跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/08/04 19:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莫瑞
研究生(外文):Mohammad RezaMortazavi
論文名稱:聲波通過二氧化碳氣泡特性之研究
論文名稱(外文):The Effect of Carbon Dioxide Bubbles on Sound Propagation in Water
指導教授:黃清哲黃清哲引用關係
指導教授(外文):Ching-Jer Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系碩博士班
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:68
中文關鍵詞:聲波氣泡
外文關鍵詞:sound propagationbubbles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:81
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
兩相流在聲學系統中扮演一個重要的角色;在聲學系統所描述的現象中,有一個重要的影響,亦即聲音在通過不同介質時,繞射與散射的物理現象。在以往的文獻中,有許多探討聲音通過空氣泡(air bubble)的研究成果,然而並沒有太多文獻探討聲波通過以二氧化碳所構成之氣泡幕的研究成果,儘管二氧化碳在水中具有高度可溶性。由於二氧化碳的水溶性,一般假設二氧化碳所造成的氣泡比由空氣所造成的氣泡小。因此,聲音通過二氧化碳所形成之氣泡幕之衰減比起空氣要來得大。為了驗證此一假定,本研究進行了相關的實驗,並將施作頻率控制在10 kHz到100 kHz之間,氣泡的大小尺寸以及體積分率量測均透過高速攝影機進行量測。實驗結果發現,在同樣的空氣流率情形下,由於二氧化碳所構成之氣泡幕可溶於水,因此體積分率以及氣泡幕寬度均小於空氣所構成結果。由實驗結果亦可發現與聲波通過氣泡幕之理論結果有不錯的一致性。無論是以高速攝影機拍攝所得之結果或是透過聲學理論分析求得之結果,均可證明二氧化碳所構成之氣泡尺寸小於由空氣所造成之氣泡大小;然而,由於較小的體積分率以及氣泡幕寬度,導致聲波通過二氧化碳之氣泡幕衰減少於空氣所形成之結果。
Two-phase fuids play an important role in acoustic systems. One of the outstanding effects of this mentioned phenomenon is scattering and attenuating the sound, which passes through the phases. Although there have been many studies about sound scattering and attenuating through air-bubbles, there are not many experiments performed on the CO2 bubbles effect on sound propagation. Despite the fact that CO2 has high solubility in water which could be a good candidate for these tests, no study has been carried out in this way. It was assumed that CO2 bubbles are smaller than air bubbles which is because of their solubility. Therefore, sound attenuation through CO2 bubbles should be higher in comparison to air bubbles. To examine this assumption, we carried out some experiments which,limited the working frequency range to be within 10 to 100 kHz. Bubble size and void fraction measurements were conducted with a CCD camera, using acoustic method (inverse frequency) and (Su andWesson)1 method respectively. By doing these experiments, we realized that as CO2 is absorbed by water, the void fractions and bubble screen widths become smaller than air bubbles using the same ow rate. It must be noted that the experimental data has a good correlation with the classical theory of sound propagation through bubble fluid. The experimental results, either by photography or acoustic method, prove our assumption that the CO2 bubbles diameter is smaller than that of air-bubbles. However, the sounds attenuation for CO2 was less than that of air-bubbles due to the smaller void fractions and bubble screen widths.
[1] Su, M. Y.,J. Wesson, R. Burge and W. J. Teangu (1999b). Characteristics of bubble distributions in the littoral zone.. J. Geophs. Res., sept
[2] N. Domenico(1982). Acoustic wave propagation in air-bubble curtains in water; Part I, History and theory. Geophysics, v. 47, p. 345-353,
[3] Thiemann, A., T. Nowak, et al. (2011). Characterization of an acoustic cavitation bubble structure at 230kHz. Ultrasonics Sonochemistry 18(2): 595-600.
[4] ] Trevorrow, M. V., S. Vagle, et al. (1994). Acoustical measurements of microbubbles within ship wakes. Journal of the Acoustical Society of America 95(4): 1922-1930.
[5] trevorrow, M. V. (2003). Measurements of near-surface bubble plumes in the open ocean with implications for high-frequency sonar performance. The Journal of the Acoustical Society of America 114(5): 2672-2684.
[6] Minnaert, M. (1933). XVI. On musical air-bubbles and the sounds of running water. Philosophical Magazine Series 7 16(104): 235-248.
[7] Sage, K. A., J. George, et al. (1978). Multipole resonances in sound scattering from gas bubbles in a liquid. The Journal of the Acoustical Society of America 63(S1): S11-S11.
[8] Strasberg, M. (1956). Gas bubbles as sources of sound in liquids. The Journal of the Acoustical Society of America 28(1): 20-26.
[9] Ye, Z. and C. Feuillade (1997). Sound scattering by an air bubble near a plane sea surface. The Journal of the Acoustical Society of America 102(2): 798-805.
[10] Devin, J. C. (1959). Survey of thermal, radiation, and viscous damping of pulsating air bubbles in water. The Journal of the Acoustical Society of America 31(12): 1654-1667.
[11] Feuillade, C. (1996). The attenuation and dispersion of sound in water containing multiply interacting air bubbles. The Journal of the Acoustical Society of America
99(6): 3412-3430.
[12] Manasseh, R., A. Nikolovska, et al. (2004). Anisotropy in the sound eld generated by a bubble chain. Journal of Sound and Vibration 278(45): 807-823.
[13] Lee, K., K. T. Hinojosa, et al. (2011). Attenuation of low-frequency underwater sound using bubble resonance phenomena and acoustic impedance mismatching. Proceedings of Meetings on Acoustics 11(1): 005001-005017.
[14] Medwin, H. (1974). Acoustic uctuations due to microbubbles in the near-surface ocean. The Journal of the Acoustical Society of America 56(4): 1100-1104.
[15] Foldy, L. L. (1945). The multiple scattering of waves. Physical Review 67(3-4): 107-119.
[16] Carstensen, E. L. and L. L. Foldy (1947). Propagation of sound through a liquid containing bubbles. The Journal of the Acoustical Society of America 19(3): 481- 501.
[17] Commander, K. W. and A. Prosperetti (1989). Linear pressure waves in bubbly liquids: Comparison between theory and experiments. The Journal of the Acoustical Society of America 85(2): 732-746.
[18] Stride, E. and N. Sa ari (2005). Investigating the signi cance of multiple scattering in ultrasound contrast agent particle populations. Ultrasonics, Ferroelectrics and
Frequency Control, IEEE Transactions on 52(12): 2332-2345.
[19] Leighton, T. G., S. D. Meers (2004). Propagation through nonlinear time-dependent bubble clouds and the estimation of bubble populations from measured acoustic characteristics. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 460(2049): 2521-2550.
[20] Leighton, T. (2001). Surf zone bubble spectrometry: The role of the acoustic cross section. The Journal of the Acoustical Society of America 110(5): 2694-2694.
[21] Silberman, E. (1957). Sound Velocity and Attenuation in Bubbly Mixtures Measured in Standing Wave Tubes. The Journal of the Acoustical Society of America 29(8): 925-933.
[22] Wilson, P. S., R. A. Roy, et al. (2005). speed and attenuation in bubbly liquids inferred from impedance measurements near the individual bubble resonance frequency. The Journal of the Acoustical Society of America 117(4): 1895-1910.
[23] Duro, V., et al. (2011). Experimental study of sound propagation through bubbly water: Comparison With Optical Measurements. Oceanic Engineering, IEEE Journal of 36(1): 114-125.
[24] Eller, A. and H. G. Flynn (1969). of Subharmonics of Order One-Half by Bubbles in a Sound Field. The Journal of the Acoustical Society of America 46(3B): 722-727.
[25] Prosperetti, A. (1974). Nonlinear oscillations of gas bubbles in liquids: steady-state solutions. The Journal of the Acoustical Society of America 56(3): 878-885.
[26] Hilgenfeldt, S., D. Lohse, et al. (2000). scattering and localized heat deposition of pulse-driven microbubbles. The Journal of the Acoustical Society of America 107(6): 3530-3539.
[27] Devaud, M., T. Hocquet, et al. (2010). Sound propagation in a monodisperse bubble cloud: From the crystal to the glass. The European Physical Journal E: Soft Matter and Biological Physics 32(1): 13-23.
[28] Semyon Levitsky., (2011), Pressure Waves Propagation in an Elastic Shell with Poly-disperse Liquid-Gas Mixture., Applied Mechanics and Materials, 105-107, 259 .
[29] Kevin, M. K. M. L., S. M. S. W. Mark, et al. (2012). of low-frequency underwater noise generated by rotating machinery on a mobile work barge using large tethered encapsulated bubbles. The Journal of the Acoustical Society of America 131(4): 3507-3507.
[30] Santoro, M., F. A. Gorelli, et al. (2006). Amorphous silica-like carbon dioxide. Nature 441(7095): 857-860.
[31] Calderbank, P. H. and A. C. Lochiel (1964). Mass transfer coe cients, velocities and shapes of carbon dioxide bubbles in free rise through distilled water. Chemical Engineering Science 19(7): 485-503.
[32] Greenspan, D. (1995). Particle simulation of large carbon dioxide bubbles in water. Applied Mathematical Modelling 19(12): 738-745.
[33] Takemura, F. and A. Yabe (1999). Rising speed and dissolution rate of a carbon dioxide bubble in slightly contaminated water. Journal of Fluid Mechanics 378: 319-
334.
[34] Duan, Z. and R. Sun (2003). improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chemical Geology 193(34): 257-271
[35] Maceiras, R., E. lvarez, et al. (2008). of temperature on carbon dioxide absorption in monoethanolamine solutions. Chemical Engineering Journal 138(13): 295-300.
[36] Geraets, J. J. M. and J. C. Borst (1988). A capacitance sensor for two-phase void fraction measurement and ow pattern identi cation. International Journal of Multiphase Flow 14(3): 305-320.
[37] Murai, Y., Y. Matsumoto, et al. (2001). Three-dimensional measurement of void fraction in a bubble plume using statistic stereoscopic image processing. Experiments in Fluids 30(1): 11-21.
[38] J.C. Maxwell(1981). A Treatise on Electricity and Magnetism., Vol. 1 Clarendon Press, Oxford.
[39] Cartmill, J. and M.-Y. Su. (1993). Bubble size distribution under saltwater and fresh-water breaking waves.. Dyn. Atmos. Oceans 20, 25-31.
[40] Prosperetti, A. (1988). Bubble-related ambient noise in the ocean. Journal of the Acoustical Society of America 84(3): 1042-1054.
[41] P. G. Sa man (1956). On the rise of small air bubbles in water. Journal of Fluid Mechanics, 1(03): 249-275
[42] R.A. Hartunian, W.R. Sears. (1957). On the instability of small gas bubbles moving uniformly in various liquids. Journal of Fluid Mechanics 3(01): 27-47.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top