跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/06 01:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳佩汶
研究生(外文):Pooi-MunChan
論文名稱:新一代磷硫四芽配位基的開發:合成與鑒定
論文名稱(外文):Development of tetradendate thiolatophosphine ligands:Syntheses and characterization of dithiolate-diphosphine ligands
指導教授:許鏵芬
指導教授(外文):Hua-Fen Hsu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:68
中文關鍵詞:多硫配位基P2S2配位基
外文關鍵詞:sulfur-rich ligandP2S2 ligand
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
多硫配位環境在許多金屬催化酵素,例如固氮酵素, 氫化酶和CO脫氫酶的活化中心中皆扮演重要的角色。於是,化學家合成具有多硫配位環境的低分子量生物模擬化合物來瞭解金屬在金屬催化酵素中所扮演的角色。有一些研究着重在探討可以鍵結及活化一些小分子如酵素的基質,中間體或產物的含硫金屬化合物。
我們實驗室也根據這種研究背景,利用硫磷配位基,例如PS3配位基合成生物模擬化合物。在這個研究中,我們設計及合成新的四配位硫磷配位基,P2S2配位基,並且利用各種物理方法,如x-ray結晶學,光譜學,元素分析法和電噴灑游離質譜去做鑒定。
與PS3配位基相比,P2S2配位基具有兩個相同取代基的不對稱中心磷原子,可以產生(R,R), (S,S)和內消旋化合物[meso(R,S or S,R)]三種結構異構物。經由x-ray結構測定,所得之P2S2和P2S2’配位基皆是內消旋化合物(meso)。而P2S2’’配位基,尚未得到其X-ray結構,但是我們利用核磁共振光譜,紅外光光譜和電噴灑游離質譜去做鑒定。

Sulfur-dominated coordination sphere plays a key role in the active sites of many metalloenzymes such as nitrogenase, hydrogenase and CO dehydrogenase. This inspires chemists to synthesize low-molecular-weight model complexes with the sulfur-rich ligating environment for the purpose of elucidating the roles of metals in these metalloenzymes. In particular, some of the research has been emphasized on explore metal-sulfur complexes that bind and activate small molecules, such as substrates, intermediates and products of enzymes.
Based on this background, our laboratory has utilized hybrid P/S ligand, such as tris(benzenethiolato)phosphine ligands (PS3) to develop biomimetic complexes. At this work, a new type of tetradendate hybrid P/S ligand, dithiolate-diphosphine ligand (P2S2) has been designed, synthesized and characterized by various physical methods such as X-ray crystallography, spectroscopies, elemental analysis and ESI-Mass analysis.
Compared to PS3 ligand system, P2S2 ligands possess two stereogenic P atoms which have equivalent substituents and can form a mixture of three types of stereoisomers: (R,R), (S,S) and meso isomers (R,S or S,R forms). The isolated P2S2 and P2S2’ ligand are identified as meso isomers by the X-ray structural analysis at this work. For the case of P2S2’’ ligand, the X-ray structure has not been determined, however, other analysis (NMR, IR and ESI-Mass analysis) has been taken.

Abstract I
中文摘要 II
Table of Contents IV
List of Schemes VI
List of Figures VIII
List of Tables X
Abbreviations XI

Chapter 1. Introduction 1
1-1 Metalloproteins containing sulfur-rich coordination sphere 1
1-2 Sulfur-rich ligand and related metal-sulfur complexes 3
1-2-1 S-only ligand system and related metal-sulfur complexes 3
1-2-2 Hybrid S/N ligand system and related metal-sulfur complexes 6
1-2-3 Hybrid S/P ligand system and related metal-sulfur complexes 12
1-3 Motivation 17

Chapter 2. Results and Discussion 18
2-1 The overall description of P2S2 ligands syntheses 18
2-2 Synthesis and characterization of 1,2-bis(phenylphosphinoethane) lithium salt [PhPCH2CH2PPh]Li2•(THF)4 19
Synthesis.. 19
NMR spectra. 20
2-3 Synthesis and characterization of 1,2-bis(chloro(phenyl)phosphino)ethane (ClPhPCH2CH2PPhCl) 22
Synthesis. 22
NMR spectra. 23
2-4 Synthesis and characterization of 2-(trimethylsilyl)benzenethiol 25
Synthesis. 25
NMR spectra.. 26
2-5 Synthesis and characterization of P2S2 ligand 27
Synthesis. 27
X-ray structure.. 28
NMR spectra. 32
IR spectrum. 36
Electrospray ionization mass spectra. 37
2-6 Synthesis and characterization of P2S2’ ligand 40
Synthesis. . 40
X-ray structure. 41
NMR spectra. 45
IR spectrum.. 49
Electrospray ionization mass spectra. 50
2-7 Synthesis and characterization of P2S2’’ ligand 53
Synthesis. 53
NMR spectra.. 54
IR spectrum. 56
Electrospray ionization mass spectrum. 57

Chapter 3. Conclusions 60

Chapter 4. Experimental and Instruments 61
General procedures 61
Synthesis 62
[PhPCH2CH2PPh]Li2•(THF)4 62
ClPhPCH2CH2PPhCl 62
2-trimethylsilyl-benzenethiol 62
P2S2 ligand 63
P2S2’ ligand 63
P2S2’’ ligand 64
X-ray Crystallographic Data Collection and Refinement of the structures 65
Elemental Analysis 65
Infrared Spectroscopy 65
Nucleic Magnetic Resonance Spectroscopy 65
Electrospray Ionization Mass Spectrometry ( ESI-MS ) 65

References 66

[1]a)D. Sellmann, J. Sutter, Acc. Chem. Res. 1997, 36, 460-469; b)D. Sellmann, J. Utz, N. Blum, F. W. Heinemann, Coord. Chem. Rev. 1999, 190-192, 607-627.
[2]D. Sellmann, T. Becker, F. Knoch, Chem. Ber. 1996, 129, 509-519.
[3]D. Sellmann, D. C. F. Blum, F. W. Heinemann, J. Sutter, Eur. J. Inorg. Chem. 2003, 418-426.
[4]D. Sellmann, D. C.F. Blum, F. W. Heinemann, Inorg. Chim. Acta 2002, 337, 1-10.
[5]a)D. Sellmann, A. Hennige, Angew. Chem. Int. Ed. Engl. 1997, 36, 276-278; b)D. Sellmann , A. Hennige, F. W. Heinemann, Inorg. Chim. Acta 1998, 280, 39-49.
[6]D. Sellmann, W. Soglowek, a. F. Knoch, a. G. Ritter, J. Dengler, Inorg. Chem. 1992, 31, 3711-3717.
[7]D. Sellmann, J. Utz, F. W. Heinemann, Inorg. Chem. 1999, 38, 459-466.
[8]D. Sellmann, J. Utz, F. W. Heinemann, Eur. J. Inorg. Chem. 1999, 341-348.
[9]a)D. Sellmann, J. Utz, F. W. Heinmann, Inorg. Chem. 1999, 38, 5314-5322; b)D. Sellmann, K. Engl, F. W. Heinemann, Eur. J. Inorg. Chem. 2000, 423-429; c)D. Sellmann, K. Hein, F. W. Heinemann, Eur. J. Inorg. Chem. 2004, 2004, 3136-3146.
[10]D. Sellmann, K. P. Peters, F. W. Heinemann, Eur. J. Inorg. Chem. 2004, 2004, 581-590.
[11]D. Sellmann, S. Y. Shaban, F. W. Heinemann, Eur. J. Inorg. Chem. 2004, 2004, 4591-4601.
[12]a)D. Sellmann, R. Ruf, F. Knoch, M. Moll, Z. Naturforsh., B: Chem. Sci. 1995, 50, 791-801; b)D. Sellmann, R. Ruf, F. Knoch, M. Moll, Inorg. Chem. 1995, 34, 4745-4755.
[13]a)A. Bruce, J. L. Corbin, P. L. Dahlstrom, J. R. Hyde, M. Minelli, E. I. Stiefel, J. T. Spence, J. Zubieta, Inorg. Chem. 1982, 21, 917-926; b)K. R. Barnard, M.Bruck, S. Huber, C. Grittini, J. H. Enemark, R. W. Gable, a. A. G. Wedd, Inorg. Chem. 1997, 36, 637-649; c)M. L. Mader, M. D. Carducci, J. H. Enemark, Inorg. Chem. 2000, 39, 525-531.
[14]D. Sellmann, W. Prechtel, F. Knoch, M. Moll, Z. Naturforsch., B: Chem. Sci. 1992, 47, 1411-1423.
[15]D. Sellmann, S. Emig, F. W. Heinemann, Angew. Chem. Int. Ed. Engl. 1997, 36, 1734-1736.
[16]S. Y. Shaban, Inorg. Chim. Acta 2011, 367, 212-216.
[17]W. Tsagkalidis, a. D. Rodewald, D. Rehder, Inorg. Chem. 1995, 34, 1943-1945.
[18]D.Y.Chi, S. R. Wilson, J. A. Katzenellenbogenh, Inorg. Chem. 1995, 34, 1624-1625.
[19]D. Sellmann, A. Hille, A. Rosler, F. W. Heinemann, M. Moll, G. Brehm, S. Schneider, M. Reiher, B. A. Hess, W. Bauer, Chem. Eur. J. 2004, 10, 820-830.
[20]D. Sellmann, B. Hautsch, A. Rösler, F. W. Heinemann, Angew. Chem. Int. Ed. Engl. 2001, 40, 8.
[21]D. Sellmann, A. Hille, F. W. Heinemann, M. Moll, A. Rosler, J. Sutter, G. Brehm, M. Reiher, B. A. Hess, S. Schneider, Inorg. Chim. Acta 2003, 348, 194-198.
[22]S. C. Davies, D. L. Hughes, R. L. Richards, J. R. Sanders, J. Chem. Soc., Dalton Trans. 2000, 719-725.
[23]a)S. C. Davies, D. L. Hughes, Z. Janas, L. Jerzykiewicz, R. L. Richards, J. R. Sanders, P. Sobota, Chem. Commun. 1997, 1261-1262; b)S. C. Davies, D. L. Hughes, Z. Janas, L. B. Jerzykiewicz, R. L. Richards, J. R. Sanders, J. E. Silverston, P. Sobota, Inorg.Chem. 2000, 39, 3485-3498.
[24]a)S. C. Davies, D.L. Hughes, R. L. Richards, J. R. Sanders, Chem. Commun. 1998, 2699-2700; b)S. C. Davies, M. C. Durrant, D. L. Hughes, R. L. Richards, J. R. Sanders, J. Chem. Soc., Dalton Trans. 2000, 4694-4701; c)S. C. Davies, D. L. Hughes, R. L. Richards, J. R. Sanders, J. Chem. Soc., Dalton Trans. 2002, 1442-1447; d)S. C. Davies, D. J. Evans, D. L. Hughes, M. Konkol, R. L. Richards, J. R. Sanders, P. Sobota, J. Chem. Soc., Dalton Trans. 2002, 2473-2482.
[25]L. D. Field, R. W. Guest, P. Turner, Inorg. Chem. 2010, 49, 9086-9093.
[26]S. Komiya, M. Akita, A. Yoza, N. Kasuga, A. Fukuoka, Y. Kai, J. Chem. Soc., Chem. Commun. 1993, 787.
[27]L. D. Field, H. L. Li, S. J. Dalgarno, P. Turner, Chem. Commun. 2008, 1680-1682.
[28]Justin L. Crossland, Lev N. Zakharov, D. R. Tyler, Inorg. Chem. 2007, 46, 10476-10478.
[29]A. Takaoka, N. P. Mankad, J. C. Peters, J. Am. Chem. Soc. 2011, 133, 8440-8443.
[30]S. F. Ye, F. Neese, A. Ozarowski, D. Smirnov, J. Krzystek, J. Telser, J. H. Liao, C. H. Hung, W. C. Chu, Y. F. Tsai, R. C. Wang, K. Y. Chen, H. F. Hsu, Inorg. Chem. 2010, 49, 977-988.
[31]C. Wei-Cheng, W. Chi-Chin, H. Hua-Fen, Inorg.Chem. 2006, 45, 3164-3166.
[32]H. Hua-Fen, C. Wei-Cheng, H. Chen-Hsiung, L. Ju-Hsiou, Inorg. Chem. 2003, 42, 7369-7371.
[33]K. Issleib, W. Gans, Z. Anorg. Allg. Chem 1982, 491, 163-174.
[34]R. Schmelzer, D. Schwarzenbach, Cryst. Struct. Commun. 1981, 10, 1317-1321.
[35]T. Kitagawa, M. Kita, K. Kashiwabara, J. Fujita, Bull. Chem. Soc. Jpn. 1991, 64, 2942-2947.
[36]K. Kashiwabara, Y. Ito, M. Kita, J. Fujita, K. Nakajima, J. Chem. Soc., Dalton Trans. 1997, 39-45.
[37]R. J. Long, D. J. Jones, V.C. Gibson, A. J. P. White, Organometallics 2008, 27, 5960-5967.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top