跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 04:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳郁森
研究生(外文):Yu-SenChen
論文名稱:釩硫錯合物於金屬中心及配位基上的反應活性之探討
論文名稱(外文):The metal-centered and Ligand-based Reactivity of Vanadiumn thiolate Complexes
指導教授:許鏵芬
指導教授(外文):Hua-Fen Hsu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:130
中文關鍵詞:釩硫錯合物反應活性
外文關鍵詞:Vanadium thiolatereactivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
在這份研究中,我們鑑定了六種釩硫錯合物其性質並發現彼此關係。化合物1、2、3與空氣/氧氣、二氯甲烷、氯仿的反應活性已被探討。這些結果可由X光單晶繞射、紫外光可見光光譜、核磁共振光譜、質譜等物理方法來驗證之。 [VIII(PS2”SH)2][PPh4] (1)、[VIV(PS3”)(PS2”SH)][PPh4] (2)、[V(PS3”)2][NEt4] (3)可與氧氣進行多種類型反應。可以和空氣中的氧氣反應進行金屬中心的價數氧化及硫氧化加成,或者生成一金屬硫自由基錯合物。一六配位之化合物1與空氣反應進而生成一七配位之化合物2。化合物2再進而與空氣反應生成一具硫上含自由基的釩四價與釩五價之電子共振特性釩硫自由基錯合物3。在氧化過程中,化合物2、3的釩氧硫化合物 (vanadium sulfenate complexes 2a/ 3a、vanadium sulfinate complex 3b)同時形成。
化合物3為一個具有自由基四價釩硫錯合物與五價釩硫錯合物的共振形式存在特性之錯合物,可以與水反應而進行氫-氧鍵斷裂而生成化合物2。又可與甲醇反應而個別地進行碳氧鍵斷裂和氫-氧鍵斷裂而生成一硫醚錯合物[VIV(PS3”)(PS2”SCH3)][NEt4](4a)及化合物2。最後,化合物3可對二氯甲烷進行碳-氯鍵活化而形成兩化合物[VIII(PS3”)Cl][PPh4] (5)及[VIV((PS3”)2CH2)] (6)。化合物3也可對氯仿進行碳-氯鍵活化而形成化合物 5。
化合物1、2也可對二氯甲烷進行碳-氯鍵活化而形成化合物5及 6。若在含有氯仿的環境下,化合物1、2也可以對氯仿進行碳-氯鍵活化而形成化合物5。

At this work, several vanadium-thiolate complexes have been obtained and characterized. They are [VIII(PS2”SH)2][PPh4] (1), [VIV(PS3”)(PS2”SH)][PPh4] (2) and [V(PS3”)2][NEt4] (3). (PS2”SH = [P(C6H3-3-Me3Si-2-S)2 (C6H3-3-Me3Si-2-SH)]2-. PS3” = [P(C6H3-3-Me3Si-2-S)3]3-). The reactivity of them with air/dioxygen, CH2Cl2 and CHCl3 have also been explored. The evidence were supported by several physical methods, including X-ray crystallography, UV-vis, NMR spectroscopies, and ESI-MS studies. Complexes 1, 2 and 3 exhibited several types of reactivity toward dioxygen. They include metal-center oxidation, thiyl-radical formation, and oxygenation on metal bound thiolate. The hexa-coordinated [VIII(PS2”SH)2][PPh4] (1) reacted with dioxygen to a hepta-coordinated [VIV(PS3”)(PS2”SH)][PPh4] (2). Complex 2 was further oxidized to yield an octa-coordinated [V(PS3”)2][NEt4] (3), a species with charge delocalization character between vanadium and sulfur centers. During the oxidation process, the corresponding vanadium sulfenate/sulfinate species of 2 and 3 were also observed.
Complex 3, a species with resonance forms between V(V)-thiolate and V(IV)-thiyl radical, also reacted with H2O and form 2 by homolytic cleavage of the O-H bond in water. In addition, complex 3 also reacted with CH3OH via homolytic cleavage of the O-H bond and C-O bond in methanol. Consequently, it led to the formation of complex 2 and [VIV(PS3”)(PS2”SCH3)]- (4a), a bound thiolate was protonated and methylated to form an unbound thiol (in 2) and methylether (in 4a), respectively. Finally, 3 can undergo C-Cl bond activation toward CH2Cl2 to form [VIII(PS3”)Cl][PPh4] (5) and [VIV((PS3”)2CH2)] (6), a VIII-Cl species and a VIV species containing two PS3” with CH2 linkage between two thiolates. The similar reactivity toward CHCl3 was also observed.
Complexes 1 and 2 can undergo C-Cl bond activation toward CH2Cl2 to produce 5 and 6. In contrast to the reactivity of 3 with CH2Cl2, a homolytic cleavage of C-Cl bond through a radical mechanism, the reactivity of 1 and 2 with CH2Cl2 might undergo through nucleophilic attack of the lone paired electrons on bound sulfur. The reaction with CHCl3 also showed similar reactivity as CH2Cl2.

Abstract...................................................I
Abstract in Chinese......................................III
Table of Contents..........................................V
List of Figures.........................................VIII
List of Tables...........................................XIV
List of Schemes...........................................XV
Abbreviations..........................................XVIII
Chapter 1: Introduction
1.1 The bioinorganic chemistry of Vanadium
1.1.1 Coordination compounds with biogenic ligands and their biological function..................................1
1.1.2 Vanadium thiolate chemistry........................4
1.2 Reactivity of transition metal thiolate complexes
1.2.1 Oxygen reactivity of transition metal thiolate complexes..................................................5
1.2.2 Sulfur-centered alkylation of transition metal thiolate complexes…..10
1.3 Examples and reactivity studies of metal-containing radical complexes
1.3.1 Metal bound to ligand-radical and Metal bound to thiyl-radical complexes...................................14
1.3.2 Thiyl-radicals and their function in biological systems...................................................17
1.3.3 Reactivity studies of Metal bound to thiyl-radical complexes.................................................19
Chapter 2: Results and Discussions
2.1 Reactivity studies of [VIII(PS2”)2][PPh4] (1), [VIV(PS3”)(PS2”SH)][PPh4] (2), [V(PS3”)2][NEt4] (3) and [VIV((PS3”)2CH2)] (6) with the air: metal-centered oxidation, sulfur-based oxygenation and the formation of stabilized thiyl-radical toward Dioxygen.............................23
2.2 Reactivity studies of a vanadium(IV) thiyl-radical species, [V(PS3”)2][NEt4] (3): C-O bond, O-H bond and C-Cl bond cleavage.............................................70
2.3 Reactivity studies of [VIII(PS2”SH)2][PPh4] (1) and [VIV(PS3”)(PS2”SH)][PPh4] (2) with CH2Cl2 and CHCl3: Ligand-based nucleophilic attack toward dichloromethane and chloroform................................................89
Chapter 3: Conclusions...................................101
Chapter 4: Experimental and Instruments
4-1 General Procedures...................................108
4-2 Synthesis............................................109
References...............................................116
Appendix A...............................................123

1.Garner, C. D.; Armstrong, E. M.; Berry, R. E.; Beddoes, R. L.; Collison, D.; Cooney, J. J. A.; Ertok, S. N.; Helliwell, M., J. Inorg. Biochem. 2000, 80, 17-20.
2.M. Fa´tima C. Guedes da Silva; J. Armando L. da Silva; Silva, J. o. J. R. F. s. d.; Armando J. L. Pombeiro; Amatore, C.; Verpeaux, J.-N. l., J. Am. Chem. Soc. 1996, 118, 7568-7573.
3.Eady, R., Coord. Chem. Rev. 2003, 237, 23-30.
4.Rehder, D., Inorg. Chem. Commun. 2003, 6, 604-617.
5.Rehder, D., J. Inorg. Biochem. 2000, 80, 133-136.
6.Crans, D. C.; Smee, J. J.; Gaidamauskas; E.; Yang, L., Chem. Rev. 2004, 104, 849-902.
7.Baran, E. J., J. Braz. Chem. Soc. 2003, 14, 878-888.
8.Editor, G.; Hirao, T., Coord. Chem. Rev. 2003, 237, 1-286.
9.Rehder, D.; Conte, V., J. Inorg. Biochem. 2000, 80, 1-194.
10.Janas, Z.; Sobota, P., Coord. Chem. Rev. 2005, 249, 2144-2155.
11.Huyer, G.; Liu, S.; John Kellyi; Moffat, J.; Payette, P.; Kennedy, B.; Tsaprailis, G.; Gresser, M. J.; Ramachandran, C., J. Biol. Chem. 1997, 2, 843-851.
12.Rehder, D.; Costa Pessoa, J.; Geraldes, C. F.; Castro, M. C.; Kabanos, T.; Kiss, T.; Meier, B.; Micera, G.; Pettersson, L.; Rangel, M.; Salifoglou, A.; Turel, I.; Wang, D., J. Biol. Inorg. Chem. 2002, 7, 384-96.
13.Michibata, H.; Yamaguchi, N.; Uyama, T.; Ueki, T., Coord. Chem. Rev. 2003, 237, 41-51.
14.M. BRUECH; M.E. QUINTANILLA; W. LEGRUM; J. KOCH; NETTER, K. J.; FUHRMANN, G. F., Toxicology 1984, 31, 283-295.
15.Grapperhaus, C. A.; Poturovic, S.; Mashuta, M. S., Inorg. Chem. 2002, 41, 4309-4311.
16.Ghezai Musie; Joseph H. Reibenspies; Darensbourg, M. Y., Inorg. Chem. 1998, 37, 302-310.
17.Kumar, M.; Day, R. O.; Colpas, G. J.; Maroney, M. J., J. Am. Chem. Soc. 1989, 111, 5914-5916.
18.Blinn, E. L.; Busch, D. H., J. Am. Chem. Soc. 1968, 90, 4280.
19.Yui-May Hsiao; Stephen S. Chojnacki; Pamela Hinton; Darensbourg, J. H. R. Y., Organometallics 1993, 12, 870-875.
20.LINDOY, L. F.; BUSCH, D. H., Inorg. Chem. 1974, 13, 2494-2498.
21.Wilker, J. J.; Lippard, S. J., Inorg. Chem. 1997, 36, 969-978.
22.Benedito, F. L.; Petrenko, T.; Bill, E.; Weyhermuller, T.; Wieghardt, K., Inorg. Chem. 2009, 48, 10913-10925.
23.Alan Le Goff; Christine Le Roy; François Y. Pétillon; Philippe Schollhammer; Talarmin, J., Organometallics 2007, 26, 3607-3610.
24.Grapperhaus, C. A.; Darensbourg, M. Y., Acc. Chem. Res. 1998, 31, 451-459.
25.O'Toole, M. G.; Kreso, M.; Kozlowski, P. M.; Mashuta, M. S.; Grapperhaus, C. A., J. Biol. Inorg. Chem. 2008, 13, 1219-30.
26.Masitas, C. A.; Mashuta, M. S.; Grapperhaus, C. A., Inorg. Chem. 2010, 49, 5344-6.
27.Masitas, C. s. A.; Kumar, M.; Mashuta, M. S.; Kozlowski, P. M.; Grapperhaus, C. A., Inorg. Chem. 2010, 49, 10875-10881.
28.Jiang, Y.; Widger, L. R.; Kasper, G. D.; Siegler, M. A.; Goldberg, D. P., J. Am. Chem. Soc. 2010, 132, 12214–12215.
29.Badiei, Y. M.; Siegler, M. A.; Goldberg, D. P., J. Am. Chem. Soc. 2011, 133, 1274-1277.
30.Shearer, J.; Callan, P. E.; Amie, J., Inorg. Chem. 2010, 49, 9064-9077.
31.HARROP, T. C.; MASCHARAK, P. K., Acc. Chem. Res. 2004, 37, 253-260.
32.Kovacs, J. A., Chem. Rev. 2004, 104, 825-848.
33.Arakawa, T.; Yoshiaki Kawano; Yoko Katayama; Hiroshi Nakayama; Naoshi Dohmae; Yohda, M.; Odaka, M., J. Am. Chem. Soc. 2009, 131, 14838–14843.
34.Wang, H.; Guo, X.-Q.; Zhong, R.; Hou, X.-F., J. organomet. chem. 2009, 694, 1567-1570.
35.Milsmann, C.; Bothe, E.; Bill, E.; Weyhermuller, T.; Wieghardt, K., Inorg. Chem. 2009, 48, 6211-21.
36.Stenson, P. A.; Board, A.; Marin-Becerra, A.; Blake, A. J.; Davies, E. S.; Wilson, C.; McMaster, J.; Schroder, M., Chem. Eur. J. 2008, 14, 2564-76.
37.Roy, A. S.; Muresan, N.; Tuononen, H. M.; Rath, S. P.; Ghosh, P., Dalton Trans 2008, 3438-46.
38.Kausikisankar Pramanik; Ujjwal Das; Basab Adhikari; Deepak Chopra; Stoeckli-Evans, H., Inorg. Chem. 2008, 47, 429-438.
39.Shin, R. Y. C.; Sim, H. S.; Goh, L. Y.; Webster, R. D., J. Organomet. Chem. 2007, 692, 3267-3276.
40.Kimura, S.; Bill, E.; Bothe, E.; Thomas; Weyhermüller; Wieghardt, K., J. Am. Chem. Soc. 2001, 123, 6025-6039.
41.Ghosh, P.; Begum, A.; Herebian, D.; Bothe, E.; Hildenbrand, K.; Weyhermuller, T.; Wieghardt, K., Angew. Chem. Int. Ed. 2003, 42, 563-567.
42.Rehder, D., Coord. Chem. Rev. 2003, 237, 53-63.
43.McCoy, J. G.; Bailey, L. J.; Bitto, E.; Bingman, C. A.; Aceti, D. J.; Fox, B. G.; Phillips, G. N., Jr., Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 3084-9.
44.Simmons, C. R.; Liu, Q.; Huang, Q.; Hao, Q.; Begley, T. P.; Karplus, P. A.; Stipanuk, M. H., J. Biol. Chem. 2006, 281, 18723-33.
45.Ye, S.; Wu, X.; Wei, L.; Tang, D.; Sun, P.; Bartlam, M.; Rao, Z., J. Biol. Chem. 2007, 282, 3391-402.
46.Pierce, B. S.; Gardner, J. D.; Bailey, L. J.; Brunold, T. C.; Fox, B. G., Biochemistry 2007, 46, 8569-8578.
47.Joseph, C. A.; Maroney, M. J., Chem. Commun. 2007, 3338.
48.Simmons, C. R.; Krishnamoorthy, K.; Granett, S. L.; Schuller, D. J.; E., J.; Dominy, J.; Begley, T. P.; Stipanuk, M. H.; Karplus, P. A., Biochemistry 2008, 47, 11390–11392.
49.Kleffmann, T.; Jongkees, S. A.; Fairweather, G.; Wilbanks, S. M.; Jameson, G. N., J. Biol. Inorg. Chem. 2009, 14, 913-21.
50.Visser, V. P. d.; Straganz, G. D., J. Phys. Chem. A 2009, 113, 1835-1846.
51.Craig A. Grapperhaus; Christopher S. Mullins; Pawel M. Kozlowski; Mashuta, M. S., Inorg. Chem. 2004, 43, 2859-2866.
52.Katayama, Y.; Hashimoto, K.; Nakayama, H.; Hiroyuki Mino; Masaki Nojiri; Ono, T.-a.; Hiroshi Nyunoya; Masafumi Yohda; Koji Takio; Odaka, M., J. Am. Chem. Soc. 2006, 128, 728-729.
53.Nagashima, S.; Nakasako, M.; Dohmae, N.; Tsujimura, M.; Takio, K.; Odaka, M.; Yohda, M.; Kamiya, N.; Endo, I., Nature. Structural Biology 1998, 5, 347-351.
54.Miyanaga, A.; Fushinobu, S.; Ito, K.; Wakagi, T., Biochem. Biophys. Res. Commun. 2001, 288, 1169-74.
55.Arakawa, T.; Kawano, Y.; Kataoka, S.; Katayama, Y.; Kamiya, N.; Yohda, M.; Odaka, M., J. Mol. Biol. 2007, 366, 1497-509.
56.Richard K. Henderson; Elisabeth Bouwman; Anthony L. Spek; Reedijk, J., Inorg. Chem. 1997, 36, 4616-4617.
57.Vincent E. Kaasjager; Elisabeth Bouwman; S. Gorter; Jan Reedijk; Craig A. Grapperhaus; Joseph H. Reibenspies; Jason J. Smee; Marcetta Y. Darensbourg; Agnes Derecskei-Kovacs; Thomson§, L. M., Inorg. Chem. 2002, 41, 1837-1844
58.Farmer, P. J.; Solouki, T.; Mills, D. K.; Soma, T.; Russell, D. H.; Reibenspies, J. H.; Darensbourg, M. Y., J. Am. Chem. Soc. 1992, 114, 4601-4605.
59.Manoj Kumar; Gerard J. Colpas; Roberta 0. Day; Maroney, M. J., J. Am. Chem. Soc. 1989, 111, 8323-8325.
60.Michael J. Maroney; Suranjan B. Choudhury; Bryngelson, P. A.; Shaukat A. Mirza; Sherrod, M. J., Inorg. Chem. 1996, 35, 1073-1076.
61.G. N. Schrauzer; Cheng Zhang; Chadha, R., Inorg. Chem. 1990, 4104-4101.
62.Irene Kung; Dirk Schweitzer; Jason Shearer; Wendy D. Taylor; Henry L. Jackson, S. L.; Kovacs, J. A., J. Am. Chem. Soc. 2000, 122, 8299-8300
63.ADZAMLI, I. K.; DEUTSCH, E., Inorg. Chem. 1980, 19, 1366-1373.
64.ADZAMLI, I. K.; LIBSON, K.; LYDON, J. D.; ELDER, R. C.; DEUTSCH, E., Inorg. Chem. 1979, 18, 303-311.
65.Heinrich, L.; Li, Y.; Karine Provost ; Michalowicz, A.; Vaissermann, J.; Chottard, J.-C., Inorganica Chimica Acta 2001, 318, 117-126.
66.Jackson, W. G.; Rahman, A. F. M. M., Inorg. Chem. 2003, 42, 383-388.
67.LYDON, J. D.; DEUTSCH, E., Inorg. Chem. 1982, 21, 3180-3185.
68.Mascharak, P. K. M. K., Coord. Chem. Rev. 2002, 225, 201-214.
69.Noveron, J. C.; Olmstead, M. M.; Mascharak, P. K., J. Am. Chem. Soc 2001, 123, 3247-3259.
70.Rata, M.; Sousaa, R. A. d.; Vaissermannb, J.; Leduca, P.; Mansuya, D.; Artauda, I., J. Inorg. Biochem. 2001, 84, 207-213. 2001, 84, 207-213.
71.Rat, M.; Sousa, R. A. d.; Tomas, A.; Frapart, Y.; Tuchagues, J.-P.; Artaud, I., Eur. J. Inorg. Chem. 2003, 759-765.
72.Tyler, L. A.; Novero, J. C.; Olmstead, M. M.; Mascharak, P. K., Inorg. Chem. 1999, 38, 616-617.
73.Tyler, L. A.; Noveron, J. C.; Olmstead, M. M.; Mascharak, P. K., Inorg. Chem. 2000, 39, 357-362.
74.Tyler, L. A.; Noveron, J. C.; Olmstead, M. M.; Mascharak, P. K., Inorg. Chem. 2003, 5751-5761.
75.Tyler, L. A.; Olmstead, M. M.; Mascharak, P. K., Inorg. Chem. 2001, 40, 5408-5414.
76.Galardon, E.; Giorgi, M.; Artaud, I., Chem. Commun. 2004, 286-287.
77.Dilworth, J. R.; Zheng, Y., Transit. Met. Chem. 1992, 17, 364-368.
78.Grapperhaus, C. A.; Maguire, M. J.; Tuntulani, T.; Darensbourg, M. Y., Inorg. Chem. 1997, 36, 1860-1866.
79.Tuntulani, T.; Musie, G.; Reibenspies, J. H.; Darensbourg, M. Y., Inorg. Chem. 1995, 34, 6219-6286.
80.Cocker, T. M.; Bachman, R. E., Inorg. Chem. 2001, 40, 1550-1556.
81.Marsh, A.; Ferguson, D. M., PROTEINS Structure, Function, and Genetics 1997, 28, 217–226
82.Hiroshi Ogino; Masato Shoji; Yoichi Abe; Makoto Shimura; Shimoi, M., Inorg. Chem. 1987, 26, 2542-2546.
83.QIUHAO CHEN; MARZILLI, L. G., Inorganica Chimica Acta 1988, 144, 241-248.
84.Winter, C. H.; Gladysz, J. A., J. Organomet. Chem. 1988, 354, C33-C36.
85.Ghilardi, C. A.; Midollini, S.; Moneti, S.; Orlandini, A.; Ramirez, J. A., J . Chem. Soc., Chem. Commun. 1989, 304.
86.Hisao Nishiyama; Mihoko Horihata; Tsuyoshi Hirai; Shigeru Wakamatsu; Itoh, K., Organometallics 1991, 10, 2706-2708.
87.Ciriano, M. A.; Tena, M. A.; Oro, L. A., J. Chem. Soc., Dalton Trans. 1992, 2123.
88.Cristina Tejel; Miguel A. Ciriano; Jose´ A. Lo´pez; Fernando J. Lahoz; Oro, L. A., Organometallics 1994, 13, 4153.
89.Oliván, M.; Caulton, K. G., Chem. Commun. 1997, 1733-1734.
90.Sola, E.; Bakhmutov, V. I.; Torres, F.; Elduque, A.; Lo´pez, J. A.; Lahoz, F. J.; Werner, H.; Oro, L. A., Organometallics 1998, 17, 683-696.
91.Cristina Tejel; Miguel A. Ciriano; Luis A. Oro; Antonio Tiripicchio; Ugozzoli, F., Organometallics 2001, 20, 1676-1682
92.Grushin, V. V.; Marshall, W. J., J. Am. Chem. Soc. 2004, 126, 3068-3069.
93.Katie T. K. Chan; Liam P. Spencer; Jason D. Masuda; Jenny S. J. McCahill; Pingrong Wei; Stephan, D. W., Organometallics 2004, 23, 381-390.
94.Poater, A.; Cavallo, L., Inorg. Chem. 2009, 48, 2340-2342..
95.Maverick, A. W.; Ivie, M. L.; Fronczek, F. R., J. Coord. Chem. 1990, 21, 315-322.
96.Yam, V. W.-W.; Yeung, P. K.-Y.; Cheung, K.-K., J. Chem. Soc., Chem. Commun.. 1995, 267.
97.Wang, Q.; Marr, A. C.; Blake, A. J.; Wilson, C.; Schroder, M., Chem. Commun. 2003, 2776.
98.Busetto, L.; Dionisio, M.; Marchetti, F.; Mazzoni, R.; Salmi, M.; Zacchini, S.; Zanotti, V., J. Organomet. Chem. 2008, 693, 2383-2391.
99.Gennari, M.; Orio, M.; Pecaut, J.; Bothe, E.; Neese, F.; Collomb, M. N.; Duboc, C., Inorg. Chem. 2011, 50, 3707-16.
100.Gennari, M.; Pecaut, J.; DeBeer, S.; Neese, F.; Collomb, M. N.; Duboc, C., Angew. Chem. Int. Ed. 2011, 50, 5662-6.
101.Gennari, M.; Retegan, M.; DeBeer, S.; Pecaut, J.; Neese, F.; Collomb, M. N.; Duboc, C., Inorg. Chem. 2011, 50, 10047-55.
102.Gennari, M.; Pecaut, J.; Collomb, M. N.; Duboc, C., Dalton trans. 2012, 41, 3130-3133.
103.Grapperhaus, C. A.; Poturovic, S., Inorg. Chem. 2004, 43, 3292-3298.
104.Musie, G.; Reibenspies, J. H.; Darensbourg, M. Y., Inorg. Chem. 1998, 37, 302-310.
105.Bleeke, J. R.; Shokeen, M.; Wise, E. S., Organometallics 2006, 25, 2486-2500.
106.Maryanne McKenna; Laura L. Wright; Douglas J. Miller; Linnea Tanner; R. C. Haltiwanger; DuBois, M. R., J. Am. Chem. Soc. 1983, 105, 5329-5331.
107.Sono, M.; Roach, M. P.; Coulte, E. D.; Dawson, J. H., Chem. Rev. 1996, 96, 2841-2887.
108.Stubbe, J.; Donk, W. A. v. d., Chem. Rev. 1998, 98, 705-762.
109.Whittaker, J. W., Chem. Rev. 2003, 103, 2347-2363.
110.Groves, J. T.; Haushalter, R. C.; Nakamura, M.; Nemo, T. E.; Evans, B. J., J. Am. Chem. Soc. 1981, 103, 2884-2886.
111.Fujii, H., Coord. Chem. Rev. 2002, 226, 51-60.
112.Hsieh, C.H.; Hsu, I.J.; Lee, C.M.; Ke, S.C.; Wang, T.Y.; Lee, G.H.; Wang, Y.; Chen, J.M.; Lee, J.F.; Liaw, W.F., Inorg. Chem. 2003, 42, 3925-3933.
113.Springs, J.; Janzen, C. P.; Darensbourg, M. Y.; Calabrese, J. C.; Krusic, P. J.; Verpeaux, J. e.-N.; Amatore, C., J. Am. Chem. Soc. 1990, 112, 5789-5797.
114.Branscombe, N. D. J.; Atkins, A. J.; Marin-Becerra, A.; McInnes, E. J. L.; Mabbs, F. E.; McMaster, J.; Schröder, M., Chem. Commun. 2003, 1098-1099.
115.Giles, N. M.; Giles, G. I.; Jacob, C., Biochem. Biophys. Res. Commun. 2003, 300, 1-4.
116.Stubbe, J.; Nocera, D. G.; Yee, C. S.; Chang, M. C. Y., Chem. Rev. 2003, 103, 2167-2201.
117.Poturovic, S.; Mashuta, M. S.; Grapperhaus, C. A., Angew. Chem. Int. Ed. 2005, 44, 1883-7.
118.Ouch, K.; Mashuta, M. S.; Grapperhaus, C. A., Inorg. Chem. 2011, 50, 9904-9914.
119.Grapperhaus, C. A.; Kozlowski, P. M.; Kumar, D.; Frye, H. N.; Venna, K. B.; Poturovic, S., Angew. Chem. Int. Ed. 2007, 46, 4085-4088.
120.Ouch, K.; Mashuta, M. S.; Grapperhaus, C. A., Eur. J. Inorg. Chem. 2012, 475-478.
121.Lizano, A. C.; Munchhof, M. G.; Haub, E. K.; Noble, M. E., J . Am. Chem. Soc. 1991, 113, 9204-9210.
122.Chang, Y. H.; Su, C. L.; Wu, R. R.; Liao, J. H.; Liu, Y. H.; Hsu, H. F., J . Am. Chem. Soc. 2011, 133, 5708-11.
123.Claiborne, A.; Yeh, J. I.; Mallett, T. C.; Luba, J.; Crane, E. J.; Charrier, V. R.; Parsonage, D., Biochemistry 38, 15407-15416.
124.Rizalia M. Buonomo; Ivan Font; Michael J. Maguire; Joseph H. Reibenspies; Thawatchai Tuntulani; Darensbourg, M. Y., J. Am. Chem. Soc. 1995, 117, 963-973.
125.Hsu, H.F.; Su, C.L.; Gopal, N. O.; Wu, C.C.; Chu, W.C.; Tsai, Y.F.; Chang, Y.H.; Liu, Y.H.; Kuo, T.S.; Ke, S.C., Eur. J. Inorg. Chem. 2006, 1161-1167.
126.Chu, W.C.; Wu, C.C.; Hsu, H.F., Inorg. Chem. 2006, 45, 3164-3166.
127.Charles R. Cornman; Thad C. Stauffer; Boyle, P. D., J. Am. Chem. Soc. 1997, 119, 5986-5987
128.Nanda, K. K.; Sinn, E.; Addison, A. W., Inorg. Chem. 1996, 35, 1-2.
129.Hawker, P. N.; Timms, P. L., J. Chem. Soc., Dalton Trans. 1983, 1123.
130.Block, E.; Ofori-Okai, G.; Zubieta, J., J. Am. Chem. Soc. 1989, 111, 2327-2329.
131. 陳咨佐(2010),「釩硫化合物配位基上的反應活性之探討」,國立成功大學化學研究所碩士論文。
132. 張雅合(2011) ,「與生物系統相關的釩硫和鐵硫化學」,國立成功大學化學研究所碩士論文。


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top