跳到主要內容

臺灣博碩士論文加值系統

(3.238.135.174) 您好!臺灣時間:2021/08/05 07:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳韋林
研究生(外文):Wei-LinChen
論文名稱:不對稱結構雙陽離子液體及環胺類離子液體的合成及結構之改變對物理性質的影響之探討
論文名稱(外文):Synthesis and physicochemical characterization of asymmetric dicationic ionic liquids and cyclic ammonium based ionic liquids
指導教授:孫亦文
指導教授(外文):I-Wen Sun
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:158
中文關鍵詞:雙陽離子離子液體環胺類離子液體黏度密度導電度擴散係數
外文關鍵詞:dicationic ionic liquidscyclic ammonium-based ionic liquidsviscositydensityconductivitydiffusion coefficient
相關次數:
  • 被引用被引用:1
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本實驗中總共合成了25種離子液體,其中18種為不對稱雙陽離子離子液體(dicationic ionic liquids),7種為環胺類離子液體(cyclic ammonium based ionic liquids),雙陽離子離子液體的組成主要是由一長碳鏈兩邊接上不同的四級胺鹽所構成的陽離子,結構有甲基咪唑(1-methylimidazole)或乙烯咪唑(1-vinylimidazole)搭配吡咯啶(pyrrolidine)、六圓環的吡啶 (piperidine)、三乙胺(triethylamine)、嗎啉 (morpholine)、吡啶系列(pyridine)所形成不同的陽離子,而陰離子的部分有TFSI (bis(trifluoromethylsulfonyl)imide)和FSI (bis(fluorosulfonyl)imide)兩種;環胺類離子液體的基本結構有六圓環的吡啶 (piperidine)、嗎啉 (morpholine)及七圓環的氮雜環庚烷(azepane)來形成不同的陽離子,而陰離子的部分有TFSI (bis(trifluoromethylsulfonyl)imide)和FSI (bis(fluorosulfonyl)imide)兩種。
雙陽離子離子液體及環胺類離子液體在合成出來後,以1H-NMR確定其結構,在變溫條件(雙陽離子:303K~353K,環胺類:343K~353K
)下測量其黏度、密度、導電度的改變,並探討陰陽離子的改變對其物理性質的影響,也利用核磁共振(PGSE-NMR)的技術來量測雙陽離子離子液體陰陽離子在變溫條件下的擴散係數,對離子液體的物理性質探討其庫倫靜電力、氫鍵作用力、極性效應及凡得瓦爾力等分子間作用力的影響。
從實驗結果可以知道,隨著溫度的上升,其離子液體的黏度及密度會隨之下降,而導電度和擴散係數會隨之上升,密度方面以擁有平面構形的pyridine系列有較大的密度,而morpholine因其環中帶有電負度較大的氧原子能與碳原子形成極性鍵因而使其與陰離子有較大的偶極-偶極作用力所以在黏度上有高於其他離子液體的現象,導電度以及擴散係數的部分,受到黏度效應以及作用力影響,趨勢會與黏度互成反比,而陰離子為FSI的離子液體在其物理性質上與TFSI的離子液體比起來,有黏度、密度降低與導電度、擴散係數提高的效果。

Twenty-five ionic liquids are synthesized in this research, including eighteen asymmetric dicationic ionic liquids and seven cyclic ammonium-based ionic liquids.
The cations of asymmetric dicationic ionic liquids are connected by alkyl chain. The cations are based on 1-methylimidazolium, 1-vinylimidazolium, pyrrolidinium, piperidinium, triethylaminium, morpholinium, and pyridinium. The anions are based on bis(trifluoromethylsulfonyl)imide and bis(fluorosulfonyl)imide.
Moreover, the cations of cyclic ammonium based ionic liquids are spiro structure. The cations are based on piperidinium, morpholinium and azepanium. The anions contain bis(trifluoromethylsulfonyl)imide and bis(fluorosulfonyl)imide.
The structures of ionic liquids are identified by 1H-NMR. In order to realize the structural relationship of cations and anions in ionic liquids, we measured the physicochemical properties, such as density, viscosity, and specific conductivity of these ionic liquids at variable temperatures. Furthermore, the self-diffusion coefficients of cation and anion in these asymmetric dicationic ionic liquids were studied using pulsed gradient spin-echo NMR technique. The possible effects of the physicochemical properties are derived from the intermolecular interactions, coulomb interaction, hydrogen bonding, polarizability effects, and van der Waals interactions.
The results indicate that viscosity, density, specific conductivity, and self-diffusion are different at various temperatures. Viscosity and density of ionic liquids decrease with increasing temperature. However, specific conductivity and self-diffusion increase with increasing temperature.
The pyridinium-based ionic liquids show higher density than other ILs owing to the pyridinium unit contains aromatic ring structure. The morpholinium based ionic liquids exhibit higher viscosity than other ILs, this can be attributed to high polarity of oxygen atom in the morpholinium ring. Compare with the tendency of viscosity of these ionic liquids, the specific conductivity and self-difussion coefficient show inverse proportion versus viscosity.
When the anions of ILs change from bis(trifluoromethylsulfonyl)imide to bis(fluorosulfonyl)imide, the viscosity and density of ILs decrease. However, the specific conductivity and self-diffusion of these ILs increase.

摘要----------------------I
Abstract-----------------III
誌謝----------------------V
目錄----------------------VI
表目錄--------------------IX
圖目錄--------------------X
第一章 序論----------------1
1-1 前言------------------1
1-2 離子液體的簡介----------1
1-3 離子液體的發展----------2
1-4 離子液體的特性----------3
1-5 雙陽離子離子液體---------3
1-6 雙陽離子離子液體的應用----4
1-7 研究動機---------------6
第二章 理論背景-------------8
2-1 核磁共振儀-------------8
2-1-1 核磁共振(Nuclear Magnetic Resonance, NMR)---8
2-1-2 核磁共振的歷史背景-----9
2-1-3 核磁共振基本原理-------10
2-1-4 遮蔽效應與化學位移-----13
2-1-5 核磁共振的弛緩機制-----15
2-2 擴散係數 (Diffusion coefficient)------18
2-3 黏度 (Viscosity)------19
2-4 密度 (Density)--------20
2-5 導電度 (Conductivity)--20
第三章 實驗----------------22
3-1 實驗藥品種類及合成步驟----22
3-1-1實驗藥品--------------22
3-1-2 合成步驟-------------29
3-2 物理性質測量------------55
(A)密度測量----------------56
(B)黏度測量----------------57
(C)導電度測量--------------58
第四章 結果與討論-----------59
4-1密度-------------------59
一、溫度對雙陽離子液體密度的影響------59
二、相同陰離子,改變陽離子一邊結構對密度帶來的影響------61
三、相同陰離子,將methylimidazole結構改成vinylimidazole結構對密度帶來的影響------62
四、固定陽離子,改變陰離子的種類------63
4-2 黏度--------67
一、溫度對雙陽離子液體黏度的影響------67
二、相同陰離子,改變陽離子一邊結構對黏度帶來的影響------69
三、相同陰離子,將methylimidazole結構改成vinylimidazole結構對黏度帶來的影響-------70
四、固定陽離子,改變陰離子的種類-----71
4-3 擴散係數--------75
一、溫度對雙陽離子液體擴散係數的影響----75
二、相同陰離子,改變陽離子一邊結構對擴散係數帶來的影響-----79
三、相同陰離子,將methylimidazole結構改成vinylimidazole結構對擴散係數帶來的影響-------80
四、固定陽離子,改變陰離子的種類-----81
4-4 導電度-------88
一、溫度對雙陽離子液體導電度的影響-----88
二、相同陰離子,改變陽離子一邊結構對導電度帶來的影響------90
三、相同陰離子,將methylimidazole結構改成vinylimidazole結構對導電度帶來的影響---------91
四、固定陽離子,改變陰離子的種類------91
4-5 熱重分析-------95
4-6環胺類離子液體----96
4-6-1密度--------96
4-6-2 黏度-------97
4-6-3 導電度------98
4-6-4 熱重分析-----99
第五章 結論--------103
一、溫度對離子液體性質帶來的影響-----104
二、相同陰離子,改變陽離子結構帶來的影響--------104
三、相同陽離子,改變陰離子種類帶來的影響--------105
參考文獻-------106
附錄:NMR光譜-------110

1.(A)P. Walden, Bull. Acad. Imper. Sci. (St. Petersburg), 1800, 1914; (B)S. Sugden And H. Wilkins, J. Chem. Soc., 1291, 1929
2.F. H. Hurley, T. P. Wier, J. Electrochem. Soc., 98, 203, 1951
3.H. L. Chum, V. R. Koch, L. L. Miller, R. A. Osteryong, J. Am. Chem. Soc., 97, 3264, 1975
4.J. S. Wilkes, M.J. Zaworotko, J. Chem. Soc. Chem. Commun., 965, 1992.
5.J. H. Davis, P. A. Fox., Chem. Commun., 1209, 2003
6.A. M. Leone, S. C. Weatherly, M. E. Williams, H. H. Thorp, R. W. Murray, J. Am. Chem. Soc.,123, 218, 2001
7.M. Yoshizawa, A. Narita, H.Ohno, Aust. J. Chem., 57, 139, 2004
8.S. Hayashi, H. Hamaguchi, Chem. Lett., 33, 1590, 2004
9.K. Fukumoto, M. Yoshizawa, H. Ohno, J. Am. Chem. Soc., 127, 2398, 2005
10.Anderson, J. L.; Ding, R.; Ellern, A.; Armstrong, D. W. Structure and Properties of High Stability Geminal Dicationic Ionic Liquids. J. Am. Chem. Soc., 127, 593, 2005
11.Anderson, J. L.; Armstrong, D. W. Immobilized Ionic Liquids as High-Selectivity/High-Temperature/High-Stability Gas Chromatography Stationary Phases. Anal. Chem., 77, 6453, 2005
12.Qi, M.; Armstrong, D. W. Dicationic ionic liquid stationary phase for GC-MS analysis of volatile compounds in herbal plants. Anal. Bioanal. Chem., 388, 889, 2007
13.Huang, K.; Han, X.; Zhang, X.; Armstrong, D. W. PEG-linked germinal dicationic ionic liquids as selective, high-stability gas chromatographic stationary phases. Anal. Bioanal. Chem., 389, 2265, 2007
14.Han, X.; Armstrong, D. W. Using Geminal Dicationic Ionic Liquids as Solvents for High-Temperature Organic Reactions. Org. Lett., 7, 4205, 2005
15.Jin, C.-M.; Ye, C.; Phillips, B. S.; Zabinski, J. S.; Liu, X.; Liu, W.; Shreeve, J. M. Polyethylene glycol functionalized dicationic ionic liquids with alkyl or polyfluoroalkyl substituents as high temperature lubricants. J. Mater. Chem., 16, 1529, 2006
16.Zeng, Z.; Phillips, B. S.; Xiao, J.-C.; Shreeve, J. M. Polyfluoroalkyl, Polyethylene Glycol, 1,4-Bismethylenebenzene, or 1,4-Bismethylene- 2,3,5,6-Tetrafluorobenzene Bridged Functionalized Dicationic Ionic Liquids: Synthesis and Properties as High Temperature Lubricants. Chem. Mater., 20, 2719, 2008
17.Yu, G.; Yan, S.; Zhou, F.; Liu, X.; Liu, W.; Liang, Y. Synthesis of dicationic symmetrical and asymmetrical ionic liquids and their tribological properties as ultrathin films. Tribol. Lett., 25, 197, 2007
18.Palacio, M.; Bhushan, B. Molecularly thick dicationic ionic liquid films for nanolubrication. J. Vac. Sci. Technol. A, 27, 986, 2009
19.Zhang, Z.; Zhoua, H.; Yanga, L.; Tachibana, K.; Kamijima, K.; Xu, J. Asymmetrical dicationic ionic liquids based on both imidazolium and aliphatic ammonium as potential electrolyte additives applied to lithium secondary batteries. Electrochim. Acta, 53, 4833, 2008
20.Kim, J. Y.; Kim, T. H.; Kim, D. Y.; Park, N.-G.; Ahn, K.-D. Novel thixotropic gel electrolytes based on dicationic bis-imidazolium salts for quasi-solid-state dye-sensitized solar cells. J. Power Sources, 175, 692, 2008
21.Zafera, C.; Ocakoglub, K.; Ozsoya, C.; Icli, S. Dicationic bisimidazolium molten salts for efficient dye sensitized solar cells: Synthesis and photovoltaic properties. Electrochim. Acta, 54, 5709, 2009
22.Wilkes, J. S.; Zaworotko, M. J. Air and water stable 1-ethyl-3- methylimidazolium based ionic liquids. J. Chem. Soc., Chem. Commun., 965, 1992
23.Ionic Liquids in Synthesis, 2nd ed.; Wasserscheid, P., Welton, T., Eds.; Wiley-VCH: Weinheim, 2008
24.Electrochemical Aspects of Ionic Liquids; Ohno, H., Ed.; Wiley-Interscience: Hoboken, NJ, 2005
25.Bonhote, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundaram, K.; Gratzel, M. Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. Inorg. Chem., 35, 1168, 1996
26.Shirota, H.; Fukazawa, H. Atom Substitution Effects in Ionic Liquids: A Microscopic View by Femtosecond Raman-Induced Kerr Effect Spectroscopy. In Ionic Liquids: Theory, Properties, New Approaches; Kokorin, A., Ed.; InTech: Rijeka, 201, 2011
27.Shirota, H.; Castner, E. W., Jr. Why Are Viscosities Lower for Ionic Liquids with -CH2Si(CH3)3 vs -CH2C(CH3)3 Substitutions on the Imidazolium Cations? J Phys. Chem. B, 109, 21576, 2005
28.Chung, S. H.; Lopato, R.; Greenbaum, S. G.; Shirota, H.; Castner, E. W., Jr.; Wishart, J. F. Nuclear Magnetic Resonance Study of the Dynamics of Imidazolium Ionic Liquids with -CH2Si(CH3)3 vs -CH2C(CH3)3 Substituents. J. Phys. Chem. B, 111, 4885, 2007
29.Shirota, H.; Nishikawa, K.; Ishida, T. Atom Substitution Effects of [XF6]- in Ionic Liquids. 1. Experimental Study. J. Phys. Chem. B, 113, 9831, 2009
30.Ishida, T.; Nishikawa, K.; Shirota, H. Atom Substitution Effects of [XF6]- in Ionic Liquids. 2. Theoretical Study. J. Phys. Chem. B, 113, 9840, 2009
31.Shirota, H.; Fukazawa, H.; Fujisawa, T.; Wishart, J. F. Heavy Atom Substitution Effects in Non-Aromatic Ionic Liquids: Ultrafast Dynamics and Physical Properties. J. Phys. Chem. B, 114, 9400, 2010
32.Bradaric, C. J.; Downard, A.; Kennedy, C.; Robertson, A. J.; Zhou, Y. Industrial preparation of phosphonium ionic liquids. Green Chem., 5, 143, 2003
33.Tsunashima, K.; Sugiya, M. Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochem. Commun., 9, 2353, 2007
34.Tsunashima, K.; Sugiya, M. Physical and Electrochemical Properties of Room Temperature Ionic Liquids Based on Quaternary Phosphonium Cations. Electrochemistry, 75, 734, 2007
35.Fraser, K. J.; MacFarlane, D. R. Phosphonium-Based Ionic Liquids: An Overview. Aust. J. Chem., 62, 309, 2009
36.Seki, S.; Hayamizu, K.; Tsuzuki, S.; Fujii, K.; Umebayashi, Y.; Mitsugi, T.; Kobayashi, T.; Ohno, Y.; Kobayashi, Y.; Mita, Y.; Miyashiro, H.; Ishiguro, S.-i. Relationships between center atom species (N, P) and ionic conductivity, viscosity, density, self-diffusion coefficient of quaternary cation room-temperature ionic liquids. Phys. Chem. Chem. Phys., 11, 3509, 2009
37.Duan, Z. Y.; Gu, Y. L.; Zhang, J.; Zhu, L. Y.; Deng, Y. Q. Journal of Molecular Catalysis A: Chemical, 250, 163, 2006
38.Zhao, G. Y.; Jiang, T.; Gao, H. X.; Han, B. X.; Huang, J.; Sun, D. H. Green Chemistry, 6, 75, 2004
39.Du, Y. Y.; Tian, F. L.; Zhao, W. Z. Synthetic Communications, 36, 1661, 2006
40.Anderson, J. L.; Armstrong, D. W. Analytical Chemistry, 75, 4851, 2003
41.Tyrrell, H. J. V.; Harris, K. R. Diffusion in Liquids; Butterworths: London 1984
42.Cussler, E. L. Diffusion, Mass Transfer in Fluid Systems; Cambridge University Cambridge, Press, New York, 1984
43.Stejskal, E. O.; Tanner, J. E. Journal of Chemical Physics, 42, 288, 1965
44.Cluster E. L. Diffusion-Mass Transfer in Fluid Systems,; Cambridge Univeristy Press: Cambridge, 1984
45.陳昱元 國立成功大學碩士論文 2012

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 離子液體在氫化反應及電化學上的應用-固定式離子液體奈米催化劑及離子液體結合金屬奈米粒子修飾電極於爆炸物的偵測
2. (1)離子液體應用於微藻油之萃取(2)高效能離子液體應用於纖維素溶解之研究(3)天然物吳茱萸次鹼之一鍋式合成研究
3. 離子液體電解質應用於石墨烯超級電容之特性分析
4. 二噻吩基吡咯衍生物系列電致變色材料與新穎雙陽離子離子液體之合成及其物化與電化學性質探討
5. 離子液體混合物之物理性質量測研究
6. 在1-乙基-3-甲基-咪唑氰胺離子液體中以電化學法製備多孔鎳電極並應用於製作氧化鈷擬電容器電極
7. 離子液體在反應及分離的應用─固定式離子液體奈米催化劑及離子液體官能基化固定相的開發
8. 利用高壓紅外線光譜技術探討含有離子液體1-Butyl-3-methylimidazoliumHalides的溶液結構組成
9. 鎂合金於離子液體中電鍍鋁及後續熱處理對其性質之影響研究
10. 雙咪唑陽離子結構離子液體在抗菌性能之研究
11. 利用咪唑合成離子液體進行金屬-有機化合物的合成與鑑定
12. 混摻離子液體之磺酸化聚苯乙烯於質子交換膜式燃料電池之應用
13. 物理性吸附離子液體之奈米碳管分散性探討及其在奈米碳管/環氧樹脂奈米複合材料之應用
14. 高效能液相層析結合綠色溶劑離子液體微萃取分析食品中著色劑之研究
15. 利用離子液體增強五種典型抗精神病藥之微透析回收率