跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/04 19:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇煒林
研究生(外文):Wei-LinSu
論文名稱:基於軌域的解釋放光材料微調: 取代基的本質與其取代位置效應之特色
論文名稱(外文):Orbital-Based Rationalizations of Fine-Tuning of Luminescent Materials--The pi-Nature of Substituents and Their Site-Dependent Characteristics
指導教授:王小萍
指導教授(外文):Shao-Pin Wang
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:96
中文關鍵詞:藍色放光顏色調整位置效應軌域作用三價銥錯合物
外文關鍵詞:blue-emittingcolor-tuningsite-dependenceorbital interactionIr(III) complexes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:90
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
藉由線性組合鍵性軌域(LCBO)來分析甲基化的Ir(ppz)23iq (ppz=1-苯基吡唑而3iq=異喹啉-3-羧酸根)最高占有軌域(HOMO)及最低未占有軌域(LUMO),可以看出甲基C-H鍵結軌域(Sigma CH)及反鍵結軌域(Sigma*CH)對於錯合物HOMO及LUMO都有所貢獻。LCBO分析結果表明:藉由軌域作用,Sigma CH 升高HOMO 及LUMO 能量而且Sigma*CH 降低HOMO 及LUMO能量。在陽離子型錯合物Ir(ppy)2HDPA+(ppy=2-苯基吡啶而 HDPA=2,2’-二吡啶胺)中介於胺氮上的2p軌域孤對電子與錯合物HOMO/LUMO的Pi-型態軌域作用將會推升HOMO/LUMO能量(不管是在未配位的 HDPA或配位後的HDPA) 。相同地,導入氟進入Ir(ppy)2HDPA+,氟的2p軌域孤對電子也會經由與HOMO/LUMO軌域作用而推升HOMO/LUMO能量。升高HOMO(或LUMO)程度則與取代位置上HOMO(或LUMO)的碳成分(%C)呈正比。在單取代氟化的衍生物中,HOMO(或LUMO)的相對能量是由氟的2p軌域孤對電子推升效應來決定的,這可解釋取代位置效應之特色;氟化在%C高的位置將導致Pi的不穩定化作用與誘導效應可相互匹敵。除了對稱性限制已被放鬆,軌域作用的描述方式則與熟悉的配位場論類似: 較高能量的軌域經由軌域作用後能量將會被推升,而較低能量的軌域作用後能量會被拉低。結合氟的推升效應及硼(BMe2)的拉低效應對於Ir(ppy)2MDPA+ (MDPA=氮上甲基化的HDPA)的 HOMO/LUMO 將可給出CF3 軌域作用圖。推升效應由氟的2p軌域孤對電子提供;而拉低效應則由C-F反鍵結軌域(Sigma*CF)提供。既然兩種衝突的Pi效應幾乎抵銷,淨效應最好由拉電子能力(誘導效應)解釋。
Through analysis HOMO or LUMO formed by Linear Combination of Bond Orbitals (LCBO), in methylated Ir(ppz)23iq (ppz=1-phenylpyrazole and 3iq=isoquinoline-3-carboxylate), it is seen that both C-H bonding and antibonding (Sigma CH and Sigma*CH) of methyl contribute to HOMO/LUMO. LCBO analysis indicates that, through orbital interaction, Sigma CH destabilizes HOMO (or LUMO) and Sigma*CH stabilizes HOMO (or LUMO). In the cationic Ir(ppy)2HDPA+ complex (ppy=2,2’-phenylpyridine and HDPA=2,2’-dipyridyl amine) the Pi-type orbital interaction between nitrogen’s 2p-orbital, 2p(N), and HOMO/LUMO would push-up HOMO/LUMO (in either free HDPA or coordinated HDPA) even higher. Similar to the amino-nitrogen, fluoro can push up HOMO/LUMO through interaction with HOMO/LUMO as it is introduced to the Ir(ppy)2HDPA+ complex. The extents of destabilizing HOMO (or LUMO) are parallel to the value of %C of the carbon in HOMO (or LUMO) subjected to fluorination. The relative energies of HOMO (or LUMO) among the mono-fluorinated derivatives are governed by the pushing-up effects, which explains the site-dependent characteristics. Fluorination at carbon having larger %C leads to a Pi-destabilization more competitive with the inductive-stabilization. The orbital interaction described above is similar to the orbital interaction employed in the familiar ligand field theory (except that the symmetry-restriction is relaxed): the higher orbital is pushed still higher and the lower orbital is pressed even lower. Combination of the pushing-up effects of fluorination and pressing-down effects of BMe2-substituion on HOMO/LUMO of Ir(ppy)2MDPA+ (MDPA=N-methylated HDPA) gives the interaction diagram describing effects of CF3 on the levels of HOMO/LUMO. The pushing-up effects are exerted by 2p(F), while the pressing-down effects are exerted by Sigma*CF bond orbital. Since the two conflicting Pi-effects are nearly counterbalanced, the net results are well explained by its electron-withdrawing effects.
1. Introduction 1
1-1. Research background 1
1-2. Research goal 3
1-3. Research results 4
1-4. References 6
2. Theoretical Background 9
2-1. Negative hyperconjugation (NHC) 9
2-2. Localized molecular orbital (LMO) and the natural bond orbital (NBO) method 11
2-3. References 12
3. The Pi-Nature of Methyl Obtained by the Natural Bond Orbital Method: 13
3-1. Introduction 13
3-2. Results and 14
3-3. Conclusions 20
3-4. References 21
4. Two New Blue-Phosphorescent Ir(ppy)2 Derivatives: 27
4-1. Introduction 27
4-2. Experimental section 28
4-3. Results and discussions 33
4-4. Conclusions 38
4-5. References 39
5. Applications of Partial Density of States: 47
5-1. Introduction 48
5-2. Experimental section 49
5-3. Results 54
5-4. Discussions 58
5-5. Conclusions 66
5-6. References 68
6. Orbital-based Rationalizations of the Site-Dependent Characteristics 79
6-1. Introduction 80
6-2. Results and discussions 81
6-3. Conclusions 87
6-4. References 87
7. Conclusions 95
Chapter 1

1. Adachi, C.; Baldo, M. A.; Forrest, S. R. Burrows, P. E.; Thompson, M. E. Appl. Phys. Lett. 2000, 77, 904.
2. Tanayo, A. B.; Alleyne, B. D.; Djurovich, P. I.; Lammansky, S.; Tsyba, I., Ho, N. N.; Bau, R.; Thompson, M. E. J. Am. Chem. Soc. 2003, 125, 7377.
3. Yang, M. J.; Tsutsui, T. Jpn. Appl. Phys. 2000, 39, 828.
4. Wang, Y; Petrov, V. A.; Grushin, V. V. Pat. Appl. (Dupon) 2000
5. Grushin, V. V.; Herron, N.; LeCloux, D. D.; Marshall, W. J.; Petrov, V. A.; Wang, Y. Chem. Comm. 2001, 1494.
6. Ragni, R.; Plummer, E. A.; Brunner, K.; Hofstraat, J. W.; Babudri, F.; Farinola, G. M.; Naso, F.; De Cola, L. J. Mater. Chem. 2006, 16, 1161.
7. Avilov, I.; Minoofar, P.; Cornil, J.; De Cola, L. J. Am. Chem. Soc. 2007, 129, 8247.
8. Xiao, L.; Chen, Z.; Qu, B.; Luo, J.; Kong, S.; Gong, Q.; Kido, J. Adv. Mater. 2011, 23, 926.
9. He, L.; Duan, L.; Qiao, J.; Wang, R.; Wei, P.; Wang, L.; Qiu Y. Adv. Funct. Mater. 2008, 18, 2123.
10. Irfan, A.; Cui, R.; Zhang, J.; Hao, L. Chem. Phys. 2009, 364, 39.
11. Shi, M. M.; Lin, J. J.; Shi, Y. W.; Ouyang, M.; Wang, M.; Chen, H. Z. Mater. Chem. Phys. 2009, 115, 841.
12. Shi, Y. W.; Shi, M. M.; Huang, J. C.; Chen, H. Z.; Wang, M.; Liu, X. D.; Ma, Y. G.; Xu, H.; Yang, B. Chem. Comm. 2006, 1941.
13. Kwon, T. H.; Cho, H. S.; Kim, M. K.; Kim, J. W.; Kim, J. J.; Lee, K. H.; Park, S. J.; Shin, I. S.; Kim, H. D.; Shin, M.; Chung, Y. K.; Hong, J. I. Organometallics 2005, 24, 1578.
14. (a) Lammansky, S.; Djurovich, P. I., Murphy, D.; Adbel-Razzaq, F.; Lee, H. E.; Adachi, C.; Burrows, P. E.; Forrest, S.; Thompson, M. E. J. Am. Chem. Soc. 2001, 123, 4304. (b) Li, J.; P. I. Diurovich, Djurovich, P. I.; Alleyne, B. D.; Tsyba, I.; Ho, N. N.; Bau, R.; Thompson, M. E. Polyhedron 2004, 23, 419. (c) Lu, W.; Mi, B. X.; Chan, M. C. W.; Hui, Z.; Che, C. M.; Zhu, N.; Lee, S. T. J. Am. Chem. Soc. 2004, 126, 4958.
15. Ching, C. S.; Eum, M. S.; Kim, S. Y.; Kim, C.; Kang, S. K. Eur. J. Inorg. Chem. 2007, 372.
16. Takizawa, S. Y.; Echizen, H.; Nishida, J. I.; Tsuzuki, T.; Tokito, S.; Yamashita, Y. Chem. Lett, 2007, 7, 748.
17. (a) Nazeenrudin, M. K.; Wegh, R. T.; Zhou, Z.; Klein, C.; Wang, Q.; De Angelis, F.; Fantacci, S.; Gratze, M. Inorg. Chem. 2006, 45, 9245. (b) Ladouceur, S.; Fortin, D.; Zysman-Colman, E. Inorg. Chem. 2010, 49, 5625. (c) Xu, M. L.; Zhou, R.; Wang, G. Y.; Xiao, Q.; Du, W. S.; Che, G. B. Inorg. Chim. Acta 2008, 361, 2407.
18. Tseng, M. C.; Su, W. L.; Yu, Y. C.; Wang, S. P.; Huang, W. L. Inorg. Chim. Acta 2006, 359, 4144.
19. Carey, F. A.; Sundberg, R. J. “Advanced Organic Chemistry, Part A: Structure and Mechanisms Springer, 2007, ISBN: 978-0-387-44897-8.
20. Naumov, P.; Kochunnoonny, M. J. Am. Chem. Soc. 2010, 132, 11566.

Chapter 2

1. For a general descrptions of negative hyperconjugation see: P. v. R. Schleyer Kos, A. J. Tetrahedron 1983, 39, 1141 and references cited therein.
2. Brockway, L. O. J. Phys. Chem. 1937, 41, 185.
3. Roberts, J. D.; Webb, R. L.; McElhill, E. A. J. Am. Chem. Soc. 1950, 72, 408.
4. (a) Radom, R.; Hoffmann, L.; Pople, J. A.; Schleyer, P. v. R.; Hehre, W. J.; Salem, L. J. Am. Chem. Soc. 1972, 94, 622. (b) P. v. R. Schleyer Kos, A. J. Tetrahedron 1983, 39, 1141. (c) Schleyer, P. v. R. Jemmis, E. D.; Spitznagel, G. W. J. Am. Chem. Soc. 1985, 107, 6393.(d) Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. Soc. 1987, 109, 7362. (e) Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. Soc. 1990, 112, 1434. (f) Salzner, U.; Schleyer, P. v. R. Chem. Phys. Lett. 1992, 190, 401. (g) Friedman, D. S.; Francl, M. M.; Allen, L. C. Tetrahedron 1985, 41, 499. (h) Rablen, P. R.; Hoffmann, R. W.; Hrovat, D. A.; Borden, W. T. J. Chem. Soc. Perkin Trans. 1999, 2, 1719.
5. Levine, I. N. “Physical Chemistry, McGraw-Hill, 1978. ISBN 0-07-037418-X
6. Reed, A. E.; Curtiss, L. A. Weinhold, F. Chem. Rev. 1988, 88, 899.

Chapter 3

1. Reed, A. E.; Curtiss, L. A. Weinhold, F. Chem. Rev. 1988, 88, 899.
2. Weinhold, F. Nature 2001, 411, 539.
3. Pophristic, V.; Goodman, L. Nature 2001, 411, 565.
4. Alabugin, V.; Manoharan, M.; Peabody, S.; Weinhold F. J. Am. Chem. Soc. 2003, 125, 5973.
5. Lee, H.Y.; Wang, S. P.; Chang, T. C. Int. J. Quantum Chem. 2001, 81, 53.
6. Hsu, W. Y.; Lee, H.Y.; Wang, S. P.; Chang, T. C. J. Chin. Chem. Soc. 2007, 54, 1463.
7. Hsu, W. Y.; Lee, H.Y.; Wang, S. P.; Chang, T. C. J. Chin. Chem. Soc. 2008, 55, 97.
8. Su, W. L.; Huang, H. P.; Chen, W. T.; Hsu, W. Y.; Chang, H.Y.; Ho, S. Y. Wang, S. P.; Shyu, S. G. J. Chin. Chem. Soc. 2011, 58, 163.
9. Kwon, T. H.; Cho, H. S.; Kim, M. K.; Kim, J. W.; Kim, J. J.; Lee, K. H.; Park, S. J.; Shin, I. S.; Kim, H. D.; Shin, M.; Chung, Y. K.; Hong, J. I. Organometallics 2005, 24, 1578.
10. Xiao, L.; Chen, Z.; Qu, B.; Luo, J.; Kong, S.; Gong, Q.; Kido, J. Adv. Mater. 2011, 23, 926.
11. Montes, V. A.; Pohl, R.; Shinar, J.; Anzenbacher, Jr. P. Chem. Eur. J. 2006, 12, 4523.
12. Shi , Y. W.; Shi , M. M.; Huang , J. C.; Chen , H. Z.; Wang , M.; Liu , X. D.; Ma , Y. G.; Xu, H.; and Yang, B. Chem. Commun., 2006, 18, 1941.
13. Shi, M. M.; Lin, J. J.; Shi, Y. W.; Ouyang, M.; Wang, M.; Chen, H. Z. Mater. Chem. Phys., 2009, 115, 841.
14. The slightly higher %*CH, as well as %CH3, obtained for I6’ (compared to I4) is attributed to the additional CH(pz-ring)*CH donor-acceptor hyperconjugative interaction obtained by the second-order perturbation energy (E2) analysis within the NBO approach.
15. (a) Becke, A.D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang, W.; Parr, R.G. Phys. Rev. B 1988, 37, 785.
16. Frisch, M. J. et al., Gaussian 98 Revision A.11, Gaussian, Inc., Pittsburgh, PA, 2001.
17. The DFT/B3LYP calculations have been performed on all compounds under studies to obtained canonical wavefunctions. The NBO calculations (version 5.0) have then been performed to extract bond orbitals (BOs), from which the canonical MOs expressed by linear combination of BOs (LCBO-MOs) can be obtained. All calculations, using basis sets LanL2DZ for metal and 6-31G* for other atoms, have been carried out by using Gaussian 98 package.
18. Mohan, J. Organic spectroscopy: principles and applications; Narosa Publishing House: India, 2001; 3, 165.
19. For reviews see: Schneider, W. F.; Nance, B. I.; Wallington, T. J.; J. Am. Chem. Soc. 1995, 117, 478. and references cited there
20. (a) Ragni ,R.; Plummer, E. A.; Brunner, K.; Hofstraat, J. W.; Babudri, F.; Farinola, G. M.; Naso, F.; De Cola, L. J. Mater. Chem. 2006, 16, 1161. (b) Avilov, I.; Minoofar, P.; Cornil, J.; De Cola, L. J. Am. Chem. Soc. 2007, 129, 8247.

Chapter 4

1. Xiao, L.; Chen, Z.; Qu, B.; Luo, J.; Kong, S.; Gong, Q.; Kido, J. Adv. Mater. 2011, 23, 926.
2. Grushin, V. V.; Herron, N.; LeCloux, D. D.; Marshall, W. J.; Petrov, V. A.; Wang, Y. Chem. Comm. 2001, 1494.
3. Tamayo, A. B.; Alleyne, B. D.; Djurovich, P. I.; Lamansky, S.; Tsyba, I; HO, N. N.; Bau, R; Thompson, M. E. J. Am. Chem. Soc. 2003, 125, 7377.
4. Ragni, R.; Plummer, E. A.; Brunner, K.; Hofstraat, J. W.; Babudri, F.; Farinola, G. M.; Naso, F.; De Cola L. J. Mater. Chem. 2006, 16, 1161.
5. Tseng, M. C.; Su, W. L.; Yu, Y. C.; Wang, S. P.; Huang, W. L. Inorg. Chim. Acta 2006, 359, 4144.
6. Rai, V. K.; Nishiura, M.; Takimoto, M.; Hou, Z. Chem. Comm. 2011, 47, 5726.
7. Xu, M.; Zhou, R.; Wang, G.; Xiao,Q.; Du,W.; Che, G. Inorg. Chim. Acta 2008, 361, 2407.
8. Ohsawa, Y. Sprouse, S.; King, A. K.; Dearmond, M. K.; Hanck, K. W.; Watts, R. J. J. Phys. Chem. 1987, 91, 1047.
9. Wu, L. L.; Yang, C. H.; Sun, I. W.; Chu, S. Y.; Kao, P. C.; Huang, H. H. Organometallics 2007, 26, 2017.
10. Adamo, C.; Barone, V. Chem. Phys. Lett. 1997, 274, 242.
11. Frisch, M. J. et al., Gaussian 98 Revision A.11, Gaussian, Inc., Pittsburgh, PA, 2001.
12. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270.
13. Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. J. Chem. Phys. 1998, 108, 4439.
14. O'Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. J. Comp. Chem. 2008, 29, 839.
15. Su, W. L.; Yu, Y. C.; Tseng, M. C.; Wang, S. P.; Huang, W. L. Dalton Trans. 2007, 3440.
16. Ching, C. S.; Eum, M. S.; Kim, S. Y.; Kim, C.; Kang, S. K. Eur. J. Inorg. Chem. 2007, 372.
17. Shi, M. M.; Lin, J. J.; Shi, Y. W.; Ouyang, M.; Wang, M. ; Chen, H. Z. Mater. Chem. Phys. 2009, 115, 841.
18. (a) Irfan, A.; Zhang, J. Theor. Chem. Acc. 2009, 124, 339. (b) Irfan, A.; Cui, R.; Zhang, J.; Hao, L. Chem. Phys. 2009, 364, 39.
19. W.L. Su, C.C. Wang and S.P. Wang “The Pi-Nature of Methyl Obtained by the Natural Bond Orbital Method: Orbital-Based Rationalizations of Site-Dependent Substitution Effects on Fine Color-Tuning of Luminescence“(in press, J. Chin. Chem. Soc. communication).
20. Heiskanen, J. P.; Hormi, O. E. O. Tetrahedron 2009, 65, 8244.
21. Tseng, M. C.; Li, F. K.; Huang, J. H.; Su, W. L.; Wang, S. P. Huang, W. L. Inorg. Chim. Acta 2006, 359, 401.


Chapter 5

(a) P. J. Steel, J. Organomet. Chem., 1991, 408, 395; (b) F. O. Garces, K. A. King, R. J. Watts, Inorg. Chem., 1988, 27, 3464; (c) C. Arz, P. S. Pregosin, C. Anklin, Magn. Reson. Chem., 1987, 25, 158; (d) A. Zilian, U. Maeder, A. von Zelewsky, H. U. Gudel, J. Am. Chem. Soc., 1989, 111, 3855; (e) U. Mäder, T. Jenny, A. von Zelewsky, Helv. Chim. Acta, 1986, 69, 1085.
2 S. Sprouse, K. A. King, P. J. Spellane, R. J. Watts, J. Am. Chem. Soc., 1984, 106, 6647.
3 Y. Ohsawa, S. Sprouse, A. K. King, M. K. Dearmond, K. W. Hanck, R. J. Watts, J. Phys. Chem., 1987, 91, 1047.
4 (a) V. Balzani, F. Bolletta, M. Ciano, M. Maestri, J. Chem. Educ. 1983, 60, 447; (b) V. Balzani, F. Bolletta, Comments Inorg. Chem., 1983, 2, 211.
5 (a) P. H. Reveco, J. H. Medley, A. R. Garber, N. S. Bhacca, J. Sebin, Inorg. Chem., 1985, 24, 1096; (b) E. C. Constable, J. M. Holmes, J. Organomet. Chem., 1986, 301, 203; (c) D. Sandrini, M. Maestri, M. Ciano, U. Maeder, A. Von Zelewsky, Helv. Chim. Acta, 1990, 73, 1306; (d) M. Maestri, D. Sandrini, V. Balzani, U. Maeder, A. von Zelewsky, Inorg. Chem., 1987, 26, 1323; (e) F. Barigelletti, D. Sandrini, M. Maestri, V. Balzani, A. von Zelewsky, L. Chassot, P. Jolliet, U. Maeder, Inorg. Chem., 1988, 27, 3644; (f) M. G. Colombo, A. Zilian, H. U. Güdel, J. Am. Chem. Soc., 1990, 112, 4581; (g) A. Zilian, H. U. Güdel, Inorg. Chem., 1992, 31, 830; (h) C. Giesbergen, M. Glasbeek, J. Phys. Chem., 1993, 97, 9942; (i) J. H. van Dimen, R. Hage, J. G. Haasnoot, H. E. B. Lempers, J. Reedijk, J. G. Vos, L. D. Cola, F. Barigelletti, V. Balzani, Inorg. Chem., 1992, 31, 3518; (j) E. C. Constable, T. A. Leese, D. A. Tocher, Polyhedron, 1990, 9, 1613; (k) S. Campagna, S. Serroni, A. Juris, M. Venturi, V. Balzani, New J. Chem., 1996, 20, 773.
6 (a) J. H. van Diemen, J. G. Haasnoot, R. Hage, J. Reedijk, J. G. Vos, Inorg. Chem., 1991, 30, 4038; (b) G. Calogero, G. Giuffrida, S. Serroni, V. Ricevuto, S. Campagna, Inorg. Chem., 1995, 34, 541.
7 J. L. Kisko, J. K. Barton, Inorg. Chem., 2000, 39, 4942.
8 U. Maeder, A. von Zelewsky, H. Stoeckli-Evans, Helv. Chim. Acta, 1992, 75, 1320.
9 G. Frei, A. Zillan, A. Raselli, H. U. Güdel, H. Bürgi, Inorg. Chem., 1992, 31, 4766.
10 D. Sandrini, M. Maestri, V. Balzani, U. Maeder, A. von Zelewsky, Inorg. Chem., 1988, 27, 2640.
11 P. Didier, I. Ortmans, A. K. Mesmaeker, R. J. Watts, Inorg. Chem., 1993, 32, 5239.
12 M. G. Colombo, T. C. Brunold, T. Riedener, H. U. Güdel, Inorg. Chem., 1994, 33, 545.
13 L. Ghizdavu, O. Lentzen, S. Schumm, A. Brokdorb, C. Moucheron, A. K. Mesmaeker, Inorg. Chem., 2003, 42, 1935.
14 (a) M. Maestri, D. Sandrini, V. Balzani, L. Chassot, P. Jolliet, A. von Zelewsky, Chem. Phys. Lett., 1985, 122, 375; (b) P. Reveco, R. H. Schmehl, W. R. Cherry, F. R. Fronczek, J. Selbin, Inorg. Chem., 1985, 24, 4078.
15 W. L. Huang, J. R. Lee, S. Y. Shi, C. Y. Tsai, Transit. Met. Chem., 2003, 28, 381.
16 (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648. (b) J. P. Perdew, Y. Wang, Phys. Rev. B, 1992, 45, 13244.
17 M. J. Frisch, et al., Gaussian 98 Revision A.11, Gaussian, Inc., Pittsburgh, PA, 2001.
18 P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270.
19 (a) R.E. Stratmann, G. E. Scuseria, M. J. Frisch, J. Chem. Phys., 1998, 109 8218. (b) R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Letters, 1996, 256, 454. (c) M. E. Casida,C. Jamorski, K. C. Casida, D. R. Salahub, J. Chem. Phys., 1998, 108, 4439.
20 (a) P. J. Hay, J. Phys. Chem. A 2002, 106,1634. (b) M. Polson, S. Fracasso, V. Bertolasi, M. Ravaglia and F. Scandola, Inorg. Chem. 2004, 43, 1950.
21 Noel M. O'Boyle, Johannes G. Vos, GaussSum 1.0, Dublin City University, 2005. Available at http://gausssum.sourceforge.net.
22 K. Dedeian, J. Shi, N. Shepherd, E. Forsythe, D. C. Morton, Inorg. Chem., 2005, 44, 4445.
23 M. C. Tseng, W. L. Su, Y. C. Yu, S. P. Wang, W. L. Huang, Inorg. Chim. Acta, 2006, 359, 4144.
24 D. E. Morris, Y. Ohsawa, D. P. Segers, M. K. Dearmond, Inorg. Chem., 1984, 23, 3010.
25 (a) K. K. -W. Lo, C. -K. Chung, N. Zhu, Chem. Eur. J., 2003, 9, 475 (b) K. K. -W. Lo, C. -K. Li, K. -W. Lau, N. Zhu, Dalton Trans., 2003, 4682 (c) Q. Zhao, S. Liu, C. Wang, M. Yu, L. Li, F. Li, T. Yi, C. Huang, Inorg. Chem. 2006, 45, 6152.
26 M. Busby, P. Matousek, M. Towrie, lan P. Clark, M. Motevalli, F. Hartl, Vlček, A., Jr., Inorg. Chem., 2004, 43, 4523.

Chapter 6

1. Xiao, L.; Chen, Z.; Qu, B.; Luo, J.; Kong, S.; Gong, Q.; Kido, J. Adv. Mater. 2011, 23, 926.
2. He, L.; Duan, L.; Qiao, J.; Wang, R.; Wei, P.; Wang, L.; Qiu Y. Adv. Funct. Mater. 2008, 18, 2123.
3. Grushin, V. V.; Herron, N.; LeCloux, D. D.; Marshall, W. J.; Petrov, V. A.; Wang, Y. Chem. Comm. 2001, 1494.
4. Irfan, A.; Cui, R.; Zhang, J.; Hao, L. Chem. Phys. 2009, 364, 39.
5. Shi, M. M.; Lin, J. J.; Shi, Y. W.; Ouyang, M.; Wang, M.; Chen, H. Z. Mater. Chem. Phys. 2009, 115, 841.
6. Shi, Y. W.; Shi, M. M.; Huang, J. C.; Chen, H. Z.; Wang, M.; Liu, X. D.; Ma, Y. G.; Xu, H.; Yang, B. Chem. Comm. 2006, 1941.
7. Carey, F. A.; Sundberg, R. J. “Advanced Organic Chemistry, Part A: Structure and Mechanisms Springer, 2007, ISBN: 978-0-387-44897-8.
8. O'Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. J. Comp. Chem. 2008, 29, 839.
9. Wei-Ting Chen, Wei-Lin Su, Cheng-Chi Wang, and Shao-Pin Wang; “Pi-neutral Nature of a CF3 Group Obtained by the Natural Bond Orbital Method: Clarification of the Color-Tuning Effects and of the Hyperconjugation of a Methyl Group Unpublished results
10. P. v. R. Schleyer Kos, A. J. Tetrahedron 1983, 39, 1141.
11. Zhou, G. J.; Ho, C. L.; Wong, W. Y.; Wang, Q.; Ma, D.; Wang, L.; Lin, Z.; Marder, T. B.; Beeby, A. Adv. Funct. Mater. 2008, 18, 499.
12. Zhou, G.; Wang, Q.; Wang, X.; Ho, C. L.; Wong, W. Y.; Ma, D.; Wang, L.; Lin, Z. J. Mater. Chem. 2010, 20, 7442.
13. Ragni, R.; Plummer, E. A.; Brunner, K.; Hofstraat, J. W.; Babudri, F.; Farinola, G. M.; Naso, F.; De Cola, L. J. Mater. Chem. 2006, 16, 1161.
14. Avilov, I.; Minoofar, P.; Cornil, J.; De Cola, L. J. Am. Chem. Soc. 2007, 129, 8247.
15. (a) Radom, R.; Hoffmann, L.; Pople, J. A.; Schleyer, P. v. R.; Hehre, W. J.; Salem, L. J. Am. Chem. Soc. 1972, 94, 622. (b) Schleyer, P. v. R. Jemmis, E. D.; Spitznagel, G. W. J. Am. Chem. Soc. 1985, 107, 6393.(c) Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. Soc. 1987, 109, 7362. (d) Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. Soc. 1990, 112, 1434. (e) Salzner, U.; Schleyer, P. v. R. Chem. Phys. Lett., 1992, 190, 401. (f) Friedman, D. S.; Francl, M. M.; Allen, L. C. Tetrahedron 1985, 41, 499. (g) Rablen, P. R.; Hoffmann, R. W.; Hrovat, D. A.; Borden, W. T. J. Chem. Soc. Perkin Trans. 1999, 2, 1719.
16. Naumov, P.; Kochunnoonny, M. J. Am. Chem. Soc. 2010, 132, 11566.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top