跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 13:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃文舜
研究生(外文):Wen-ShunHuang
論文名稱:降雨變遷及地震因素對土石流發生影響之研究
論文名稱(外文):Impacts of rainfall variability and the earthquake on debris-flow occurrences
指導教授:詹錢登詹錢登引用關係
指導教授(外文):Chyan-Deng Jan
學位類別:博士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系碩博士班
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:148
中文關鍵詞:集集地震土石流降雨變異陳有蘭溪集水區
外文關鍵詞:Chi-Chi EarthquakeDebris-flow occurrencesRainfall variabilityChenyoulan Stream Watershed
相關次數:
  • 被引用被引用:2
  • 點閱點閱:415
  • 評分評分:
  • 下載下載:74
  • 收藏至我的研究室書目清單書目收藏:0
近年來極端降雨事件頻傳,崩塌及土石流等坡地土砂災害的發生頻率與規模也日益嚴重。台灣中部陳有蘭溪流域地質環境複雜,自賀伯颱風引發嚴重土石流災情以來,歷經集集大地震、桃芝颱風、多場豪大雨及莫拉克颱風,陸續傳出更多的土石流災情,使得此區域已經成為土石流重點災區。本文以陳有蘭溪流域為研究區域,分析歷年不同降雨量發生次數的變化情形及集集大地震影響下,對土石流發生特性的影響,並分析流域下游輸砂量變化,瞭解近年來因降雨改變及土砂災害影響下的產砂變遷。雨量資料收集自中央氣象局之玉山、日月潭及阿里山氣象站,根據所收集的資料進行流域平均雨量之計算,資料時間自1970至2009年。收集歷年流域內土石流發生之相關資料,包括土石流發生地點、發生時間及雨量特性值,時間自1985至2009年,共25年。崩塌地資料收集自11幅衛星影像之判釋結果,藉以分析颱風豪雨及地震後崩塌地變化特性,資料時間自1988至2009年。水文資料收集自陳有蘭流域下游水利署之內茅埔水文測站,用以分析歷年流量及輸砂量的變化情形,時間自1972至2009年。崩塌面積變化分析結果顯示,陳有蘭溪歷年崩塌面積有逐年增加的情形;集集大地震後崩塌面積迅速增加,增加的崩塌面積為賀伯颱風期間的三倍,由於震後並無明顯的高降雨事件,推估集集大地震是造成流域內大量崩塌面積的原因。分析歷年土石流發生之集水區面積及坡度變化特性;結果顯示,每逢豪大雨事件,土石流發生之集水區面積及坡度的範圍,有明顯擴大現象;集集地震後集水區面積及坡度特性已產生變化,土石流發生之最低集水區面積及坡度發生於地震後的桃芝颱風期間,但在2005年以後,有隨時間慢慢回復到地震前的條件。根據降雨特性變遷分析之結果顯示,高降雨量的發生次數在近幾十年已產生變化,2000-2009期間的高降雨量發生次數明顯高於其他年代。本文以降雨事件之最大日雨量 分析集水區歷年土石流發生次數 及土石流發生機率 。本文根據歷年土石流發生事件所對應之降雨特性 值,區分為三個降雨條件( 〉 20、 230 及 580 mm),藉以分析歷年降雨次數 、土石流發生次數 及土石流發生機率 之變化,同時將集集大地震對土石流發生次數 及土石流發生機率 的影響,也進行討論;結果顯示,在降雨條件 〉 20 mm之降雨事件中,集集地震影響期間(2000-2004)之降雨次數 反應出較高的土石流發生次數 及土石流發生機率 ,顯見地震已對土石流發生次數及發生機率產生影響。在降雨條件 〉 230 mm (地震前土石流發生的最低雨量值)及 〉 580 mm (造成多場次土石流事件的極端雨量值)之降雨次數 於2000年後有明顯增加的現象。由於2000-2009期間內,高降雨量 ( 〉 580 mm)的次數有明顯增加,也提高了觸發多場次土石流發生降雨次數。本文根據歷年之 、 及 提出一個經驗關係式,藉以瞭解近年來在不同降雨量發生次數 變化下,土石流發生次數 及土石流發生機率 的變化情形;結果顯示,在相同發生次數 下,近十年(2000-2009)相較於前十年(1990-1999)之土石流發生次數 及土石流發生機率 有明顯增加的現象,說明近年來在降雨變化及地震影響下,對土石流發生特性已產生衝擊及改變。因此,本文藉由三場分別發生於集集地震的前後之高降雨事件對土石流發生的時間及空間分布進行分析;結果顯示土石流發生的空間分布變化不大,但總累積降雨量明顯產生變化,地震後在一些較易觸發土石流的地區,如神木村及豐丘村之土石流發生所需之單場累積降雨量僅需地震前降雨量之1/9。最後,本文根據研究區域內之內茅埔水文站,分析流域下游歷年流量及輸砂量變化特性,藉以了解近年來流域產砂變化;結果顯示,年最大日平均流量與最大瞬時流量雖有逐年增加的趨勢,但增加趨勢並不明顯。分析歷年懸移質輸砂量變化特性顯示,1972-1979及1980-1989期間之懸移質輸砂量,在流量Q〈50cms時,約小於歷年平均值(1972-2009)之1~2倍;在流量Q〉50cms時,約小於歷年平均值之1~3倍。1990-1999期間之懸移質輸砂量,在流量Q〈50cms時,約大於歷年平均值之2~3倍;在流量Q〉50cms時,約大於歷年平均值之1~2倍。2000-2009期間之懸移質輸砂量,在流量Q〈50cms時,約大於歷年平均值之3~4倍;在流量Q〉50cms時,約大於歷年平均值之1~2倍。倘若僅分析地震影響期間(2000-2004)之之懸移質輸砂量,在流量Q〈50cms時,約大於歷年平均值之5~6倍;在流量Q〉50cms時,約大於歷年平均值之4~5倍。地震前後之懸移質輸砂量變化特性顯示,1999年前之懸移質輸砂量有明顯低於1999年以後之懸移質輸砂量;在相同的流量值下,1999年以後之懸移質輸砂量,在流量Q〈50cms時,約大於歷年平均值之5倍;在流量Q〉50cms時,約大於歷年平均值之2倍。
This study analyzed the variability in the number of rainfall events and effects of the Chi-Chi earthquake related to debris-flow occurrences in the Chenyoulan stream watershed located in central Taiwan. Rainfall data between 1970 and 2009 measured at three meteorological stations nearby/in the watershed were collected and used to determine the corresponding regional average rainfall for the watershed. Data of debris-flow events between 1985 and 2009 was collected and used to study their dependence on regional average rainfall. For detecting the impacts of the variability and the Chi-Chi earthquake on the study area, landslides areas were estimated by comparing the data of 11 images taken before and after the rainy events and Chi-Chi earthquake, and hydrological data measured at gauging stations at the downstream of the watershed from 1972 to 2009 as well. The results showed that landslides had an increasing trend with time. After the Chi-Chi earthquake in 1999, the landslides area greatly amplified and nearly tripled to the landslides areas caused by Typhoon Herb in 1996. Due to there was no obviously high precipitation after the earthquake, the abrupt increase in landslide areas was most likely attributed to the Chi- Chi earthquake. The variations in gradients and areas of watersheds that triggered debris flows have changed after the earthquake. The lowest gradient and areas of watershed for triggering debris flows occurred during Typhoon Toraji in 2001. But after 2005, the critical conditions for triggering debris flows gradually return to that before the earthquake. Rainfall characteristics, , , , and were used to analyze the variation in the number of rainfall events in the four decades. The variations in the number of rainfall events obviously changed in last decades. The variation of the higher rainfall events in 2000-2009 is significantly greater than that in other decades. The maximum 24-h regional rainfall was also used to analyze the number of rainfall events that triggered debris flows , and the probability of debris-flow occurrences as well. The variation trends in , , and over recent decades under three rainfall conditions ( 〉 20, 230, and 580 mm) related to debris-flow occurrences were analyzed. In addition, the influences of the Chi-Chi earthquake on and were presented. The results showed that the rainfall events with 〉 20 mm during the earthquake-affected period (2000-2004) strongly responded to the increases in the average number of rainfall events that triggered debris flows and the average probability of debris-flows occurrences, especially within the period (2000–2004) when the lowest number of rainfall events occurred. The number of rainfall events of 〉 230 mm (the lower boundary for the rainfall ever triggering debris flows before the Chi-Chi earthquake), and 〉 580 mm (the lower boundary for extreme rainfall ever triggering numerous debris flows) in the Chenyoulan stream watershed increased after 2000. The increase in the number of extreme rainfall events with 〉 580 mm augmented the number of rainfall events ever triggering numerous debris flows in the last decade. The empirical relationships are presented for the average annual number of rainfall events triggering debris flows and the probability of debris-flow occurrences related to the average annual rainfall events in the past decades. The results indicated that the increase in both the number of rainfall events that ever triggered debris flows and the probability of debris-flow occurrences was greater in the last decade (2000–2009) than in 1990–1999. The spatial and temporal distributions of debris flows are demonstrated by three extreme rainfall events before and after the Chi-Chi earthquake. The results showed that the variations in spatial distributions do not change much, but the total rainfall required to trigger debris flows sharply decreased after Chi-Chi earthquake. The annual variations in river discharge and suspended sediment discharge were evaluated. The maximum of the daily mean discharge and instantaneous discharge both have slight increasing trends. The variations of suspended sediment discharge in 1972-1979 and 1980-1989 are less than the averaged value in 1972-2009 at the same discharges; 1990-1999 and 2000-2009 are obviously larger than the averaged value (1972-2009) at the same discharges. The variations of suspended sediment discharge in last two decades might attribute to rainfall variability. Significant difference between the suspended sediment discharge before 1999 and that after 1999 was found, and the suspended sediment discharge gained after 1999 increases 5 times more than that before 1999 at Q 〈 50 cms, while that gained after 1999 increases 2 times more than that before 1999 at Q 〉 50 cms.
摘要………I
Abstract………IV
謝誌………VII
Table of contents………VIII
List of table………XI
List of figures………XII
Notations………XX
1. Introduction………1
1.1 Environments of Taiwan island………1
1.1.1 Geologic and geomorphologic setting………1
1.1.2 Frequent earthquakes………2
1.1.3 Striking of Typhoons………3
1.1.4 Climate variability………4
1.2 Literatures review………5
1.2.1 Climate variability………5
1.2.2 Earthquake influence on landslides and debris flows………8
1.2.3 Recent change in rainfall characteristics resulting in sediment disasters………10
1.3 Motivation of research………15
1.4 Study methods………17
1.5 Dissertation structure………21
2. Recent change in rainfall characteristics………22
2.1 Study area………22
2.2 Variations in rainfall………26
2.2.1 Values of rainfall characteristics………26
2.2.2 Regional average rainfall in the Chenyoulan stream watershed………28
2.2.3 Variations of yearly rainfall………29
2.2.4 Variations in the number of rainfall intensity………31
2.2.5 Variations in the number of rainfall depth………33
2.2.6 Variations in the number of rainfall durations………35
2.2.7 Variations in the rainfall erosivity index………36
3. Variations in geological and topographical conditions affected by Chi-Chi Earthquake………41
3.1 Variation in landslides………42
3.2 Variation in topographical and geological conditions………52
3.2.1 Variations in watershed areas of debris flows before and after Chi-Chi earthquake………53
3.2.2 Variations in watershed slopes of debris flows before and after Chi-Chi earthquake………55
3.2.3 Variations in lithological characteristics of debris flows before and after Chi-Chi earthquake………59
3.2.4 Variations in geological characteristics of debris flows before and after Chi-Chi earthquake………62
4. Rainfall variations and the Chi-Chi earthquake influence on debris flow occurrences………67
4.1 The rainfall conditions of debris flow occurrences………67
4.2 Variations in rainfall events triggering debris flows and the probability of debris-flow occurrence in each decade………79
4.2.1 Variations in the number of rainfall events………79
4.2.2 The relationship between the number of rainfall events triggering debris flows and the number of rainfall events………80
4.2.3 The relationship between the probability of debris-flow occurrence and the number of rainfall events………82
5. Spatial and temporal analysis of debris flows………84
5.1 Spatial analysis of debris flows………84
5.2 Temporal analysis of debris flows………95
5.3 Spatial and temporal analysis of debris flows – Typhoon Morakot 2009………107
6. Variations in river runoff and sediment discharge………115
6.1 Variations of river runoff………116
6.2 Variations of suspended sediment discharge………118
7. Conclusions………127
References………132
Appendix………141
1.Ashraf, M., Loftis, J. C., and Hubbard, K. G.: Application of geostatistics to evaluate partial weather station networks, Agric. Forest Meteorol., 84, 255-271, 1997.
2.Bryant, E.: Climate, Process and change, Cambridge Publishing, Edinburgh, 292, 1997.
3.Caine, N.: The rainfall intensity-duration control of shallow landslides and debris flows, Geografiska annaler, 62A (1/2), 23-27, 1980.
4.Central Weather Bureau, Earthquakes: http://www.cwb.gov.tw/V7e/earthquake/ quake index.htm, 2003.
5.Central Weather Bureau, Historical typhoon data: http://www.cwb.gov.tw/v4/typhoon /history/typhoon-history.htm, 2003.
6.Central Geological Survey, CGS, Ministry of Economic Affairs, Taipei. 2000.
7.Chang, J. C., Shen, S. M., and Liu, Y. S.: A study on the occurrence of landslides and debris flows in four small catchments of the Chenyoulan river, Geog. Res., 34, 63-83, 2001 (in Chinese).
8.Chang, J. C., and Shen, S. M.: Potential risks of hillslope disasters, northern Taiwan Sandstone-Shale area (II), Nation Sci. Council, NSC92-2625-Z003-003, Taiwan, 2002 (in Chinese).
9.Chang, J. C. and Slaymarker, O.: Frequency and spatial distribution of landslides in a mountainous drainage basin: Western Foothills, Taiwan. Catena, 46, 285-307, 2002.
10.Chang, C. W., Lin, P. S., and Tsai, C. L.: Estimation of sediment volume of debris flow caused by extreme rainfall in Taiwan, Eng. Geol., 123, 83-90, 2011.
11.Chen, W. S., Chen, Y. G., Chang, H. C., Lee, Y. H., and Lee, J. C.: Palaeoseismic study of the Chelungpu fault in the Wan-Fong area, West. Pacific Earth Sci., 1, 499-506, 2001.
12.Chen, C. Y., Chen, T. C., Yu, F. C., Yu, W. H., and Tseng, C. C.: Rainfall duration and debris-flow initiated studies for real-time monitoring, Environ. Geol., 47, 715–724, 2005.
13.Chen, H. L. and Chang, J. C.: The discharge and sediment load of heavy rainfall events in the Tsengwen River Basin, Southern Taiwan, J. Geog. Sci., 48, 43-65, 2007 (in Chinese).
14.Chen, H., Lin, G. W., Lu, M. H., Shih, T. Y., Horng, M. J., Wu, S. J., and Chuang, B.: Effects of topography, lithology, rainfall and earthquake on landslide and sediment discharge in mountain catchments of southeastern Taiwan, Geom., 133, 132-142, 2011a.
15.Chen, J. C., and Jan, C. D.: Probabilistic analysis of landslide potential of an inclined uniform soil layer of infinite length – application. Environ Geol., 54(6), 1175–1183, 2008.
16.Chen, J. C., Lin, C. W., and Wang, L. C.: Geomorphic characteristics of hillslope and channelized debris flows- A case study in the Shitou area of central Taiwan, J Mt. Sci., 6(3), 266–273, 2009.
17.Chen, J. C.: Variability of impact of earthquake on debris-flow triggering conditions: case study of Chen-Yu-Lan Watershed, Taiwan, Environ. Earth Sci., 64(7), 1787–1794, 2011.
18.Chen, J. C., Huang, W. S., Jan, C. D., and Tsai, Y. F.: Rainfall conditions for the initiation of debris flows during Typhoon Morakot in the Chen-Yu-Lan watershed in central Taiwan, Proceedings of the 5th International Conference on Debris-Flow Hazards Mitigation, Padua, Italy. Genevois, R., Hamilton, D. L., & Prestininzi, A. (eds), 31-36, 2011b.
19.Chen, J. C., Huang, W. S., Jan, C. D., and Yang, Y. H.: Recent changes in the number of rainfall events related to debris-flow occurrence in the Chenyulan Stream Watershed, Taiwan, Nat. Hazards Earth. Syst. Sci., 12, 1539-1549, 2012.
20.Chen, Y. S.: An influence of earthquake on the occurrence of landslide and debris flow, Doctoral Dissertation, Tainan, 2008 (in Chinese).
21.Cheng, C. H.: A new approach for ranking fuzzy numbers by distance method, Fuzzy Sets Syst., 95, 307-317, 1998.
22.Cheng, J. D., Huang, Y. C., Wu, H. L., Yeh, J. L., and Chang, C. H.: Hydrometeorological and landuse attributes of debris flows and debris floods during Typhoon Toraji, July 29–30, 2001 in Central Taiwan, J. Hydrol., 306, 161–173, 2005.
23.Chiang, Y. C., and Lin, C. Y.: An analysis of rainfall characteristics for debris-flow events in Taiwan, J. Chin. Soil Water Conserv., 22(2), 21-37, 1991 (in Chinese).
24.Chiou, S. J., Cheng, C. T., Hsu, S. M., Lin, Y. H., and Chi, S. Y.: Evaluating landslides and sediment yields induced by the Chi-Chi earthquake and followed heavy rainfalls along the Ta-Chia River, J. GeoEngineering, 2, 73-82, 2007.
25.Chow, V. T., Maidment, D. R., and Mays, L. W.: Applied hydrology, McGraw-Hill Inc., Singapore, 1988.
26.Chu, Y. T. and Hsu, M. L.: The relationship between discharge and suspended sediment concentration at typhoon events in Yu-Feng Catchment, J. Geog. Sci., 49, 1-22, 2007 (in Chinese).
27.Chuang, S. C., Chen, H., Lin, G. W., Lin, C. W., and Chang, C. P.: Increase in basin sediment yield from landslides in storms following major seismic disturbance, Eng. Geol., 103, 59-65, 2009.
28.Crawford, C. G.: Estimation of suspended-sediment rating curves and mean suspended-sediment loads, J. Hydrol., 129, 331-348, 1991.
29.Dadson, S. J., Hovius, N., Chen, H., Dade, W .B., Hsieh, M. L., Willett, S. D., Hu, J. C., Horng, M. J., Chen, M. C., Stark, C. P., Lague, D. and Lin, J.C.: Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nat. 426, 648–651, 2003.
30.Dadson, S., Hovius, N., Chen, H., Dade, W. B., Lin, J. C., Hsu, M. L., Lin, C.W., Horng, M. J., Chen, T. C., Miliman, J., and Stark, C.P.: Earthquake-triggered increase in sediment delivery from an active mountain belt, Geol., 32(8), 373–376, 2004.
31.Easterling, D. R., Evans, J.L., Groisman, P. Ya., Karl, T. R., Kunkel, K. E., and Ambenje, P.: Observed Variability and Trends in Extreme Climate Events: A Brief Review, Bull. Seism. Soc. Am., 81(3): 417-425, 2000.
32.Fan, J. C., Wu, M. F., and Peng, G. T.: The critical rainfall line of debris flow occurrence at Feng-Chiou, Sino-Geotechnics, 74, 39-46, 1999 (in Chinese).
33.Fan, J. C., Liu, J. S., and Wu, M. F.: Determination of critical rainfall thresholds for debris -flow occurrence in central Taiwan and their revision after the 1999 Chi-Chi earthquake, Proceedings of the 3rd International Conference on Debris-Flow Hazards Mitigation, Davos, Switzerland, Rickenmann, D. & Chen, C. L. (ed.). Rotterdam: Millpress, 103-114, 2003.
34.Floris, M., Alpaos, A. D., Squarzoni, C., Genevois, R., and Marani, M.: Recent change in rainfall characteristics and their influence on thresholds for debris flow triggering in the Dolonitic area of Cortina d’Ampezzo, north-eastern Italian Alps, Nat. Hazards Earth Syst. Sci., 10, 571-580, 2010.
35.Hoek, H. and Bray, J. W.: Rock slope engineering, Institution of Mining and Metallurgy, London, 1981.
36.Hsu, H. H., and Chen, C. T.: Observed and projected climate change in Taiwan, Meteorol. Atmos. Phys. 79, 87-104, 2002.
37.Huang, C. C., Lee, Y. H., Liu, H. P., Keefer, D. K., and Jibson, R. W.: Influence of surface-normal ground acceleration on the initiation of the Jih-Feng-Erh-Shan landslide during the 1999 Chi-Chi, Taiwan, earthquake, Bull. Seism. Soc. Am., 91(5), 953–958, 2001.
38.Huang, C. Y.: Taiwan Tectonics. Geol. Soc., Taipei, Taiwan, pp.210, 2002.
39.Hung, J. J., Lin, M. L., Chen, T. C., and Wang, K. L.: Disasters, characteristics, and case analysis of slope failures caused by Chi-Chi Earthquake, Sino-Geotechnics 81, 17–32, 2000 (in Chinese).
40.IPCC. Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell (eds.): Climate change 1995: The science of climate change, Cambridge University Press, Cambridge, pp.572, 1996.
41.IPCC. Core Writing Team, Pachauri, R. K., and Reisinger, A. (eds.): Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, pp. 104, 2007.
42.ISRM: Rock characterization testing & monitoring, ISRM suggested methods, Pergamon, 1-121, 1981.
43.Jakob, M. and Lambert, S.: Climate change effects on landslides along the south-west coast of British Columbia, Geomorphology, 107, 275-284, 2009.
44.Jan, C. D. and Lee, M. H.: A debris-flow rainfall-based warning model, J. Chin. Soil Water Conserv., 35, 3, 275–285, 2004 (in Chinese).
45.Jan, C. D. and Chen, C. L.: Debris flow caused by Typhoon Herb in Taiwan, in Jakob, M. and Hungr, O. (eds.), Debris-flow hazards and related phenomena, Praxis, UK, 539-563, 2005.
46.Jhong, Y. D., Kuo,C. C., and Chen, C. S.: The temporal variation of regional rainfall characteristics in Taiwan, J. of Taiwan Agric. Eng., 55, 4, 2009 (in Chinese).
47.Jomelli, V., Pech, V. P., Chochillon, C., and Brunstein, D.: Geomorphic variations of debris flows and recent climatic change in the French Alps, Climatic Change, 64, 77-102, 2004.
48.Jou, B. J. D. and Chen, Y. M.: Tendency and Identification of the Climatic Variability of Heavy Rainfall and Landfall Typhoon in the Taiwan Area (Ⅲ), Nation Sci. Council, NSC97-2625-M002-022, Taiwan, 2008 (in Chinese).
49.Kamai, T., Wang, W. N., and Shuzui, H.: The landslide disaster induced by the Taiwan Chi-Chi earthquake of 21September, Landslide News, 13, 8-12, 1999.
50.Katz, R. W. and Brown, B. G.: Extreme events in a changing climate: variability is more important than averages, Climate Change, 21, 289–302, 1992.
51.Keefer, D. K.: Landslides caused by earthquakes, Geo, Society Am. Bull., 95, 406-421, 1984.
52.Keefer, D. K., Wilson, R. C., Mark, R. K., Brabb, E. E., Brown, W. M., Ellen, S. D., Harp, E. L., and Wieczorek, C. F.: Real-time landslide warning during heavy rainfall, Science, 238, 921 –925, 1987.
53.Lai, M. F.: Application of GIS to spatial characteristic of rainfall-Chenyulan River Watershed as an example, Master Dissertation, Taichung, 2010 (in Chinese).
54.Lamb, T. W., and Whiteman, R. V.: Soil mechanics, Wiley, New York, 1979.
55.Laws, J. O. and Parsons, D. A.: The relation of rain drop size to intensity, Trans. Am. Geophysical. Union, 24, 452-460, 1943.
56.Lay, L. V., Chiang, S. H.: Rainfall changes in Taiwan, J. Chin. Soil Water Conserv., 34, 2, 161–170, 2003 (in Chinese).
57.Lee, L. T.: Variability analysis on rainfall, runoff nd sediment discharge in the Chenyoulan-stream watershed, Master Dissertation, Tainan, 2008 (in Chinese).
58.Lee, M. H.: A rainfall-based debris-flow warming analysis and its application, Doctoral Dissertation, Tainan, 2006 (in Chinese).
59.Lin, C. W., Shieh, C. L., Yuan, B. D., Shieh, Y. C., Liu, S. H., and Lee, S. Y.: Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: Example from the Chenyoulan River watershed, Nantou, Taiwan, Eng. Geol., 71, 49–61, 2003.
60.Lin, C. W., Lin, S. H., Lee, S. Y., Lin, C. C.: Impacts of Chi-Chi earthquake on subsequent rainfall-induced landslides in central Taiwan, Eng. Geo., 86, 87-101, 2006.
61.Lin, G. W.: The relationships between sediment discharge and landslide-induced by typhoon and earthquake along the Chenyoulan River, Master’s Thesis, Taipei, 2005 (in Chinese).
62.Lin, G. W., Chen, H., Chen, Y. H., and Horng, M. J.: Influence of typhoons and earthquakes on rainfall-induced landslides and suspended sediments discharge, Eng. Geol., 97, 32-41, 2008.
63.Lin, J. C.: The Study of Landslides Patterns (I), Nation Sci. Council, NSC92-2116-M002-011, Taiwan, 2004 (in Chinese).
64.Lin, M. L. and Jeng, F. S.: Characteristics of hazards induced by extremely heavy rainfall in central Taiwan—Typhoon Herb, Eng. Geol., 58, 191–207, 2000.
65.Liu, C. N., Huang, H. F., and Dong, J. J.: Impact of September 21, 1999 Chi-Chi earthquake on the characteristics of gully-type debris flows in central Taiwan, Nat. Hazards, 47, 349-368, 2008.
66.Lu, J. Y., Su, C. C., and Wu, I. Y.: Revision of the isoerodent map for the Taiwan area, J. Chin. Soil Water Conserv., 36, 2, 159–172, 2005 (in Chinese).
67.Lu, M. M., Chen, C. J., Lin, Y. C.: Long-term variations of the occurrence frequency of extreme rainfall events during the period of 1951-2005, Atmospheric Sciences, 35, 2, 2007 (in Chinese).
68.Ma, K. F., Lee, C. T., Tsai, Y. B., and Shin, T. C.: THE Chi-Chi Taiwan earthquake: large surface displacements on an inland thrust fault, EOS Trans, AGU 80, 50, 1999.
69.Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P.: Landslides, earthquakes, and erosion, Earth and Planetary Sci. Letter, 229, 45-59, 2004.
70.Ramesh, S. V., Teegavarapu and Chandramouli, V.: Improved weighting methods, deterministic and stochastic data-driven models for estimation of missing precipitation records, J. Hydrol., 312, 191-206, 2005.
71.Rebetez, M., Lugon, R., and Baeriswyl, P. A.: Climatic change and debris flows in high mountain regions: the case study of the Ritigraben Torrent (Swiss Alps), Climatic Change, 36, 371–389, 1997.
72.Shieh, C. L. and Chen, L. J.: A study on the danger ranks of potential debris flows, J. Chin. Soil Water Conserv., 24, 1, 13–19, 1993 (in Chinese).
73.Shieh, C. L., Luh, Y. C., Yu, P. S., and Chen, L. J.: The critical line of debris flow occurrence, J. Chin. Soil Water Conserv., 26, 3, 167–172, 1995 (in Chinese).
74.Shieh, S. L.: User’s guide for typhoon forecasting in the Taiwan area (VIII), Central Weather Bureau, Taipei, 2000 (in Chinese).
75.Shin, T. C. and Teng, T. L.: An overview of the 1999 Chi-Chi, Taiwan earthquake, Bull. Seism. Soc. Am., 91, 895–913, 2001.
76.Shou, K. J., Hong, C. Y, Wu, H. Y., Hsu, H. Y., Fei, L. Y. Lee, J. F., and Wei, C. Y.: Spatial and temporal analysis of landslides in central Taiwan after 1999 Chi-Chi earthquake, Eng. Geo, 123, 122-128, 2011.
77.Shou, K. J., Wu, C. C, Fei, L. Y., Lee, J. F., and Wei, C. Y.: Dynamic environment in the Ta-Chia river watershed after the 1999 Taiwan Chi-Chi earthquake, Geom., 133, 190-198, 2011.
78.Song, J. W.: A study of impacts of climate change on precipitation and drought in Western Taiwan, Master’s Thesis, Tainan, 2003 (in Chinese).
79.Stoffel, M.: Debris-flow activity in the Ritigraben torrent (Valais Alps, Switzerland): Will there be less but bigger events in a future greenhouse climate? In McInnes, Jakeways, Fairbank & Mathie (eds.), Landslides and Climate Change, 2007.
80.Tsai, K. J.: RS Technology Applied on the Investigation and Monitoring Sediment Disaster Occurred at Forestry Watershed in Taiwan, Council of Agri., PG9410-1073, Taiwan, 2005 (in Chinese).
81.Uchiogi, T.: Landslides due to one continual rainfall, J. Sci. Erosion Control Eng., 23, 21-34, 1971 (in Japanese).
82.Walling, D. E., Assessing the accuracy of suspended sediment rating curves for a small basin, Water Resources Research, 13, 3, 531-538, 1977.
83.Wang, W. N., Yin, C. Y., Chen, C. C., and Lee M. C.: Characteristics of slope failures induced by 921-earthquake in central Taiwan, Proceeding of the Taiwan-Japan Joint Conference on the Investigation and Remediation of the Secondary Disasters after the 921 Earthquake, Taipei, Taiwan, 79-90, 2000 (in Chinese).
84.Wischmeier W. H. and Smith, D. D.: Rainfall energy and its relationship to soil loss, Trans. Am. Geophys. Union, 39, 91-285, 1958.
85.Yang, M. D., Lin, J. Y., Lin, W. J., Huang, K. S., and Wu, D. Y.: Disaster investigation in Chenyulan river basin during Typhoon Morakot, J. Chin. Soil Water Conserv., 40, 4, 345–358, 2009 (in Chinese).
86.Yang, S. Y.: A study on the relation between the rainfall erosivity index R30 and sediment hazards in the watershed of Tseng Wen River, Master Dissertation, Tainan, 2010.
87.Yu, F. C. and Chen, C. K.: A study on the debris-flow disasters at Feng-Chiou, J. Chin. Soil Water Conserv., 18, 1, 76–92, 1987 (in Chinese).
88.Yu, P. S., Yang, T. C., and Wu, C. K.: Impact of climate change on water resources in southern Taiwan, J. Hydrol., 260, 161-175, 2002.
89.Zhuang, J.Q., Cui, P., and Ge, Y.G.: Debris flow annual frequency and sediment delivery variations compared to rainfall changed over the last 40 years (Jiangjia Gully, China), 5th International Conference on Debris-Flow Hazards Mitigation, Mechanics, Prediction and Assessment, Padua, Italy, Genevois, R., Hamilton, D. L., & Prestininzi, A. (eds), 173-180, 2011.
90.Zimmermann, M. and Haeberli, W.: Climatic change and debris flow activity in high mountain areas- a case study in the Swiss Alps. Greenhouse-impact on cold-climate ecosystems and landscapes, Catna Suppl., 22, 59-72, 1992.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top