跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 20:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張瑋芸
研究生(外文):Wei-YunChang
論文名稱:溶膠-凝膠法製備染料敏化太陽電池TiO2薄膜光電極之光電性能研究
論文名稱(外文):Photovoltaic Performance of the Dye-sensitized Solar Cells based on the TiO2 film photoelectrodes fabricated by a sol-gel method
指導教授:鍾賢龍
指導教授(外文):Shyan-Lung Chung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:113
中文關鍵詞:溶膠旋轉塗佈法二氧化鈦染料敏化太陽能電池
外文關鍵詞:sol-gelTiO2dye-sensitized solar cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以溶膠-旋轉塗佈法製備TiO2薄膜的製程簡單,設備成本低廉,然而,一般應用於染料敏化太陽能電池(DSSC)的研究難以克服燒結後膜裂與膜厚限制的問題;本研究以此法合成出具有不同表面型態的TiO2奈米結構薄膜應用於DSSC中並測試其光電性質表現。實驗中以水解分散於異丙醇溶劑中的四丁氧基鈦(Ti(OC4H9)4)做為開端,並以硝酸作為溶膠-凝膠反應中的催化劑;在膠溶反應進行的同時加入高分子添加劑,並將前驅溶膠液旋轉塗佈於透明導電玻璃上以製成TiO2薄膜。適當地調控高分子添加劑的劑量,薄膜的型態可從破裂且分散的島嶼狀變成連續並均勻性佳的奈米顆粒薄膜,相較於其他同領域的研究,薄膜的厚度也有顯著的提升(7-8µm)。當可合成連續性的薄膜後,我們發現硝酸濃度(pH值的差異)對於的粒子大小與比表面積、粉體分散度也有深遠影響,並與短路電流值直接相關。研究中在最佳化條件下可得到效率為6.63%,電流密度為18.76 mA/cm2,開環電壓為0.68 V,填充因子為0.52的元件光電輸出值。在本篇論文中將詳盡描述硝酸濃度與高分子添加劑對薄膜型態進而對整體光電性質的影響。
The sol-spin method is an easy and low-cost process to prepare the TiO2 films, however, there is a layer thickness limitation and it’s difficult to prepare films without cracking after calcination in the present researches appling to dye-sensitized solar cells. Nano-structured TiO2 films with different morphologies were fabricated and used as photo electrodes for assembling of dye-sensitized solar cells (DSSC) and the DSSCs were tested for their photovoltaic performance. Titanium n-butoxide (Ti(OC4H9)4, 99%, Acros) was hydrolyzed in the presence of isopropyl alcohol and catalyzed by nitric acid. After peptization and addition of polymeric additives, the resultant sol was spin-coated on transparent fluorine-doped tin oxide substrates to obtain nano-structured TiO2 films. By controlling the added amounts of polymeric additives, the morphology of the nano-structured TiO2 film was found to vary significantly from isolated- island form with numerous cracks to continuous film composed of nano-sized particles, and a remarkable increase of film thickness with 7-8 μm by sol-spin method is also achieved. The photovoltaic performance of DSSC depends strongly on the morphology of the film, once the continuous film is realized, the short circuit current was enhanced significantly by controlling the particle size and specific area which is the result of nitric acid concentration adjustment (pH difference). Under an optimum condition, a photoelectrical conversion efficiency (η) of 6.63 was obtained (with Voc=0.68V, F.F.=0.52 and Isc=18.76 mA/cm2). In this thesis, the experimental procedure and the effects of nitric acid and the polymeric additives on the film morphology are described. The effects of the film morphology on the photovoltaic performance are also discussed.
目錄
摘要 I
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1前言 1
1.2太陽能電池的種類 3
第二章 基礎理論與文獻回顧 8
2.1 二氧化鈦的介紹 8
2.2 二氧化鈦合成方法 12
2.2.1 溶膠凝膠法 13
2.2.2 熱水解法 15
2.2.3 水熱法 15
2.2.4 微乳膠法 16
2.2.5 溶液燃燒合成法 17
2.3 溶膠塗佈製備薄膜的方法 19
2.3.1浸鍍法(dip-coating) 19
2.3.2 噴鍍法(Spray-coating) 20
2.3.3 旋轉鍍膜法(spin-coating) 21
2.4 DSSC之結構與工作原理 23
2.4.1 DSSC之工作電極 28
2.4.2 DSSC之染料 29
2.4.3 DSSC之電解質 33
2.4.4 DSSC之對電極 35
第三章 實驗內容及方法 36
3.1 實驗藥品 36
3.2 實驗設備及分析儀器 38
3.3 實驗內容 40
3.3.1 實驗流程圖 42
3.3.2 實驗分析流程圖 44
3.3.3 前驅液及薄膜製備方式與元件組裝 45
3.3.4 儀器分析原理與測試方法 51
第四章 結果與討論 58
4.1 改善膜裂問題-均勻成膜 58
4.1.1 燒結過程中產生的應力造成膜裂 58
4.1.2提高薄膜連結性-高分子添加物-聚乙二醇(PEG) 59
4.1.3提高薄膜連結性與厚度-高分子添加物:甲基纖維素Methyl cellulose(MC) 63
4.1.4 有機相-無機相間的氫鍵形成為改善膜裂之更深層原因 64
4.2實驗參數的微調 70
4.2.1膠溶劑(催化劑)影響晶粒大小 70
4.2.2 高分子添加劑-甲基纖維素(MC)濃度對薄膜品質的影響 75
4.2.3 參數微調後樣品比例的選定 79
4.3 TiO2光電極的特性分析 81
4.3.1 二氧化鈦光電極之XRD分析 81
4.3.2二氧化鈦光電極之比表面積與染料吸附量分析 85
4.3.3 二氧化鈦光電極之ESCA分析 89
4.3.4 二氧化鈦光電極吸收、反射光譜分析以及薄膜透光度比較 93
4.3.5 染料敏化太陽能電池之表現 99
第五章 結論 107
第六章 參考文獻 109

1. M. Grätzel, Nature, 403,363 (2000).
2. M. A. Green et al., Prog. Photovolt:Res.Appl., 61-67(2008).
3. B. O’Regan, M. Grätzel, Nature, 353, 737 (1991).
4. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc., 115, 6382 (1993)
5. M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeerudin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, J. Am. Chem. Soc., 123, 1613 (2001).
6. C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, J. Am. Ceram. Soc., 80, 3157 (1997)
7. K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, Sol. Energy Mater. Sol. Cells, 77, 89 (2003)
8.T. Horiuchi, H. Miura, S. Uchida, Chem. Commun., 3036 (2003).
9.N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhote, H. Pettersson, A. Azam, M. Grätzel, J. Electrochem. Soc., 143, 3099 (1996)
10.B. O’Regan, D. T. Schwartz, Chem. Mater., 10, 1501 (1998)
11.U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Grätzel, Nature, 395, 583 (1998)
12.P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Grätzel, Nature materials, 2, 402 (2003)
13.C. Longo, A. F. Nogueira, M.-A. D. Paoli, J. Phys. Chem. B, 106, 5925 (2002)
14.A. Kay, M. Grätzel, Sol. Energy Mater. Sol. Cells, 44, 99 (1996)
15.N. J. Cherepy, G. P. Smestad, M. Grätzel, J. Z. Zhang, J. Phys. Chem. B, 101, 9342 (1997)
16.D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, I. Riess, J. Phys. Chem. B, 104, 2053 (2000)
17.K. Honda, and A. Fujishima, Nature, 37, 238 (1972)
18.A. Fujishima, T. N. Rao, D. A. Tryk, J. Photochemistry and Photobiology C: Photochemistry Reviews 1, 1 (2000)
19.U. Diebold, Surf Sci Rep., 48,53(2003)
20.O. K. Varghese, D. W. Gong, M. Paulose, K. G. Ong, C. A Grimes, Sens Actuator B-Chem., 93, 338 (2003)
21.J. C. Yu ,W. K. Ho, J. Lin, K. Y. Yip, P. K. Wong, Environ Sci Technol., 37, 2296 (2003)
22.G. K. Mor, M. A. Carvalho, O. K. Varghese, M. V. Pishko, C. A. Grimes, J Mater Res., 19, 628 (2003)
23.P. Zeman, S. Takabayashi, J Vac Sci Technol A-Vac SurfFilms, 20, 388 (2002)
24.H. Zhang, JF. Banfield, J. Phys. Chem. B, 104, 3481-3487 (2000)
25.A. L. Linsebigler, Chem. Rev., 95, 735-758 (1995)
26.J. Augustynski, Electrochimica acta, 38, 43-46 (1993)
27.N.G. Park, J. van de Lagemaat, A. J. Frank, J. Phys. Chem. B ,104, 8989-8994 (2000)
28.C. Jeffrey Brinker and George W. Scherer, Sol Gel Science, Academic Press (1990)
29.M. A. Aegerter, Sol-gel: science and technology, NewJersey, World Scientific (1989)
30.D. M. Mattox, Thin Solid Films, 204, 25 (1991)
31.B. E. Yoldas, J. Mater. Sci., 21,1087-1092 (1986)
32.K. Terabe, K. Kato, H. Miyazaki, S. Yamaguchi, A. Imai and Y. Iguchi, J. Mater. Sci., 29, 1617 (1984)
33.F. Cot, A. Larbot, G. Nabias ,L. Cot, J. Eur. Cream. Soc., 18, 2175 (1998)
34.H. K. Park, D. K. Kim, and C. H. Kim, J. Am. Chem. Soc.,80 , 743-749 (1997)
35.H. K. Park, Y. T. Noon, D. K. Kim and C. H. Kim, J. Am. Chem. Soc., 79, 2727-2734 (1996)
36.Y. Wei, R. Wu, Y. Zhang, Mater. Lett., 41, 101-103(1999)
37.W. J. Dawson, Cream. Bull., 67, 1673-1678 (1988)
38.J. Yang, S. Mei, M. F. Rerreira, J. Am. Chem. Soc., 83, 1361-1368 (2000)
39.M. Inagaki, Y. Nakazawa, M. Hirano, Y. Kobayashi , M. Toyoda, Inter. J. Inorg. Mater., 3, 809-811 (2001)
40.H. Cheng, J. Ma, Z. Zhao and L. Qi, Chem. Mater. , 7, 663 (1995)
41.D. J. Shaw, Introduction to colloid and surface chemistry, 4th edition,
Butterworths (1997)
42.E. J. Kim, S. H. Oh, S. H. Hahn, Chem. Eng. Communications, 187, 171-184 (2001)
43.R. B. Zhang, L. Gao, Mater. Res. Bull., 37, 1659-1666 (2002)
44.E. J. Kim, S. H. Hahn, Mater. Sci. Eng. A, 303, 24-29 (2001)
45.I-Pin Chen, Mei-Chi Jiang, Chia-Nan University of Pharmacy and Science Thesis for the Degree of Master, (2009)
46.H. Schmidt, M. Mennig, Sol-Gel gateway (2000)
47.http://mtigroup.en.ec21.com/Titanium_Thermal_Spray_Coating--3606908_3606965.html
48.K.R. Patil, S.D. Sathaye, Y.B. Khollam, S.B. Deshpande, N.R. Pawaskar,
A.B. Mandale, Mater. Lett., 57, 1775–1780 (2003)
49. http://materials.web.psi.ch/Research/Thin_Films/Methods/Spin.htm
50. Y. Zhenxing, Journal of Maganetism and Materials, 208, 55 (2000)
51. G. P. Smestad, M. Grätzel, J. Chem. Educ., 75, 752, (1998)
52. M. Gratzel, Nature, 414, 338-344 (2001)
53.D. Matthews, P. Infelta, M. Grätzel, Sol. Energy Mater. Sol. Cells, 44, 119 (1996)
54.A. N.M.Green,E.Palomares, J.Phys.Chem.B., 109, 12525-12533 (2005)
55.M. Grätzel, Inorg. Chem., 44, 6841 (2005)
56.M. Grätzel, Current Opinion in Colloid & Interface Science, 4, 314-321, (1999)
57.K. Kalyanasundaram , M. Grätzel, Coord. Chem. Rev., 77, 347-414 (1998)
58.A. Fujishima et al., Sol. Energy Mater. Sol. Cells, 81, 197-203 (2004)
59.G. Franco, J. Gehring, L. M. Peter, E.A. Ponomarev, I. Uhlendorf, J. Phys. Chem. B, 103, 692 (1999)
60. Y. Diamant, S. G. Chen, O. Melamed, A. Zaban, J. Phys. Chem. B, 107, 1977 (2003)
61.A. Hagfeldt, M. Grätzel, Chem. Rev., 95, 49 (1995)
62.J.H. Yum, S. Nakade, D.Y. Kim, S. Yanagida,“ J. Phys. Chem. B, 110, 3215-3219 (2006)
63.T. Ma, M. Akiyama, E. Abe, I. Imai, Nano Lett., 12, 2543-2547 (2005)
64.Q. Li, W.Liang, J.K.Shang, Appl. Phys. Lett ., 90, 063109 (2007)
65.Y.H. Su, W.H. Lai, L.G. Teoh, M.H. Hon, J.L. Huang, Appl. Phys. A, 88, 173-178 (2007)
66. 劉茂煌, 工業材料, 203, 91-97 (2003)
67.D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, J. Phys. Chem. B, 104, 2053 (2000)
68.G. J. Meyer, J. Chem. Educ., 74, 652 (1997).
69.M. Grätzel Lab, J. Am. Chem. Soc, J. Am. Chem. Soc, 127,16835-16847 (2005)
70.G. Wolfbauer, A. Bond, J. C. Eklund, D. R. MacFarlane, Solar Energy Mater. & Solar Cells, 70, 85 (2001)
71.N. Kopidakis, K. D. Benkstein, J. Lagemaat, A. J. Frank, J. Phys. Chem. B, 107, 11307 (2003)
72.D. Kuang, C. Klein, H. J. Snaith, J. Moser, R. Humphry-Baker, P. Comte, S. M. Zakeeruddin and M. Grätzel, Nano Lett., 6, 669 (2006)
73.S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug, J. R. Durrant, J. Am. Chem. Soc., 127, 3456 (2005)
74. J. M. Pringle, J. Golding, C. M. Forsyth, G. B. Deacon, M. Forsyth, D. R. MacFarlane, J. Mater. Chem., 12, 3475 (2002)
75.P. Wang, S. M. Zakeeruddin, J. E. Moster, M. Gratzel, J. Phys. Chem. B, 107, 13280 (2003)
76.C. P. Fredlake, J. M. Crosthwaite, D. G. Hert, S. N. V. K. Aki, J. F. Brennecke, J. Chem. Eng. Data, 49,954 (2004)
77.P. Wang, S. M. Zakeeruddin, R. H. Baker, M. Gratzel, Chem. Mater., 16, 2684 (2004)
78.M. Zistler, C. Schreiner, P. Wasserscheid, D. Gerhard, H. J. Gores, Int. J. Electrochem. Sci., 3, 236 (2008)
79. P. Wang, S. M. Zakeeruddin, J. E. Moster, R. H. Baker, M. Gratzel, J. Am. Chem. Soc., 126, 7164 (2004)
80. D. Gerhard, S. C. Alpaslan, H. J. Gores, M. Uerdingen, P. Wasserscheid, Chem. Commun., 5080 (2005)
81.D. Kuang, P. Wang, S, Ito, S. M. Zakeeruddin, M. Gratzel, J. Am. Chem. Soc., 128, 7732 (2006)
82. C. Capiglia, Y. Saito, H. Kataoka, T. Kodama, E. Quartarone, P. Mustarelli, Solid State Ionics, 131,291 (2000)
83. T. Stergiopoulos, L. M. Arabatzis, G. Katsaros, Nano Lett., 2, 1259 (2002)
84. Y. L. Lee, Y. J. Shen, Y. M. Yang, Nanotechnology, 19, 455201 (2008)
85.Wei Chen, Junying Zhang, Qi Fang, Shu Li, Jianxin Wu, Fanqing Li, Ke Jiang, Sens. Actuators, B, 100, 195–199 (2004)
86. K.TERABE, K. KATO, H. MIYAZAKI, S.YAMAGUCHI , A.IMAI, Y.IGUCHI, J. Mater. Sci. Lett., 29, 1617-1622 (1994)
87.Hiromitsu KOZUKA, J. Ceram. Soc. Jpn., 111,9, 624-632 (2003)
88.Vaishali Patil, Arun Patil, Ji-Won Choi, Seok-Jin Yoon, Solid State Science, 13,6,1232-1234 (2011)
89.Julija Sabataityte, Ilona Oja, Frank Lenzmann, Olga Volobujeva, Malle Krunks, C. R. Chimie, 9, 708–712 (2006)
90.I-Ying Chang, NCKU Thesis Research Proposal (2011)
91.Yongxiang Li, Jurgen Hagen , Winfried Scharath , Peter Otschik , Dietrich Haarer, Sol. Energy Mater. Sol. Cells, 56, 167-174 (1999)
92.Young Sam Jin, Kyung Hwan Kim, Hyung Wook Choi, J. Korean Phy. Soc., 57, 4, 1049-1053 (2010)
93.K. Srikanth , Md.M. Rahman, H. Tanaka, K.M. Krishna, T. Soga, M.K. Mishra, T. Jimbo, M. Umeno, Sol. Energy Mater. Sol. Cells, 65, 171-177 (2001)
94.Mohammad Hossein Habibi, Mojtaba Nasr-Esfahani, Dyes and Pigments, 75, 714-722 (2007)
95.Shoichiro Yano, Keisuke Iwata, Kimio Kurita, Mater. Sci. Eng., C, 6, 75-90 (1998)
96.Hiromitsu Kozuka, Masahiro Kajimura, J. Am. Ceram. Soc., 83,5, 1056 – 1062 (2000)
97.Zhenkun Lin, Tianfang Wang, Xu Han, Donglin Han, Shufen Li, J. Anal. Appl. Pyrolysis, 81, 121–126 (2008)
98. M.J Zohuriaan, F Shokrolahi, Polym. Test., 23, 5, 575-579 (2003)
99. Yu-Wen Chen, Tzu-Ming Yen, Chiuping Li, J. Non-Cryst. Solids, 185, 49-55 (1995)
100.R. Kavian, A. Saidi, J. Alloys Compd., 468, 528–532 (2009)
101.Zilong Tang, Junying Zhang, Zhe Cheng, Zhongtai Zhang, Mater. Chem. Phys., 77 314–317 (2002)
102.Chin-Mei Wang, doctoral dissertation (2012)
103.Nobuhiro Fuke, Atsushi Fukui, Ryohichi Komiya, Ashraful Islam, Yasuo Chiba, Chem. Mater., 20, 4974–4979 (2008)
104.B. Erdem, R. A. Hunsicker, G. W. Simmons, E. D. Sudol, V. L. Dimonie, El-Aasser MS, Langmuir, 17, 2664 (2001)
105.D. M. Chen, Z. Y. Jiang, J. Q. Geng, Q. Wang, D. Yang, Ind. Eng. Chem. Res., 46, 2741 (2007)
106.Carlo G. Pantano , T. N. Wittberg, 15,498-501(1990)
107.M. M. Rahman, K. M. Krishna, T. Soga, T. Jimbo, M. Umeno, J. Phys. Chem. Solids., 60, 201 (1999)
108.Y. Xie, X. Zhao, Y. Chen, Q. Zhao, Q. Yuan, J. Solid State Chem., 180, 3576 (2007)
109.C. S. Gopinath, S. G. Hegde, A. V. Ramaswamy, S. Mahapatra, Mater. Res. Bull., 37, 1323 (2002)
110.Akash Katoch, Hohyeong Kim, Taejin Hwang, Sang Sub Kim, J Sol-Gel Sci Technol , 61, 77–82 (2012)
111.Agne`s Pottier, Sophie Cassaignon, Corinne Chane´ac, Francoise Villain, Elisabeth Tronc, Jean-Pierre Jolivet, J. Mater. Chem., 13, 877–882 (2003)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊