跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/30 12:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳玟潔
研究生(外文):Wen-JaiChen
論文名稱:壓力波對保水曲線特性之實驗影響評估
論文名稱(外文):An Experimental Assessment of Acoustic Wave effect on Water Retention Curve
指導教授:羅偉誠羅偉誠引用關係
指導教授(外文):Wei-Cheng Lo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系碩博士班
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:64
中文關鍵詞:壓力波保水曲線土壤特性砂箱試驗
外文關鍵詞:Acoustic waveWater retention curveSoilsSand box test
相關次數:
  • 被引用被引用:2
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
近數十年來彈性波在含多相流體的孔隙介質中傳遞行為,引起各界學者研究的興趣,它在工程上的應用具有相當大的價值性。如利用震波預測地下水的相關地質參數,可增加地下水的使用率、低頻彈性波使NAPL(Non Aqueous Phase Liquid, 非水相液體)產生運移來增加地下水汙染整治的效率,亦可提升原油的開採。而高頻彈性波(超音波)則運用在生物工程上,可用來偵測骨骼和軟骨組織的特性及變異。而本研究所探討的「壓力波」,屬於彈性波的一種,其質點運動方向與傳波方向平行。
而保水曲線(Water Retention Curve)是彈性波波傳行為中重要的影響因子之一,過去總以保水曲線之性質不變下,來探討水份變化或者土壤體積變化的關係,但始終未考慮保水曲線是否會受到彈性波的影響而產生變化。故本研究將利用砂箱試驗來探討在壓力波作用下,保水曲線本身是否會受到影響。
本研究利用渥太華標準砂(C109)當作實驗土體,在得到相關土壤特性參數後,利用循環水位升降砂箱試驗,以模擬真實自然界的溼潤與乾燥過程,而得到張力水頭與體積含水比,繪製成保水曲線。待曲線穩定後,分別探討6種頻率(100Hz、150Hz、200Hz、250Hz、300Hz和350Hz)之聲波影響下保水曲線的變化,並利用van Genuchten (1980)模式得到相關參數,進而了解壓力波對保水曲線之影響行為。
由實驗結果得知,壓力波確實會影響保水曲線,但並非同一頻率會同時影響保水曲線之溼潤與乾燥過程。其中,在聲波頻率150Hz對於乾濕過程皆有較大的影響;而聲波頻率200Hz對乾燥過程影響較大;反之聲波頻率250Hz在濕潤過程影響較大。相對於未受到壓力波影響下之保水曲線(又為基準保水曲線)的上方或下方,形狀因子 相對於基準保水曲線的形狀因子 值則會偏小或偏大。



Over the past decades, there have been growing research interests in studying the propagation and attenuation of elastic waves through a porous medium bearing two immiscible viscous compressible fluids because of its practical applications of engineering, such as the enhancement of both oil reservoir production and groundwater contaminant removal induced by low-frequency vibrations, and the detection of defects of bone and cartilage using high frequency (ultrasound) energy. Acoustic wave is one of elastic waves whose particle motion direction parallels to its propagation direction.
Water retention curve has been long recognized as one of the important factors that give an influence on the propagation and attenuation of acoustic waves. In the past, variations in water content and soil volume caused by acoustic waves always were studied under the assumption that water retention curve remains unchanged. In this study, sandbox test is carried out to investigate if water retention curve varies due to acoustic effect.
Ottawa sand (C109) is used in this study as an illustrative example. At first, soil properties are measured and then an experiment is conducted by recycling water level of sand box to simulate the imbibition and drainage processes of water retention curve based on the recorded tension head and volumetric water content. When water retention curve remains stable, six different excitation frequencies (100Hz, 150Hz, 200Hz, 250Hz, 300Hz and 350Hz) are selected to examine the effete of acoustic waves, in which the van Genuchten (1980) model is applied to fit experimental data for describing water retention curve.
Our experiment result indicates that water retention curve is indeed affected by the introduction of acoustic waves. However, it is found that not all acoustic waves simultaneously offer an effect on the imbibition and drainage processes of water retention curve. It is revealed experimentally that acoustic wave with excitation frequency of 150Hz renders an impact on the imbibition process and drainage process, acoustic wave with excitation frequency of 200Hz has the most significant impact on the drainage process, and acoustic wave with excitation frequency of 250Hz has the most significant impact on the imbibition process. It is also shown that if water retention curve moves upward, the shape factor is observed to be smaller, while if water retention curve moves downward, we find that the shape factor would be greater.

中文摘要I
AbstractIII
誌謝V
目錄VI
表目錄VII
圖目錄VIII
符號說明X
第一章緒論1
1.1研究動機與目的1
1.2文獻回顧2
1.3本文架構7
第二章理論模式與實驗設置8
2.1未飽和保水曲線之理論模式8
2.2實驗設置16
2.2.1土壤基本性質試驗(參照土壤力學實驗手冊和ASTM)16
2.2.2循環水位砂箱試驗30
第三章實驗結果與討論36
第四章結論與建議58
4.1結論58
4.2建議59
參考文獻61

1.Alessi, S., L. Prunty, and W. H. Schu (1992), Infiltration Simulations among Five Hydraulic Property Model, Soil Science Society of America Journal, Vol. 56, pp. 675-682.
2.Bear, J. (1988), Dynamics of Fluids in Porous Media, Dover, Mineola: N. Y.
3.Biot, M. A. (1956a), Theory of propagation of elastic waves in a fluid saturated porous solid, Ⅰ. Low-frequency range, The Journal of the Acoustical Society of America, Vol. 28, no. 2, pp. 168-178.
4.Biot, M. A. (1956b), Theory of propagation of elastic waves in a fluid saturated porous solid, Ⅱ. Higher frequency range, The Journal of the Acoustical Society of America, Vol. 28, no. 2, pp. 179-191.
5.Brooks, R. H., and A. T. Corey (1964), Hydraulic properties of porous media, Colorado State University, Hydrology Paper, No. 3.
6.Clapp, R. B., and G. M. Hornberger (1978), Empirical equations for some soil hydraulic-properties, Water Resources Research, Vol. 14, pp. 601-604.
7.Cowin, S. C. (1999), Bone poroelastictiy, Journal of Biomechanics, Vol. 32, pp. 217-238.
8.Hickey, C. J., and J. M. Sabatier (1997), Measurements for two types of dilatational waves in an air-filled unconsolidated sand. Acoustical Society of America.[S0001-4966(97)06507-7].
9.Hillel D., V. D. Krentos, and Y. Stylianou (1972), Procedure and test of an internal drainage method for measuring soil hydraulic characteristics in situ. Soil Science, Vol. 114, No. 5, pp. 395-400
10.Horton, R. E. (1940), An approach toward a physical interpretation of infiltration capacity, Soil Science Society of America, Vol. 5, pp. 299-417.
11.Huang, H.-C., Y.-C. Tan, C.-W. Liu, and C.-H. Chen (2005), A novel hysteresis model in unsaturated soil, Hydrological Processes, Vol. 19, pp. 1653-1665.
12.Hughes, E. R., T. G. Leighton, G. W. Petley, P. R. White, and R. Cm. Chivers (2003), Estimation of critical and viscous frequencies for Biot theory in cancellous bone, Ultrasonics, Vol. 41, no. 5, pp. 365-368.
13.Hutson, J. T., and A. Cass (1987), A retentivity function for use in soil water simulation models. Journal of Soil Science,Vol. 38, pp. 105-113.
14.Janbu, N. (1954), Application of composite slip surfaces for stability analysis, Proceedings of European Conference on Stability of Earth Slopes, Sweden3:43-49.
15.Ke, K.-Y., Y.-C. Tan, C.-H. Chen, and H.-T. Lin (2012), Characterizing the hydraulic properties of unsaturated sand considering various porosities and drying-wetting paths of the retention curve, Hydrological Processes, doi:10.1002/hyp.9246.
16.Kool, J. B., and J. C. Parker (1987), Development and evaluation of closed-form expressions for hysteretic soil hydraulic properties. Water Resources Research, Vol. 23, pp. 105-114.
17.Kutilek, M., and D. Nielsen (1994), Soil Hydrology, CATENA VERLAG, pp. 28-217.
18.Leij, F.J., T.A. Ghezzehei, and D. Or (2002), Modeling the dynamics of the soil pore-size distribution. Soil and Tillage Research, Vol. 64, pp. 61–78.
19.Lo, W.-C., G. Sposito, and E. Majer (2005), Wave propagation through elastic porous media containing two immiscible fluids, Water Resources Research, Vol. 41, no. 2, pp. 20, W02025.
20.Ma, K.-C., Y.-C. Tan, and C.-H. Chen (2011), The influence of water retention curve hysteresis on the stability of unsaturated soil slopes, Hydrological Processes, Vol. 25, pp. 3563-3574.
21.Mualem, Y. (1976), A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resources Research, Vol. 12, No. 3, pp. 513-522.
22.Roberts, P. M., A. Sharma, V. Uddameri, M. Monagle, D. E. Dale, and L. K. Steck (2001), Enhanced DNAPL transport in a sand core during dynamic stress stimulation, Environmental Engineering Science, Vol. 18, no. 2, pp. 67-79.
23.Scott, P. S., G. J. Farquhar, and N. Kouwen (1983), Hysteretic effects on net infiltration. Advances in Infiltration: proceedings of the National Conference on Advances in Infiltration, 11-83, pp. 452-412.
24.Seyedabbasi, M. A., M. W. Farthing, P. T. Imhoff, and C. T. Miller (2008), The influence of wettability on NAPL dissolution fingering, Advances in Water Resources. Vol. 31, pp. 1687-1696.
25.Stange, F. C., and R. Horn (2005), Modeling the Soil Water Retention Curve for Conditions of Variable Porosity, Vadose Zone Journal, Vol. 4, no. 3, pp. 602-613.
26.Startsev, A. D., and D. H. McNabb (2001), Skidder Traffic Effects on Water Retention, Pore-Size Distribution, and van Genuchten Parameters of Boreal Forest Soils, Soil Science of America journal, Vol. 65, pp. 224-231.
27.van Genuchten, M. T. (1980), A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Science of America journal, Vol. 44, no. 5, pp. 892-898.
28.Wu, T. T., J. S. Fang, and P. L. Liu (1995), Detection of the Depth of a Surface-breaking Crack Using Transient Elastic Waves, Journal of the Acoustical Society of Americal , Vol. 97, pp. 1678-1686
29.王燦銘 (2002),遲滯土壤水分傳輸數值模式之研究,國立台灣大學生物環境系統工程研究所碩士論文。
30.林子雲 (2003),鹽化土壤遲滯現象之研究,國立台灣大學生物環境系統工程學系研究所碩士論文。
31.林宜清 (2001),敲擊彈性波技術應用在聚積混凝土結構物裂縫之檢測,中興工程顧問社。
32.柯凱元 (2007),利用砂箱試驗與遲滯模式探討土壤保水曲線與沉陷特性關係之研究,國立台灣大學生物環境系統工程學研究所博士論文。
33.倪勝火 (2006),土壤力學實驗手冊,國立成功大學土木工程學系。
34.楊欣常 (2001),土壤水分遲滯理論模式與實驗分析,國立台灣大學農業工程研究所碩士論文。


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top