跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/07/31 20:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐崇益
研究生(外文):Chung-YiHsu
論文名稱:光學生化感測器之分子模版選擇性探討與藍光有機材料開發應用
論文名稱(外文):Studies on the Selectivity of Molecular Imprinted Polymer for Optical Modulated Biosensing System/Development and Applications of Organic Blue Emitter Materials
指導教授:黃守仁黃守仁引用關係
指導教授(外文):Thou-Jen Whang
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:120
中文關鍵詞:微感測分子模版交鏈結合單體聚合物核糖核酸酵素磁性奈米粒子乙烯結合乙烯醇之聚合物酪氨酸苯丙胺酸純度昇華共觸媒二苯基二氧噻吩晶核藍色放光材料分子價電傳導咔唑電洞傳送層推、拉電子集團
外文關鍵詞:Microcontact imprinting polymersCross-linking monomersRibonucleaseMagnetic nanoparticlesPoly(ethylene-co-vinyl alcohol)tyrosinephenylalaninepuritysublimationco-catalyticdibenzothiophene-SS-dioxidecrystal latticeblue emittersmolecular charge transfercarbazolehole transfer layerdonor – acceptor group
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
針對發展腫瘤標記之可攜帶式光學生化感測系統檢測器,著眼研發其腫瘤偵測之高選擇性與感應極佳之分子模版,利用微卡計、理論計算以及物理合成多項技術來替目標分子篩選適切單體聚合物,在含有體積百分濃度20 vol%的功能性單體苯乙烯與交聯劑混合而成之分子模版,其再結合時可獲得較高的目標分子選擇性,另外包覆乙烯結合乙烯醇之聚合物之磁性奈米球,在聚合物之重量百分濃度0.25wt%以及目標分子適性篩選聚合物之莫耳百分比單量,也可獲得具有較高選擇性之分子模版,兩者皆可將它應用於臨床樣品檢測並引領至微感測技術之發展。而發展有機光激發光二極體元件做為生醫感測器之激發源,首先,藉由鈀觸媒之鈴木耦合共觸媒反應,來提昇主產物產率至85%和降低副產物衍生;另外為了捨棄使用溶劑相之管柱層析進行純化方法,而是利用一非溶劑相且快速進行純化生成物之垂直式石英管真空熱昇華分離系統,除了適用於製成元件材料外,也進一步使材料形成單晶之捷徑方法;最後以二苯基二氧噻吩以及咔唑為主幹合成之螢光寡聚衍生物,進行研究推、拉電子集團間的相互關係,而其推電子能力依序為甲氧基芳基苯、咔唑、芴和芳基胺,且其衍生物之光物理性質與單晶x射線繞射分析用於改善放射光源導因和辨識結構敏感性之評估,進而得到適其所用之激發材料。
“Portable Optical Modulated Sensing System for Tumor Markers Detection” has been developed and presented since the first decade of the 21st century, it focuses on the development of the highly selective and highly sensitive molecular imprinted polymer sensors for tumor detection. In this subproject; several techniques; e.g. isothermal titration, computational study, physical synthesis, etc. were employed to find the suitable monomer for the target molecules such as proteins or amino acids. We found the composition of containing 20vol% of styrene in the template possess higher selectivity of rebinding RNase A, and step up 0.25wt% with Poly(ethylene-co-vinyl alcohol) (EVAL) of the molecularly imprinting nanoparticles which was more effective when using EVAL mole% ethylene for rebinding target. It would be the testing of real samples and lead to a further development of the microcontact technique, and to a better understanding of the interaction between targets and polymers. Furthermore, it is aimed for developing organic light emitting diodes (OLED) devices as the light source for the biomedical sensor. The yield of palladium-catalyzed Suzuki coupling reaction has been increased to 85% and the amount of impurities has been reduced, it eliminates the need for the use of a solvent in the purification step. Then, the development of a fast purification system that involves a vertical quartz tube and vacuum sublimation for separation without dilution are presented. The system not only providing suitable materials for device applications, it also is appropriate for the growth of single crystal. Finally, fluorescent oligomers where the backbone of dibenzothiophene-S,S-dioxide or carbazole derivatives are described and the relationships of the donor and acceptor groups are also investigated, and donor efficiency was found in the increasing order of aryl methoxy, carbazole, fluorene and arylamine. The photo-physical properties of derivatives and single-crystal x-ray diffraction analysis both were estimated to improve the emitter source and to enhance the sensitivity.
Catalogue
摘要.......................................................I
Abstract..................................................II
Gratitude................................................III
Catalogue.................................................IV
Figure of Contents.......................................VII
Table of Contents.........................................XI
1 Preface............................................1
1.1 Motive for Studying................................1
1.2 Introduction.......................................6
1.2.1 Molecular Imprinting Technique (MIT)...............6
1.2.1.1 The protein template of MIP........................7
1.2.1.2 The amino acid template of NMIP....................8
1.2.1.3 Anticipated working................................9
1.2.2 Overview of OLED Display Technology...............11
1.2.2.1 Purification system with a vertically quartz-tube evaporation device........................................12
1.2.2.2 Palladium (Pd)-catalyzed coupling procedures......12
1.2.2.3 Fluorescent Oligomers of Dibenzothiophene S,S-dioxide Derivatives.......................................14
1.2.2.4 Carbazole fluorescent oligomers applied in the host materials.................................................14
1.2.2.5 Anticipated working...............................15
2 Experimental Method...............................20
2.1 Molecularly Imprinted Polymer.....................20
2.1.1 Chemicals and Materials...........................20
2.1.2 Preparation of RNase A-Imprinted Polymers.........21
2.1.3 Rebinding of RNase A..............................23
2.1.4 Microcalorimetry..................................23
2.1.5 Computing of the Interactions between RNase A and Monomers..................................................25
2.1.6 Atomic force microscopy of MIPs...................25
2.1.7 Formation of Magnetic Target-Imprinted Poly-(ethylene-co-ethylene alcohol) Composite Nanoparticles (MMIP)....................................................25
2.1.8 Emission of Template and Interfering molecules MMIP and MMIP Composite Particles..............................26
2.1.9 Size Distribution and Atomic Force Microscopy Image of MMIP Composite Particles...............................26
2.1.10 Surface Area, Magnetization and Raman Spectra Analysis of MMIP Composite Nanoparticles..................27
2.2 Organic Light-Emitting Device.....................28
2.2.1 Chemicals and Materials...........................28
2.2.2 Procedure: Palladium-Catalyzed Suzuki Coupling....28
2.2.3 Thermal Evaporator Purification System............34
2.2.4 2D-COSY spectra...................................35
2.2.5 Physical properties and optical measurements......36
2.2.6 Lifetime..........................................37
2.2.7 Electrochemistry..................................38
2.2.8 Theoretical Calculations..........................38
2.2.9 Device fabrication and measurement................38
3 Results and discussion............................40
3.1 Molecularly Imprinted Polymer.....................40
3.1.1 Rebinding of RNase A to MIPs / Rebinding of RNase A to poly(styrene-co-PEG400DMA) MIPs........................40
3.1.2 Heat Response of Isothermal Titration of Monomers to RNase A / Heat Response of Isothermal Titration of Proteins to RNase A-imprinted Polymers....................43
3.1.3 Selectivity of the Styrene-containing RNase A-imprinted Polymers........................................45
3.1.4 Atomic Force Microscopy of the RNase A-imprinted Polymers..................................................46
3.1.5 Minimize Energy of the RNase A and Monomers by Molecule Mechanical Simulation............................47
3.1.6 Rebinding of Target to MMIPs......................49
3.1.7 Size Distribution, Surface Area and Magnetization of MNIPs or MMIPs.........................................51
3.1.8 Selectivity of target molecule on the MMIPs.......54
3.2 Organic Light-Emitting Device.....................57
3.2.1 Synthesis of Materials............................57
3.2.2 Two-dimensional correlation spectroscopy..........59
3.2.3 Single-crystal X-ray analysis.....................64
3.2.4 Physical properties, thermal characterization and related efficiency........................................70
3.2.5 Lifetime, Electrochemistry and Theoretical Calculations..............................................83
3.2.6 Electroluminescence...............................87
4 Conclusion........................................91
5 Reference.........................................93
6 Appendix.........................................101
References
1Department of Heath (DOH), Executive Yuan, Taiwan, 2010
2 (a)Hsu, C. Y.; Lin, H. Y.; Thomas, J. L.; Wu, B. T.; Chou, T. C. Biosens. Bioelectron. 2006, 22, 355-363; (b)Lin, H. Y.; Hsu, C. Y.; Thomas, J. L.; Wang, S. E.; Chen, H. C.; Chou, T. C. Biosens. Bioelectron. 2006, 22, 534-543; (c)Ou, S. H.; Wu, M. C.; Chou, T. C.; Liu, C. C. Anal. Chim. Acta. 2004, 504, 163-166; (d)Sakanoue, K.; Motoda, M.; Sugimoto, M.; Sakaki, S. J. Phys. Chem. A 1999, 103, 5551-5556.
3Lin, H. Y.; Rick, J.; Chou, T. C. Biosens. Bioelectron. 2007, 22, 3293-3301.
4 (a)Chou, P. C.; Rick, J.; Chou, T. C. Anal. Chim. Acta. 2005, 542, 20-25; (b)Shiesh, S. C.; Chou, T. C.; Lin, X. Z.; Kao, P. C. J. Immunol. Methods 2006, 311, 87-95.
5 (a)Lin, T. Y.; Hu, C. H.; Chou, T. C. Biosens. Bioelectron. 2004, 20, 75-81; (b)Huang, C. J.; Lu, C. C.; Lin, T. Y.; Chou, T. C.; Lee, G. B. J. Micromech. Microeng. 2007, 17, 835-842; (c)Hu, C. H.; Chou, T. C. Microchim. Acta 2009, 165, 399-405.
6Hsu, C. Y.; Lin, H. Y.; Thomas, J. L.; Chou, T. C. Nanotechnology 2006, 17, S77-S83.
7Chang, S. S.; Hung, C. J.; Lin, Y. J.; Chou, T. C.; Chung, P. Y.; Lin, Y. S.; Lee, P. C. Transpl. P. 2012, 44, 248-253.
8 (a)Yoshimatsu, K.; Reimhult, K.; Krozer, A.; Mosbach, K.; Sode, K.; Ye, L. Anal. Chim. Acta. 2007, 584, 112-121; (b)Boonpangrak, S.; Whitcombe, M. J.; Prachayasittikul, V.; Mosbach, K.; Ye, L. Biosens. Bioelectron. 2006, 22, 349-354; (c)Yilmaz, E.; Ramstrom, O.; Moller, P.; Sanchez, D.; Mosbach, K. J. Mater. Chem. 2002, 12, 1577-1581; (d)Yu, C.; Mosbach, K. J. Mol. Recognit. 1998, 11, 69-74; (e)Liu, X. C.; Mosbach, K. Macromol. Rapid. Comm. 1998, 19, 671-674; (f)Kriz, D.; Kempe, M.; Mosbach, K. Sensor. Actuat. B-Chem. 1996, 33, 178-181; (g)Berglund, J.; Nicholls, I. A.; Lindbladh, C.; Mosbach, K. Bioorg. Med. Chem. Lett. 1996, 6, 2237-2242; (h)Ramstrom, O.; Nicholls, I. A.; Mosbach, K. Tetrahedron-Asymmetr. 1994, 5, 649-656.
9 (a)Su, W. X.; Rick, J.; Chou, T. C. Microchem. J. 2009, 92, 123-128; (b)Liu, C. Y.; Rick, J.; Chou, T. C.; Lee, H. H.; Lee, G. B. Biomed. Microdevices 2009, 11, 201-211; (c)Rick, J.; Chou, T. C. Biosens. Bioelectron. 2005, 20, 1878-1883; (d)Rick, J.; Chou, T. C. Anal. Chim. Acta. 2005, 542, 26-31.
10Shekhawat, G.; Tark, S.-H.; Dravid, V. P. Science 2006, 311, 1592-1595.
11 (a)Anfinsen, C. B. Seikagaku 1972, 44, 279-&; (b)Liao, T. H.; Salnikow, J.; Stein, W. H.; Moore, S. Fed. Proc. 1972, 31, A446-&; (c)Sarin, V. K.; Kent, S. B. H.; Mitchell, A. R.; Merrifield, R. B. J. Am. Chem. Soc. 1984, 106, 7845-7850.
12Raines, R. T. Chem. Rev. 1998, 98, 1045-1066.
13Barnard, E. A. Annu. Rev. Biochem. 1969, 38, 677-732.
14Yang, S.; Huang, Y. H.; Huang, X. D.; Li, S. Y.; Yuan, Z. Y. Acta Bioch. Bioph. Sin. 1999, 31, 601-603.
15 (a)Unsal, E.; Camli, S. T.; Senel, S.; Tuncel, A. J. Appl. Polym. Sci. 2004, 92, 607-618; (b)Schmidt, R. H.; Haupt, K. Chem. Mater. 2005, 17, 1007-1016; (c)Kirchner, D. B. Int. Arch. Occ. Env. Hea. 2002, 75, S107-S112.
16Fish, W. P.; Ferreira, J.; Sheardy, R. D.; Snow, N. H.; O'Brien, T. P. J. Liq. Chromatogr. R. T. 2005, 28, 1-15.
17Cedrone, F.; Niel, S.; Roca, S.; Bhatnagar, T.; Ait-abdelkader, N.; Torre, C.; Krumm, H.; Maichele, A.; Reetz, M. T.; Baratti, J. C. Biocatal. Biotransfor. 2003, 21, 357-364.
18Cooper, A. I.; Hems, W. P.; Holmes, A. B. Macromolecules 1999, 32, 2156-2166.
19 (a)Wittemann, A.; Ballauff, M. Anal. Chem. 2004, 76, 2813-2819; (b)Wittemann, A.; Ballauff, M. Macromol. Biosci. 2005, 5, 13-20; (c)Woycechowsky, K. J.; Hook, B. A.; Raines, R. T. Biotechnol. Progr. 2003, 19, 1307-1314.
20 (a)Hirayama, K.; Sakai, Y.; Kameoka, K. J. Appl. Polym. Sci. 2001, 81, 3378-3387; (b)Shi, H. Q.; Tsai, W. B.; Garrison, M. D.; Ferrari, S.; Ratner, B. D. Nature 1999, 398, 593-597.
21Rosenfeldt, S.; Wittemann, A.; Ballauff, M.; Breininger, E.; Bolze, J.; Dingenouts, N. Phys. Rev. E 2004, 70, 061403.
22Chen, W. Y.; Chen, C. S.; Lin, F. Y. J. Chromatogr. A 2001, 923, 1-6.
23 (a)Jelesarov, I.; Bosshard, H. R. J. Mol. Recognit.
1999, 12, 3-18; (b)Wiseman, T.; Williston, S.; Brandts, J. F.; Lin, L.-N. Anal. Biochem. 1989, 179, 131-137.
24Premstaller, A.; Oberacher, H.; Walcher, W.; Timperio, A. M.; Zolla, L.; Chervet, J. P.; Cavusoglu, N.; van Dorsselaer, A.; Huber, C. G. Anal. Chem. 2001, 73, 2390-2396.
25 (a)Craig, T. J.; Ciufo, L. F.; Morgan, A. J. Biochem. Bioph. Meth. 2004, 60, 49-60; (b)Haupt, B.; Neumann, T.; Wittemann, A.; Ballauff, M. Biomacromolecules 2005, 6, 948-955; (c)Huber, C. G.; Kleindienst, G.; Bonn, G. K. Chromatographia 1997, 44, 438-448.
26Lawrie, N. R. Iron in Biological Material 1946, 4I, 41-44.
27Campana, A. M. G.; Rodriguez, L. C.; Linares, C. J.; Barrero, F. A.; Ceba, M. R. Anal. Lett. 1995, 28, 369-380.
28 (a)Rife, J. C.; Miller, M. M.; Sheehan, P. E.; Tamanaha, C. R.; Tondra, M.; Whitman, L. J. Sensor. Actuat. a-Phys. 2003, 107, 209-218; (b)Guo, T. Y.; Xia, Y. Q.; Hao, G. J.; Song, M. D.; Zhang, B. H. Biomaterials 2004, 25, 5905-5912; (c)Hu, Y. L.; Liu, R. J.; Zhang, Y.; Li, G. K. Talanta 2009, 79, 576-582.
29Lu, Z. H.; Liu, G. J.; Liu, F. T. J. Appl. Polym. Sci. 2003, 90, 2785-2793.
30Fuchs, Y.; Linares, A. V.; Mayes, A. G.; Haupt, K.; Soppera, O. Chem. Mater. 2011, 23, 3645-3651.
31 (a)Hsu, C. W.; Yang, M. C. Sensor. Actuat. B-Chem. 2008, 134, 680-686; (b)Casey, C. N.; Campbell, S. E.; Gibson, U. J. Biosens. Bioelectron. 2010, 26, 703-709.
32Lu, Q.; Weng, Z. X.; Shan, G. R.; Lai, G. Q.; Pan, Z. R. J. Appl. Polym. Sci. 2006, 101, 4270-4274.
33 (a)Saumya, V.; Prathish, K. P.; Dhanya, S.; Rao, T. P. J. Electroanal. Chem. 2011, 663, 53-58; (b)Saumya, V.; Prathish, K. P.; Rao, T. P. Talanta 2011, 85, 1056-1062.
34 (a)Lee, M. H.; Thomas, J. L.; Ho, M. H.; Yuan, C.; Lin, H. Y. Acs. Appl. Mater. Inter. 2010, 2, 1729-1736; (b)Lee, M. H.; Thomas, J. L.; Chen, Y. C.; Wang, H. Y.; Lin, H. Y. Acs. Appl. Mater. Inter. 2012, 4, 916-921.
35Levely, M. E.; Bannow, C. A.; Smith, C. W.; Nicholas, J. A. J. Virol. 1991, 65, 3789-3796.
36 (a)Hwang, T. H.; Yang, I. S.; Kwon, O. K.; Ryu, M. K.; Byun, C. W.; Hwang, C. S.; Park, S. H. K. Jpn. J. Appl. Phys. 2011, 50, 1-4; (b)Indluru, A.; Venugopal, S. M.; Allee, D. R.; Alford, T. L. J. Disp. Technol. 2011, 7, 306-310; (c)Hyun, A. R.; Lee, J. H.; Kang, I. N.; Park, J. W. Thin Solid Films 2006, 509, 127-131; (d)Okutani, S.; Kobayashi, M.; Ibaraki, N. J. Soc. Inf. Display 2006, 14, 1119-1125; (e)Hamer, J. W.; Arnold, A. D.; Boroson, M. L.; Itoh, M.; Hatwar, T. K.; Helber, M. J.; Miwa, K.; Levey, C. I.; Long, M.; Ludwicki, J. E.; Scheirer, D. C.; Spindler, J. P.; Van Slyke, S. A. J. Soc. Inf. Display 2008, 16, 3-14.
37Vezzu, D. A. K.; Deaton, J. C.; Shayeghi, M.; Li, Y. M.; Huo, S. Q. Org. Lett. 2009, 11, 4310-4313.
38Kim, K. S.; Jeong, S.; Kim, C.; Kwon, Y.; Choi, B. D.; Han, Y. S. Thin Solid Films 2009, 518, 284-289.
39Kim, K. S.; Jeong, S.; Kim, C.; Ham, J. Y.; Kwon, Y.; Choi, B. D.; Han, Y. S. Synthetic Met. 2009, 159, 1870-1875.
40Noine, K.; Pu, Y. J.; Nakayama, K.; Kido, J. Org. Electron. 2010, 11, 717-723.
41Kulkarni, A. P.; Kong, X. X.; Jenekhe, S. A. Adv. Funct. Mater. 2006, 16, 1057-1066.
42Adhikari, R. M.; Duan, L.; Hou, L. D.; Qiu, Y.; Neckers, D. C.; Shah, B. K. Chem. Mater. 2009, 21, 4638-4644.
43Ren, M. G.; Guo, H. J.; Qi, F.; Song, Q. H. Org. Biomol. Chem. 2011, 9, 6913-6916.
44Ho, M. H.; Balaganesan, B.; Chu, T. Y.; Chen, T. M.; Chen, C. H. Thin Solid Films 2008, 517, 943-947.
45 (a)Zacharias, P.; Gather, M. C.; Rojahn, M.; Nuyken, O.; Meerholz, K. Angew. Chem. Int. Edit. 2007, 46, 4388-4392; (b)Yang, F.; Sun, K.; Cao, Z. J.; Li, Z. H.; ShingWong, M. Synthetic Met. 2008, 158, 391-395.
46 (a)Tang, C. W.; Vanslyke, S. A. Appl. Phys. Lett. 1987, 51, 913-915; (b)Chen, C. H.; Tang, C. W.; Shi, J.; Klubek, K. P. Macromol. Symp. 1998, 125, 49-58.
47Wu, K. C.; Ku, P. J.; Lin, C. S.; Shih, H. T.; Wu, F. I.; Huang, M. J.; Lin, J. J.; Chen, I. C.; Cheng, C. H. Adv. Funct. Mater. 2008, 18, 67-75.
48Potyrailo, R. A.; Mirsky, V. M. Chem. Rev. 2008, 108, 770-813.
49Li, C.; Liu, M. Y.; Pschirer, N. G.; Baumgarten, M.; Mullen, K. Chem. Rev. 2010, 110, 6817-6855.
50Grimsdale, A. C.; Chan, K. L.; Martin, R. E.; Jokisz, P. G.; Holmes, A. B. Chem. Rev. 2009, 109, 897-1091.
51 (a)Goetz, S. M.; Erlen, C. M.; Grothe, H.; Wolf, B.; Lugli, P.; Scarpa, G. Org. Electron. 2009, 10, 573-580; (b)Moss, K. C.; Bourdakos, K. N.; Bhalla, V.; Kamtekar, K. T.; Bryce, M. R.; Fox, M. A.; Vaughan, H. L.; Dias, F. B.; Monkman, A. P. J. Org. Chem. 2010, 75, 6771-6781.
52Jin, Y.; Yoo, C.; Kim, K.; Song, S.; Kim, J.; Kim, J.; Suh, H. Synthetic Met. 2008, 158, 417-424.
53Chiechi, R. C.; Tseng, R. J.; Marchioni, F.; Yang, Y.; Wudl, F. Adv. Mater. 2006, 18, 325-328.
54 (a)Kim, S. K.; Yang, B.; Ma, Y.; Lee, J. H.; Park, J. W. J. Mater. Chem. 2008, 18, 3376-3384; (b)Han, M.; Lee, S.; Jung, J.; Park, K. M.; Kwon, S. K.; Ko, J.; Lee, P. H.; Kang, Y. Tetrahedron 2006, 62, 9769-9777.
55Grisorio, R.; Melcarne, G.; Suranna, G. P.; Mastrorilli, P.; Nobile, C. F.; Cosma, P.; Fini, P.; Colella, S.; Fabiano, E.; Piacenza, M.; Della Sala, F.; Ciccarella, G.; Mazzeo, M.; Gigli, G. J. Mater. Chem. 2010, 20, 1012-1018.
56 (a)Perepichka, I. I.; Perepichka, I. F.; Bryce, M. R.; Palsson, L. O. Chem. Commun. 2005, 3397-3399; (b)Li, H. Y.; Batsanov, A. S.; Moss, K. C.; Vaughan, H. L.; Dias, F. B.; Kamtekar, K. T.; Bryce, M. R.; Monkman, A. P. Chem. Commun. 2010, 46, 4812-4814; (c)Huang, W. S.; Wu, Y. H.; Hsu, Y. C.; Lin, H. C.; Lin, J. T. Polymer 2009, 50, 5945-5958.
57 (a)Satta, A.; Simoen, E.; Clarysse, T.; Janssens, T.; Benedetti, A.; De Jaeger, B.; Meuris, M.; Vandervorst, W. Appl. Phys. Lett. 2005, 87, 172109; (b)Naito, M.; Ishimaru, M.; Hirotsu, Y.; Valdez, J. A.; Sickafus, K. E. Appl. Phys. Lett. 2006, 88, 251904.
58 (a)Hwang, J. D.; Chen, K. F.; Chan, L. H.; Chang, Y. Y. Appl. Phys. Lett. 2006, 89, 033103; (b)Bandic, Z. Z.; Piquette, E. C.; McCaldin, J. O.; McGill, T. C. Appl. Phys. Lett. 1998, 72, 2862-2864.
59 (a)Chiang, I. W.; Brinson, B. E.; Smalley, R. E.; Margrave, J. L.; Hauge, R. H. J. Phys. Chem. B 2001, 105, 1157-1161; (b)Im, W. B.; Hwang, H. K.; Lee, J. G.; Han, K.; Kim, Y. Appl. Phys. Lett. 2001, 79, 1387-1389.
60Jurchescu, O. D.; Baas, J.; Palstra, T. T. M. Appl. Phys. Lett. 2004, 84, 3061-3063.
61 (a)Wang, Y. Q.; Kong, G. L.; Chen, W. D.; Diao, H. W.; Chen, C. Y.; Zhang, S. B.; Liao, X. B. Appl. Phys. Lett. 2002, 81, 4174-4176; (b)Di, C.; Yu, G.; Liu, Y.; Zhu, D. J. Phys. Chem. B 2007, 111, 14083-14096.
62 (a)Salati, C.; Mignoni, G.; Zha, M.; Zanotti, L.; Mucchino, C.; Righini, R.; Foggi, P.; Paorici, C. Mater. Chem. Phys. 2000, 66, 303-308; (b)Tong, Q. X.; Lai, S. L.; Chan, M. Y.; Zhou, Y. C.; Kwong, H. L.; Lee, C. S.; Lee, S. T.; Lee, T. W.; Noh, T.; Kwon, O. J. Phys. Chem. C 2009, 113, 6227-6230.
63 (a)Arulchakkaravarthi, A.; Santhanaraghavan, P.; Ramasamy, P. J. Cryst. Growth 2001, 224, 89-94; (b)Arivanandhan, M.; Sankaranarayanan, M.; Ramamoorthy, K.; Sanjeeviraja, C.; Ramasamy, P. Thin Solid Films 2005, 477, 2-6.
64 (a)Hodgson, D. M.; Witherington, J.; Moloney, B. A.; Richards, I. C.; Brayer, J. L. Synlett 1995, 32-34; (b)Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4685-4696; (c)Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem. Int. Ed. 2005, 44, 4442-4489.
65Bookser, B. C. Tetrahedron Lett. 2000, 41, 2805-2809.
66Buchwald, S. L.; Mauger, C.; Mignani, G.; Scholz, U. Adv. Synth. Catal. 2006, 348, 23-39.
67 (a)Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009-3066; (b)Phan, N. T. S.; Van Der Sluys, M.; Jones, C. W. Adv. Synth. Catal. 2006, 348, 609-679; (c)Shen, Q. L.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 10028-10029.
68Cooke, G.; de Cremiers, H. A.; Rotello, V. M.; Tarbit, B.; Vanderstraeten, P. E. Tetrahedron 2001, 57, 2787-2789.
69 (a)Uenishi, J.; Beau, J. M.; Armstrong, R. W.; Kishi, Y. J. Am. Chem. Soc. 1987, 109, 4756-4758; (b)Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457-2483.
70Gouda, K.; Hagiwara, E.; Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1996, 61, 7232-7233.
71 (a)Dias, F. B.; Pollock, S.; Hedley, G.; Palsson, L. O.; Monkman, A.; Perepichka, I. I.; Perepichka, I. F.; Tavasli, M.; Bryce, M. R. J. Phys. Chem. B 2006, 110, 19329-19339; (b)Zafra, J. L.; Casado, J.; Perepichka, I. I.; Perepichka, I. F.; Bryce, M. R.; Ramirez, F. J.; Navarrete, J. T. L. J. Chem. Phys. 2011, 134, 044520.
72 (a)Motoyama, T.; Agata, Y.; Kido, J. J. Photopolym. Sci. Tec. 2006, 19, 663-667; (b)Shih, P. I.; Chiang, C. L.; Dixit, A. K.; Chen, C. K.; Yuan, M. C.; Lee, R. Y.; Chen, C. T.; Diau, E. W. G.; Shu, C. F. Org. Lett. 2006, 8, 2799-2802; (c)Tsai, M. H.; Lin, H. W.; Su, H. C.; Ke, T. H.; Wu, C. C.; Fang, F. C.; Liao, Y. L.; Wong, K. T.; Wu, C. I. Adv. Mater. 2006, 18, 1216-1220.
73Qu, J. Q.; Suzuki, Y.; Shiotsuki, M.; Sanda, F.; Masuda, T. Polymer 2007, 48, 4628-4636.
74Ul-Haq, N.; Park, J. K. Polym Composite 2008, 29, 1006-1013.
75 (a)Choukri, H.; Fischer, A.; Forget, S.; Chenais, S.; Castex, M. C.; Geffroy, B.; Ades, D.; Siove, A. Synthetic Met. 2007, 157, 198-204; (b)Kim, J. H.; Yoon, D. Y.; Kim, J. W.; Kim, J. J. Synthetic Met. 2007, 157, 743-750.
76 (a)Park, J. H.; Yun, C.; Koh, T. W.; Do, Y.; Yoo, S.; Lee, M. H. J. Mater. Chem. 2011, 21, 5422-5429; (b)Schrogel, P.; Langer, N.; Schildknecht, C.; Wagenblast, G.; Lennartz, C.; Strohriegl, P. Org. Electron. 2011, 12, 2047-2055.
77Carrard, M.; Goncalves-Conto, S.; Si-Ahmed, L.; Ades, D.; Siove, A. Thin Solid Films 1999, 352, 189-194.
78 (a)Mori, T.; Shinnai, T.; Kijima, M. Polym. Chem-Uk. 2011, 2, 2830-2834; (b)Lai, P. X.; McLaughlan, J. R.; Draudt, A. B.; Murray, T. W.; Cleveland, R. O.; Roy, R. A. Ultrasound Med. Biol. 2011, 37, 239-252.
79 (a)Huang, J. H.; Su, J. H.; Li, X.; Lam, M. K.; Fung, K. M.; Fan, H. H.; Cheah, K. W.; Chen, C. H.; Tian, H. J. Mater. Chem. 2011, 21, 2957-2964; (b)Kim, S. K.; Lee, Y. M.; Lee, C. J.; Lee, J. H.; Oh, S. Y.; Park, J. W. Mol. Cryst. Liq. Cryst. 2008, 491, 133-144.
80 (a)Soh, M. S.; Santamaria, S. A. G.; Williams, E. L.; Perez-Morales, M.; Bolink, H. J.; Sellinger, A. J. Polym. Sci. Pol. Phys. 2011, 49, 531-539; (b)Yoo, W. J.; Heo, J. Y.; Jang, K. W.; Seo, J. K.; Moon, J. S.; Park, J. Y.; Park, B. G.; Cho, S.; Lee, B. Opt. Rev. 2011, 18, 139-143.
81Seo, H. J.; Song, M.; Jin, S. H.; Choi, J. H.; Yun, S. J.; Kim, Y. I. Rsc. Adv. 2011, 1, 755-757.
82 (a)Agarwal, N.; Nayak, P. K.; Ali, F.; Patankar, M. P.; Narasimhan, K. L.; Periasamy, N. Synthetic Met. 2011, 161, 466-473; (b)Koyuncu, F. B.; Koyuncu, S.; Ozdemir, E. Electrochim. Acta 2010, 55, 4935-4941.
83Huang, T. H.; Whang, W. T.; Zheng, H. G.; Lin, J. T. S. J Chin. Chem. Soc-Taip 2006, 53, 233-242.
84Tsai, C. T.; Ku, Y. C.; Yen, Y. S.; Huang, T. H.; Chen, C. H.; Tin, J. T. J Chin. Chem. Soc-Taip 2006, 53, 1317-1324.
85 (a)Kamtekar, K. T.; Vaughan, H. L.; Lyons, B. P.; Monkman, A. P.; Pandya, S. U.; Bryce, M. R. Macromolecules 2010, 43, 4481-4488; (b)Koseki, J.; Kita, Y.; Tachikawa, M. Biophys. Chem. 2010, 147, 140-145; (c)Kubli-Garfias, C.; Salazar-Salinas, K.; Perez-Angel, E. C.; Seminario, J. M. J. Mol. Model. 2011, 17, 2539-2547; (d)Beyramabadi, S. A.; Morsali, A.; Khoshkholgh, M. J.; Esmaeili, A. A. Spectrochim. Acta. A. 2011, 83, 467-471.
86 (a)Engvall, E.; Perlmann, P. J. Immunol. 1972, 109, 129-135; (b)Andersson, L. I. J. Chromatogra. B 2000, 745, 3-13.
87Young, T. H.; Cheng, L. P.; Hsieh, C. C.; Chen, L. W. Macromolecules 1998, 31, 1229-1235.
88 (a)XPREP, version 5.1: Siemens Industrial Automation Inc.: Madison, WI, 1995; (b)Sheldrick, G. M. SADABS: Empirical Absorption Correction Program: University of Gttingen: Gottingen, Germany, 1997; (c)Sheldrick, G. M. SHELXL-97: Program for Crystal Structure Refinement: University of Gottingen: Gottingen, Germany, 1997; (d)SAINT, version 6.02; Bruker AXS: Madison, WI, 1999.
89Duan, L.; Xie, J.; Zhang, D. Q.; Wang, L. D.; Dong, G. F.; Qiao, J.; Qiu, Y. J. Phys. Chem. C. 2008, 112, 11985-11990.
90Demtroder, W. Laser Spectoscopy Springer: New York, 1996.
91 (a)Ryan, A.; Tuffy, B.; Horn, S.; Blau, W. J.; Senge, M. O. Tetrahedron 2011, 67, 8248-8254; (b)Zhu, R.; Xing, L. X.; Wang, X. Y.; Cheng, C. J.; Su, D. Y.; Hu, Y. F. Adv. Synth. Catal. 2008, 350, 1253-1257; (c)Kitawaki, T.; Hayashi, Y.; Ueno, A.; Chida, N. Tetrahedron 2006, 62, 6792-6801.
92Hsu, C. Y.; Lin, H. Y.; Yan, X. Y.; Huang, T. S.; Su, Y. K.; Whang, T. J. J. Chin. Chem. Soc-Taip. 2012, 59, 289-296.
93Upamali, K. A. N.; Estrada, L. A.; De, P. K.; Cai, X. C.; Krause, J. A.; Neekers, D. C. Langmuir 2011, 27, 1573-1580.
94Ooyama, Y.; Nabeshima, S.; Mamura, T.; Ooyama, H. E.; Yoshida, K. Tetrahedron 2010, 66, 7954-7960.
95 (a)Li, W.; Qiao, J.; Duan, L.; Wang, L.; Qiu, Y. Tetrahedron 2007, 63, 10161-10168; (b)Legrand, Y. M.; van der Lee, A.; Barboiu, M. Science 2010, 329, 299-302.
96Colthup, N. B.; Daly, L. H.; Wiberley, S. E. Introduction to Infrared and Raman spectroscopy; Academic Press; New York, 1990.
97 (a)Bredas, J. L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Chem. Rev. 2004, 104, 4971-5003; (b)Yu, G.; Yin, S. W.; Liu, Y. Q.; Chen, J. S.; Xu, X. J.; Sun, X. B.; Ma, D. G.; Zhan, X. W.; Peng, Q.; Shuai, Z. G.; Tang, B. Z.; Zhu, D. B.; Fang, W. H.; Luo, Y. J. Am. Chem. Soc. 2005, 127, 6335-6346; (c)Li, Y. P.; Li, F.; Zhang, H. Y.; Xie, Z. Q.; Xie, W. J.; Xu, H.; Li, B.; Shen, F. Z.; Ye, L.; Hanif, M.; Ma, D. G.; Ma, Y. G. Chem. Commun. 2007, 231-233.
98 (a)Benniston, A. C.; Harriman, A.; Whittle, V. L.; Zelzer, M. Eur. J. Org. Chem. 2010, 523-530; (b)Kawamoto, M.; Aoki, T.; Shiga, N.; Wada, T. Chem. Mater. 2009, 21, 564-572; (c)Shannon, M. C.; Agee, C. B. Science 1998, 280, 1059-1061.
99 (a)Liu, H.; Zou, J. H.; Yang, W.; Wu, H. B.; Li, C.; Zhang, B.; Peng, J. B.; Cao, Y. Chem. Mater. 2008, 20, 4499-4506; (b)Yang, F.; Sun, K.; Cao, Z. J.; Li, Z. H.; ShingWong, M. Synthetic Met. 2008, 158, 391-395; (c)Grisorio, R.; Melcarne, G.; Suranna, G. P.; Mastrorilli, P.; Nobile, C. F.; Cosma, P.; Fini, P.; Colella, S.; Fabiano, E.; Piacenza, M.; Della Sala, F.; Ciccarella, G.; Mazzeo, M.; Gigli, G. J. Mater. Chem. 2010, 20, 1012-1018.
100 (a)Liu, H.; Zou, J. H.; Yang, W.; Wu, H. B.; Li, C.; Zhang, B.; Peng, J. B.; Cao, Y. Chem. Mater. 2008, 20, 4499-4506; (b)Hu, Y.; Wex, B.; Perkovic, M. W.; Neckers, D. C. Tetrahedron 2008, 64, 2251-2258.
101 (a)Marques, M. P. M.; Oliveira, P. J.; Moreno, A. J. M.; de Carvalho, L. A. E. B. J. Raman Spectrosc. 2002, 33, 778-783; (b)Raj, V.; Madheswari, D.; Ali, M. M. J. Appl. Polym. Sci. 2010, 116, 147-154; (c)Mailhot-Jensen, B.; Robu, S.; Rivaton, A.; Pilichowski, J. F.; Chirita, A.; Chilat, E.; Dragalina, G. Int. J. Photoenergy 2010.
102 (a)Wu, F. I.; Reddy, D. S.; Shu, C. F.; Liu, M. S.; Jen, A. K. Y. Chem. Mater. 2003, 15, 269-274; (b)Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Plenum Press; New York, 1983.
103 (a)Wang, H. Y., J. S.; Li, L.; Tang, X.Q.; Jiang, Y.D. Optoelectron. Lett. 2008, 4, 0317-0320; (b)Yang, C. H.; Guo, T. F.; Sun, I. W. J. Lumin. 2007, 124, 93-98; (c)Hwang, S. W.; Oh, H. S.; Kang, S. J. J. Korean. Phys. Soc. 2005, 47, 34-36.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊