跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/07/31 18:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周容辰
研究生(外文):Jung-ChenChou
論文名稱:氣候變遷對大甲溪流域發電量之衝擊
論文名稱(外文):The Impact of Climate Change on Hydropower Generation in Dajia River Basin
指導教授:游保杉游保杉引用關係
指導教授(外文):Pao-Shan Yu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系碩博士班
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:83
中文關鍵詞:氣候變遷水力發電水庫模式
外文關鍵詞:climate changehydropower generationreservoir model
相關次數:
  • 被引用被引用:3
  • 點閱點閱:301
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要是探討氣候變遷對於未來水庫水力發電量之影響,並選定大甲溪系列電廠為研究區域,以提供未來面臨氣候變遷下水力發電量改變之因應。大甲溪流域內的系列水力發電廠為台灣最重要的水力發電設施,負責電力系統的尖峰負載,是不可或缺的重要環節,在面臨氣候變遷之影響下,水力發電量的改變將會影響供電系統的穩定。本研究透過A1B情境之7個GCM降尺度資料分析未來可能的降雨與溫度的變化,接著利用水文模式分析未來情境下之可能水庫上游入流量,再選用合適的水庫發電模式模擬大甲溪系列水庫的發電操作方式,以分析氣候變遷改變下未來水庫水力發電量的變化。
本研究著眼於未來20年的變化分析,為了探討氣候繁衍資料所造成之不確定性,隨機繁衍30組未來雨量與溫度資料,以模擬氣候變遷影響下未來流量與發電量之變化,並藉由統計檢定方式分析基期與情境發電量是否有顯著的差異,本研究結果指出大多數月份的基期與情境發電量有顯著差異。最後,根據多重模式系集平均之發電量可知,氣候變遷衝擊下將可能於枯水期(11至4月)減少約15%,而豐水期(5至10月)則平均減少約6%。
This study aims to investigate the impact of climate change on hydropower generation on Dajia river serial hydropower plants. With the understanding of the variation of hydropower generation under climate change situation, it can provide possible power shortage information in the future. The serial hydroelectric power plants here are most important hydroelectric power facilities to support the peak load of the power system in Taiwan. Under the possible threat of climate change, people may face a huge electricity supply deficit, if the hydropower is diminished in the future. The hydrologic model and the possible variation of rainfall and temperature calculated through the GCM downscaling data (7 GCMs under A1B scenario) are used to estimate the future inflows of the reservoirs. With a suitable operation rule simulation of the serial hydroelectric plants, the variation of the hydropower under climate change scenario can be estimated.
In order to explore the uncertainty caused by the generating meteorological data in next twenty years, the 20–year rainfall and temperature which are generated thirty times simulate the flow and hydropower generation. By the hypothesis testing, the future hydropower generation of mostly months have significant different when compared with baseline data. According to the results of MME data, the hydropower generation will represent a decrease of about 15% during dry season (Nov to Apr) and 6% during wet season (May to Oct.)
摘要 I
ABSTRACT III
誌謝 V
目錄 VII
表目錄 XI
圖目錄 XIII
第一章 緒論 1
1–1 研究動機與目的 1
1–2 文獻回顧 2
1–2–1氣候變遷對水文特性之衝擊 2
1–2–2氣候變遷對水力發電之衝擊 3
1–3 本文組織與架構 5
第二章 研究區域與資料介紹 7
2–1 研究區域 7
2–2 水文資料蒐集與處理 10
2–3 大甲溪系列水庫資料 12
2–4 未來情境資料 19
第三章 氣象繁衍模式與水文模式 23
3–1 氣象繁衍模式 23
3–1–1雨量繁衍 23
3–1–2溫度繁衍 24
3–2 氣象繁衍模式之評鑑 25
3–3 水文模式 26
3–3–1土壤含水量作用機制 27
3–3–2逕流反應機制 28
3–3–3連續方程式 30
3–4 水文模式之率定與驗證 30
3–4–1 目標函數及參數最佳化 30
3–4–2 參數率定與結果 31
第四章 大甲溪水庫發電模式 35
4–1 大甲溪水庫發電模式之建立 37
4–1–1水平衡方程式 39
4–1–2蒸發量推估 39
4–1–3德基下游水庫之側流量推估 39
4–1–4發電量計算 40
4–2 水庫操作策略 43
4–2–1德基水庫之操作策略 43
4–2–2德基下游水庫之操作策略 48
第五章 氣候變遷下之水文與發電量分析 53
5–1 氣象繁衍結果 53
5–2 未來情境之流量模擬結果 57
5–3 未來情境之發電量分析 63
第六章 結論與建議 71
6–1 結論 71
6–2 建議 72
參考文獻 73
附錄 修正型HBV模式之流量模擬結果 79
A. 率定(1975至1996年) 79
B. 驗證(1997至2007年) 82

1.台電公司大甲溪發電廠,2009,「大甲溪發電廠水路操作規則」。
2.行政院國家科學委員會,2010,「台灣氣候變遷情境推估與資訊平台建置計畫」。
3.吳至剛,2000,「氣候變遷對高屏溪流域水資源衝擊之探討」,國立成功大學水利及海洋工程學系碩士論文。
4.吳明進,2002,「區域氣候變遷模擬系統之整合與應用–子計畫六:全球氣候變遷對臺灣區域氣候與水資源衝擊之評析(I)」,行政院國家科學委員會。
5.吳雷根,2004,「曾文水庫枯水期長期入流量預測之研究」,國立成功大學水利及海洋工程學系碩士論文。
6.李晏全,2006,「石門水庫枯水期月與季入流量預報之研究」,國立成功大學水利及海洋工程學系碩士論文。
7.洪念民、童慶斌與譚義績,1998,「后里圳小型水力發電受氣候變遷之影響」,台電工程月刊,第601期,1–11頁。
8.陳永明、江申、張駿暉、許至璁、郭彥廉、于宜強、黃柏誠、林宣汝與何興亞,2007,「因應氣候變遷之防災調適策略評估」,國家災害防救科技中心。
9.陳立偉,2008,「氣候變遷對水資源之衝擊評估–以牡丹水庫集水區為例」,中原大學土木工程學系碩士論文。
10.游保杉,2000,「高屏溪流域區域日降雨–逕流之研究(III)」,行政院國家科學委員會。
11.楊道昌與游保杉,1997,「目標函數對連續型降雨–逕流模式率定之影響」,臺灣水利季刊,第45卷,第4期,66–73頁。
12.楊道昌,1999,「區域連續型降雨–逕流模之研究」,國立成功大學水利及海洋工程學系博士論文。
13.經濟部水利處水利規劃試驗所,2000,「大甲溪可能水源利用方案檢討規劃報告」。
14.戴嘉慧,2010,「氣候變遷對翡翠水庫供水、發電與防洪功能之衝擊評估」,國立台灣大學生物環境系統工程學系碩士論文。
15.Ayer, M. A., Wolock, D. M., McCabe, G. J., Hay, L. E., and Tasker, G. D., 1994, “Sensitivity of water resources in the Delaware river basin to climate variability and change, U.S. Geological Survey water Supply Paper 2442.
16.Baltas, E. A. and Mimikou, M. A., 2005, “Climate change impacts on the water supply of Thessaloniki, Water Resources Development, 21(2), 341–353.
17.Caron, L. P. and Jones, C. G., 2008, “Analysing present, past and future tropical cyclone activity as inferred from an ensemble of coupled global climate models, Tellus, 60(1), 80–96.
18.Chen, Xi, Wu, Jinglu, and Hu, Qi, 2008, “Simulation of climate change impacts on streamflow in the Bosten lake basin using an artificial neural network model, Journal of Hydrologic Engineering, 13(3), 180–183.
19.Chu, J. L. and Yu, P. S., 2010, “A study of the impact of climate change on local precipitation using statistical downscaling, Journal of Geophysical Research, 115, D10105.
20.Chu, J. T., Xia, J., Xu, C. Y. and Singh, V. P., 2010, “Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China, Theoretical and Applied Climatology, 99(1–2), 149–161.
21.Duan, Q., Sorooshian S. and Gupta V. K., 1992, “Effective and efficient global optimization for conceptual rainfall–runoff models, WATER RESOURCES RESEARCH, 28(4), 1015–1031.
22.Hamon and W. R., 1961, “Estimating potential evapotranspiration, Journal of Hydraulics Division, 87(3), 107–120.
23.Horton, P., Schaefil, B., Mezghani, A., Hingray, B. and Musy, A., 2006, “Assessment of climate–change impacts on alpine discharge regimes with climate model uncertainty, Hydrological Processes, 20(10), 2091–2109.
24.Im, Eun–Soon, Jung, Il–Won, Chang, Heejun, Bae, Deg–Hyo and Kwon, Won–Tae, 2010, “Hydroclimatological response to dynamically downscaled climate change simulations for Korean basins, Climatic Change, 100(3–4), 485–508.
25.IPCC, 2007, “Climate change 2007,The physical science basis.
26.Kang, B., Lee, Seung–Jong, Kang, Dong–Hyun, Kim, Young–Oh, 2007, “A flood risk projection for Yongdam dam against future climate change, Journal of Hydro–environment Research, 1(2), 118–125.
27.Kitoh, A. and Uchiyama, T., 2006,“Changes in onset and withdrawal of the east asian summer rainy season by multi–model global warming experiments, Journal of the Meteorological Society of Japan, 84(2), 247–258.
28.Franziska Koch, Monika Prasch, Heike Bach, Wolfram Mauser, Florian Appel and Markus Weber, 2011, “How will hydroelectric power generation develop under climate change scenarios? A case study in the upper Danube basin, Energies, 4, 1508–1541.
29.Madani Kaveh and Lund Jay R., 2010, “Estimated impacts of climate warming on California’s high–elevation hydropower, Climatic Change, 102, 521–538.
30.Min, S. K., Park, E. H. and Kwon, W. T., 2004, “Future projections of East Asian climate change from multi–AOGCM ensembles of IPCC SRES scenario simulations, Journal of the Meteorological Society of Japan, 82(4), 1187–1211.
31.Minville, M., Brissette, F., Krau, S. and Leconte, R., 2009, “Adaptation to climate change in the management of a Canadian water–resources system exploited for hydropower, Water Resour Manage, 23, 2965–2986.
32.Noreña, Ospina J. E., García, Gay C. and Conde, A. C., 2011, “A proposal for a vulnerability index for hydroelectricity generation in the face of potential climate change in Colombia, Atmósfera, 24(3), 329–346.
33.Tung, C. P. and Haith, D. A., 1995, “Global warming effects on New York streamflows, Journal of Water Resources Planning and Management, 121(2), 216–225.
34.Vicuna, S., Leonardson, R., Hanemann, M. W., Dale, L. L. and Dracup J. A., 2008, “Climate change impacts on high–elevation hydropower generation in California's Sierra Nevada: a case study in the Upper American River, Climate Change, 87(S1), 123–137.
35.Wilby, R. L., Whitehead, P. G., Wade, A. J., Butterfield, D., Davis, R. J. and Watts, G., 2006, “Integrated modelling of climate change impacts on water resources and quality in a lowland catchment: River Kennet, UK, Journal of Hydrology, 330(1–2), 204–220.
36.Yapo, P. O., Gupta, H. V. and Sorooshian S., 1996, “Automatic calibration of concep–tual rainfall–runoff models: sensitivity to calibration data, Journal of Hydrology, 181(1), 23–48.
37.Zhang, X. and Lindström, G., 1997, “Developed of an automatic calibration scheme for the HBV hydrological model, Hydrological Processes, 11(12), 1671–1682.
38.Ziegler, A. D., 2002, Sheffield J. and Wood E. F., “Detection of intensification of the global water cycle: the potential role of FRIEND, Proceedings of the Fourth International Conference on FRIEND, Cape Town, South Africa, 51–57.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top