34
3-2-3 微型電池製備 35
3-3 實驗方法 38
3-3-1 溶液配製 38
3-3-2 大型電池製備 39
3-3-2-1 參考電極製作 39
3-3-2-2 大型電池組裝 40
3-3-2-3 大型電池分析 41
3-3-2-3-1 產電表現 41
3-3-2-3-2 陽極微生物的顯微觀察 42
3-3-2-3-3 細胞濃度 43
3-3-2-3-4 電解液成份 43
3-3-2-3-5 半電池電位 44
3-3-2-3-6 內電阻 44
3-3-3 微型電池製備 45
3-3-3-1 黃光微影製程 45
3-3-3-1-1 微電極製作 45
3-3-3-1-2 晶圓模板 48
3-3-3-2 高分子材料翻模 50
3-3-3-3 微型電池組裝 51
3-3-3-4 微型電池設置 52
第四章 結果與討論 53
4-1 氧氣對於微生物族群產電的影響 53
4-1-1 微生物在有氧環境中產電 54
4-1-2 微生物在微氧環境中產電 55
4-1-3 微生物在有氧和微氧環境中的產電比較 56
4-2 陽極微生物顯微觀察與電池產電效能的關係 58
4-2-1 微生物在有氧的環境中的顯微觀察 59
4-2-1-1 陽極電解液 59
4-2-1-2 碳布和質子交換膜 61
4-2-2 微生物在微氧的環境中的顯微觀察 63
4-2-3 微生物在有氧和微氧環境中的顯微觀察比較 65
4-3 電池產電效能的限制 66
4-3-1 細胞生長週期 66
4-3-2 鐵氰化鉀溶液 69
4-3-3 質子交換膜 71
4-4 陽極電解液成份與微生物族群產電的關係 73
4-5 半電池電位與電池產電效能的關係 76
4-5-1 陰極電位 77
4-5-2 陽極電位 78
4-5-3 半電池電位的結論 81
4-6 內電阻對於電池產電效能的影響 81
4-7 微型電池控制參數的調整 85
4-7-1 陽極電解液酸鹼值 86
4-7-2 陽極電解液狀態 87
4-7-3 電解液流量 88
4-7-4 產電週期 90
第五章 結論 93
參考文獻 95

[1]M. C. Potter, Electrical effects accompanying the decomposition of organic compounds, Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, vol. 84, pp. 260-276, 1911.
[2]G. H. Rohrback, W. R. Scott, and J. H. Canfield, Biochemical fuel cells, In Proceedings of the 16th Annual Power Sources Conference, p. 18, 1962.
[3]R. M. Allen and H. P. Bennetto, Microbial Fuel-Cells: Electricity Production from Carbohydrates, Applied Biochemistry and Biotechnology vol. 39, pp. 27-40, 1993.
[4]H. Bennetto, J. Stirling, M. Dew, and K. Tanaka, Rates of reduction of phenothiazine 'redox' dyes by E. coli, Chemistry and Industry, pp. 776-8, 1981.
[5]C. Thurston, H. Bennetto, G. Delaney, J. Mason, S. Roller, and J. Stirling, Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to coulombic yields, General Microbiology, vol. 131, p. 1393, 1985.
[6]B. H. Kim, H. J. Kim, M. S. Hyun, and D. H. Park, Direct electrode reaction of Fe (III)-reducing bacterium, Shewanella putrefaciens, Microbiology and Biotechnology, vol. 9, pp. 127-131, 1999.
[7]S. K. Chaudhuri and D. R. Lovley, Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells, Nature Biotechnology, vol. 21, pp. 1229-32, 2003.
[8]B. E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey, Microbial fuel cells: methodology and technology, Environmental Science and Technology, vol. 40, pp. 5181-5192, 2006.
[9]G. Reguera, K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen, and D. R. Lovley, Extracellular electron transfer via microbial nanowires, Nature, vol. 435, pp. 1098-1101, 2005.
[10]Y. A. Gorby, S. Yanina, J. S. McLean, K. M. Rosso, D. Moyles, A. Dohnalkova, T. J. Beveridge, I. S. Chang, B. H. Kim, K. S. Kim, D. E. Culley, S. B. Reed, M. F. Romine, D. A. Saffarini, E. A. Hill, L. Shi, D. A. Elias, D. W. Kennedy, G. Pinchuk, K. Watanabe, S. Ishii, B. Logan, K. H. Nealson, and J. K. Fredrickson, Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms, Proceedings of the National Academy of Sciences, USA, vol. 103, pp. 11358-63, Jul 25 2006.
[11]D. H. Park and J. G. Zeikus, Electricity generation in microbial fuel cells using neutral red as an electronophore, Applied and Environmental Microbiology, vol. 66, pp. 1292-1297, 2000.
[12]I. A. Ieropoulos, J. Greenman, C. Melhuish, and J. Hart, Comparative study of three types of microbial fuel cell, Enzyme and Microbial Technology, vol. 37, pp. 238-245, 2005.
[13]Y. Choi, E. Jung, S. Kim, and S. Jung, Membrane fluidity sensoring microbial fuel cell, Bioelectrochemistry, vol. 59, pp. 121-127, 2003.
[14]D. R. Lovley, Bug juice: harvesting electricity with microorganisms, Nature Reviews Microbiology, vol. 4, pp. 497-508, 2006.
[15]K. Rabaey, N. Boon, S. D. Siciliano, M. Verhaege, and W. Verstraete, Biofuel cells select for microbial consortia that self-mediate electron transfer, Applied Microbiology and Biotechnology, vol. 70, pp. 5373-82, Sep 2004.
[16]K. P. Nevin and D. R. Lovley, Mechanisms for accessing insoluble Fe (III) oxide during dissimilatory Fe (III) reduction by Geothrix fermentans, Applied Microbiology and Biotechnology, vol. 68, pp. 2294-2299, 2002.
[17]M. T. Madigan, Brock Biology of Microorganisms, 11th edn, International Microbiology, vol. 8, pp. 149-152, 2005.
[18]A. J. Bard and L. R. Faulkner, Electrochemical methods: fundamentals and applications vol. 2: Wiley New York, 1980.
[19]A. Dicks and J. Larminie, Fuel cell systems explained, ed: John Wiley & Sons, 2000.
[20]I. S. Kim and M. J. Choi, Microbial fuel cells: recent advances, bacterial communities and application beyond electricity generation, Environmental Engineering Research, vol. 13, pp. 51-65, 2008.
[21]K. Rabaey, N. Boon, M. Höfte, and W. Verstraete, Microbial phenazine production enhances electron transfer in biofuel cells, Environmental Science and Technology, vol. 39, pp. 3401-3408, 2005.
[22]K. Rabaey and W. Verstraete, Microbial fuel cells: novel biotechnology for energy generation, Trends Biotechnology, vol. 23, pp. 291-298, 2005.
[23]S. Cheng, H. Liu, and B. E. Logan, Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells, Environmental Science and Technology, vol. 40, pp. 364-369, 2006.
[24]H. J. Kim, H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim, A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens, Enzyme and Microbial Technology, vol. 30, pp. 145-152, 2002.
[25]D. R. Bond and D. R. Lovley, Electricity production by Geobacter sulfurreducens attached to electrodes, Applied Microbiology and Biotechnology, vol. 69, pp. 1548-1555, 2003.
[26]B. Min, S. Cheng, and B. E. Logan, Electricity generation using membrane and salt bridge microbial fuel cells, Water Research, vol. 39, pp. 1675-1686, 2005.
[27]D. Prasad, T. Sivaram, S. Berchmans, and V. Yegnaraman, Microbial fuel cell constructed with a micro-organism isolated from sugar industry effluent, Power Sources, vol. 160, pp. 991-996, 2006.
[28]K. B. Gregory, D. R. Bond, and D. R. Lovley, Graphite electrodes as electron donors for anaerobic respiration, Environmental Microbiology, vol. 6, pp. 596-604, 2004.
[29]Z. Du, H. Li, and T. Gu, A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy, Biotechnology Advances, vol. 25, pp. 464-82, 2007.
[30]S. E. Oh and B. E. Logan, Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells, Applied Microbiology and Biotechnology, vol. 70, pp. 162-169, 2006.
[31]B. Min and B. E. Logan, Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell, Environmental Science and Technology, vol. 38, pp. 5809-5814, 2004.
[32]D. H. Park and J. G. Zeikus, Improved fuel cell and electrode designs for producing electricity from microbial degradation, Biotechnology and Bioengineering, vol. 81, pp. 348-355, 2003.
[33]H. Liu and B. E. Logan, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane, Environmental Science and Technology, vol. 38, pp. 4040-4046, 2004.
[34]H. Liu, R. Ramnarayanan, and B. E. Logan, Production of electricity during wastewater treatment using a single chamber microbial fuel cell, Environmental Science and Technology, vol. 38, pp. 2281-2285, 2004.
[35]M. Rosenbaum, U. Schröder, and F. Scholz, Investigation of the electrocatalytic oxidation of formate and ethanol at platinum black under microbial fuel cell conditions, Solid State Electrochemistry, vol. 10, pp. 872-878, 2006.
[36]M. Chiao, K. B. Lam, Y. C. Su, and L. Lin, A miniaturized microbial fuel cell, 2002.
[37]H. Liu, S. Grot, and B. E. Logan, Electrochemically assisted microbial production of hydrogen from acetate, Environmental Science and Technology, vol. 39, pp. 4317-4320, 2005.
[38]W. Habermann and E. Pommer, Biological fuel cells with sulphide storage capacity, Applied Microbiology and Biotechnology, vol. 35, pp. 128-133, 1991.
[39]B. Min, J. Kim, S. Oh, J. M. Regan, and B. E. Logan, Electricity generation from swine wastewater using microbial fuel cells, Water Research, vol. 39, pp. 4961-8, 2005.
[40]J. R. Kim, B. Min, and B. E. Logan, Evaluation of procedures to acclimate a microbial fuel cell for electricity production, Applied Microbiology and Biotechnology, vol. 68, pp. 23-30, 2005.
[41]J. K. Jang, T. H. Pham, I. S. Chang, K. H. Kang, H. Moon, K. S. Cho, and B. H. Kim, Construction and operation of a novel mediator- and membrane-less microbial fuel cell, Process Biochemistry, vol. 39, pp. 1007-1012, 2004.
[42]I. S. Chang, J. K. Jang, G. C. Gil, M. Kim, H. J. Kim, B. W. Cho, and B. H. Kim, Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor, Biosensors and Bioelectronics, vol. 19, pp. 607-613, 2004.
[43]B. H. Kim, I. S. Chang, G. Cheol Gil, H. S. Park, and H. J. Kim, Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell, Biotechnology Letters, vol. 25, pp. 541-545, 2003.
[44]H. Y. Wang, A. Bernarda, C. Y. Huang, D. J. Lee, and J. S. Chang, Micro-sized microbial fuel cell: a mini-review, Bioresource Technology, vol. 102, pp. 235-43, 2011.
[45]F. Qian and D. E. Morse, Miniaturizing microbial fuel cells, Trends Biotechnology, vol. 29, pp. 62-9, 2011.
[46]C. P. B. Siu and M. Chiao, A microfabricated PDMS microbial fuel cell, Microelectromechanical Systems, vol. 17, pp. 1329-1341, 2008.
[47]F. Qian, M. Baum, Q. Gu, and D. E. Morse, A 1.5 microL microbial fuel cell for on-chip bioelectricity generation, Lab Chip, vol. 9, pp. 3076-81, 2009.
[48]E. R. Choban, L. J. Markoski, A. Wieckowski, and P. J. A. Kenis, Microfluidic fuel cell based on laminar flow, Power Sources, vol. 128, pp. 54-60, 2004.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top