跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 17:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林建鋒
研究生(外文):Jian-FengLin
論文名稱:波浪場中密度效應對紊流射流特性之研究
論文名稱(外文):Investigation of Density Effect on Turbulent Round Jet in Wave Environment
指導教授:許泰文許泰文引用關係蕭士俊蕭士俊引用關係
指導教授(外文):Tai-Wen HsuTai-Wen Hsu
學位類別:博士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系碩博士班
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:115
中文關鍵詞:水波圓管射流浮昇射流紊流浮力效應質點影像測速儀
外文關鍵詞:Water wavesRound jetBuoyant jetTurbulenceBuoyancy effectPIV
相關次數:
  • 被引用被引用:1
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本試驗研究應用質點影像測速儀 (Particle Image Velocimetry, PIV) 探討圓管射流在水槽中間水深的位置下,排放至與前進波浪反向的平均流場與紊流之特性。本文將在射流排放口附近的勢心區 (potential core region) 及近域區 (self-similar region) 量測所獲得之流場利用整體相位平均法來分離其速度之平均量與紊流擾動量。
在試驗中除了改變三種不同入射波高初始條件,探討波浪尖銳度對紊流射流之影響外,並同時量測紊流射流在三種不同波浪相位下之流場結果。經由試驗結果顯示,射流寬度、紊流強度與雷諾應力皆會受到波浪的作用而改變,並且隨著入射波高的增加而增大。波浪與射流交互作用後其平均動能會變小,反之紊流動能則會增加。此外,本文亦發現紊流能量收支平衡中之生成項、對流項、傳輸項及能量消散項皆明顯地隨著入射波高的增大而增強。
此外,本文亦改變三種不同初始密度之射流流出物,探討不同密度的浮昇射流與周遭流體交互作用後浮力與波浪之效應。經由試驗結果顯示,浮昇射流寬度、紊流強度與雷諾應力除了會受到本身初始密度差之影響外,亦隨波浪的作用而增大。最後,本文比較波浪場作用下浮昇射流的紊流動能、渦動滯度以及紊流能量收支平衡中之生成項、對流項、傳輸項及能量消散項,其特性皆會受到浮力與波浪效應之交互作用而有增大的現象。
An experimental study of a turbulent round jet discharged into a regular wave field is presented. The particle image velocimetry (PIV) technique was employed to measure instantaneous velocity fields of the flow. Quantitative mean and turbulence properties were obtained using ensemble- and phase-average methods. Both the jet potential core region and self-similar region were measured. Three different wave heights were used to examine the effect of wave steepness on the jet properties. Measurements were also taken at three different phases to examine the wave phase effect.
Experimental results demonstrate that the mean jet width, turbulence intensity, and Reynolds stress increased significantly when the jet was acted on by the waves. In addition, the jet mean kinetic energy decreased whereas the turbulent kinetic energy increased when the jet was under the waves, indicating an increase in turbulence production. The wave phase has an insignificant effect on the both the mean and turbulence properties. The turbulent kinetic energy budget in the self-similar region at different wave conditions was also examined. It was found that the turbulent production, advection, and dissipation terms all increase with the increase of the wave height.
In addition, present study also extends to include both positively and negatively buoyant jets in waves. Three kinds of effluent jets are also employed for examining the effects of buoyancy on the interactions of a horizontal round jet in both the jet’s potential core region and self-similar region with regular waves. By comparing the buoyant jet in a stagnant, ambient environment and in a wave field, the experiment demonstrates that the widths of the positive and negative jets increase significantly because of the buoyancy effect and the wave dispersion effect - a clear indication of enhanced jet diffusion. As expected, the turbulence intensity and Reynolds stress of the buoyant jet is also significantly influenced when the jet is acted upon by waves.
To quantify this influence, the eddy viscosity is also calculated on the basis of the measurements. An examination of the buoyant jet’s energy budget shows that when the jet is under waves, its mean kinetic energy decreases while its turbulent kinetic energy increases, indicating an increase in turbulence production. By examining the near field property, it is found that the turbulence production, advection, and dissipation terms of the buoyant jet under waves are greater than those of a buoyant jet in a stagnant environment, owing to the greater interaction between the buoyancy effects and the water waves near the free surface.
Contents
Abstract I
中文摘要 III
誌謝 IV
Contents VI
List of tables VIII
List of figures IX
List of acronyms XIV
List of symbols XV
1 Introduction 1
1.1 Background and motivations 1
1.2 Literature review 3
1.2.1 Turbulent jet in wave environment 3
1.2.2 Buoyant jets discharged into a stagnant or steady-flow ambient 6
1.3 Objective and outline of the present study 7
2 Experimental technique and analysis 10
2.1 Laboratory facilities and setup 10
2.2 Experimental conditions and data analysis 19
2.2.1 Experimental conditions 19
2.2.2 Flow visualization system 23
2.2.3 Effect of refractive index 24
2.3 Particle image velocimetry (PIV) 27
2.4 Phase-averaged method 34
2.5 Verification of experiments 36
2.5.1 Experimental repeatability 36
2.5.2 Verification of PIV measurement 37
3 Effect of wave height on neutrally buoyant jet 40
3.1 Potential core jet properties 40
3.1.1 Mean velocity properties 40
3.1.2 Turbulent properties 45
3.2 Mean flow property in near field 47
3.3 Turbulence property in near field 53
3.4 Turbulence kinetic energy budget 58
4 Buoyancy effect on turbulent buoyant jet 61
4.1 Buoyancy and wave effects in the potential core 61
4.2 Buoyancy and wave effects in the near field 71
4.3 Eddy viscosity 83
4.4 Turbulence kinetic energy budget 87
5 Conclusions and future work 91
5.1 Summary 91
5.1.1 Effect of wave height on neutrally buoyant jet 91
5.1.2 Buoyancy effect on turbulent buoyant jet 92
5.2 Recommendations for future work 94
Bibliography 96
A Estimation of turbulence dissipation rate 107
Vita 113
1. Adrian, R.J., (1991). Particle-imaging techniques for experimental fluid mechanics. Annual Review of Fluid Mechanics, Vol. 23, pp. 261-304.
2. Adrian, R.J., (1995). Limiting resolution of particle image velocimetry for turbulent flow, Proc. 2nd Turbulence Research Assoc. Conf. Pohang Inst. Tech., pp. 1-19.
3. Andreopoulos, J. and Rodi, W., (1984). Experimental investigation of jets in a crossflow. Journal of Fluid Mechanics, Vol. 138, pp. 93-127.
4. Antonia, R.A. and Bilger, R.W., (1973). An experimental investigation of an axisymmetric jet in a co-flowing air stream. Journal of Fluid Mechanics, Vol. 61, pp. 805-822.
5. Antonia, R.A. and Zhao, Q., (2001). Effect of initial conditions on a circular jet. Experiments in Fluids, Vol. 31(3), pp. 319-323.
6. Bendat, J.S. and Piersol, A.G., (1986). Random data: analysis and measurement procedures. New York, Wiley.
7. Burattini, P., Antonia, R.A. and Danaila, L., (2005). Similarity in the far field of a turbulent round jet. Physics of Fluids, Vol. 17(2), pp. 025101.
8. Casarsa, L. and Giannattasio, P., (2008). Three-dimensional features of the turbulent flow through a planar sudden expansion. Physics of Fluids, Vol. 20(1), pp. 015103.
9. Chan, C.H.C. and Lam, K.M., (1998). Centerline velocity decay of a circular jet in a counterflowing stream. Physics of Fluids, Vol. 10(3), pp. 637-644.
10. Chang, K.A. and Liu, P.L.F., (2000). Pseudo turbulence in PIV breaking-wave measurements. Experiments in Fluids, Vol. 29(4), pp. 331-338.
11. Chang, K.A. and Cowen, E.A., (2002). Turbulent Prandtl number in neutrally buoyant turbulent round jet. Journal of Engineering Mechanics-ASCE, Vol. 128(10), pp. 1082-1087.
12. Chang, K.A., Ryu, Y. and Mori, N., (2009). Parameterization of neutrally buoyant horizontal round jet in wave environment. Journal of Waterway, Port, Coastal and Ocean Engineering-ASCE, Vol. 135(3), pp. 100-107.
13. Chin, D.A., (1987). Influence of surface waves on outfall dilution. Journal of Hydraulic Engineering-ASCE, Vol. 113(8), pp. 1006-1018.
14. Chin, D.A., (1988). Model of buoyant-jet-surface-wave interaction. Journal of Waterway, Port, Coastal and Ocean Engineering-ASCE, Vol. 114(3), pp. 331-345.
15. Chen, Y.P., Li, C.W. and Zhang, C.K., (2008). Numerical modeling of a round jet discharged into random waves. Ocean Engineering, Vol. 35(1), pp. 77-89.
16. Chen, Y.Y., Hsu, H.C., Su, C.W. and Lin, Y.P., (2010). Velocity and temperature distributions of turbulent plane jet interaction with the nonlinear oppositive progressive gravity waves. Proceedings of the 32nd Ocean Engineering Conference in Taiwan, Keelung, Taiwan, pp. 7-12, (in Chinese).
17. Chu, P.C.K., Lee, J.H. and Chu, V.H., (1999). Spreading of turbulent round jet in coflow. Journal of Hydraulic Engineering-ASCE, Vol. 125(2), pp. 193-204.
18. Chyan, J.M., (1992). The initial dilution process of vertical turbulent round jet under wave effects. Ph. D. Dissertation, National Cheng Kung University, (in Chinese).
19. Chyan, J.M. and Hwung, H.H., (1993). On the interaction of a turbulent jet with waves. Journal of Hydraulic Research, Vol. 31, pp. 791-810.
20. Cowen, E.A., Chang, K.A. and Liao, Q., (2001). A single camera couple PTV-LIF technique. Experiments in Fluids, Vol. 31(1), pp. 63-73.
21. Cowen, E.A., Sou, I.M., Liu, P.L.F. and Raubenheimer, B., (2003). Particle image velocimetry measurements within a laboratory-generated swash zone. Journal of Engineering Mechanics-ASCE, Vol. 129(10), pp. 1119-1129.
22. Cuthbertson, A.J.S., Apsley, D.D., Davies, P.A., Lipari, G. and Stansby, P.K., (2008). Deposition from particle-laden, plane, turbulent, buoyant jets. Journal of Hydraulic Engineering-ASCE, Vol. 134(8), pp. 1110-1122.
23. de Jong, J., Cao, L., Woodward, S.H., Salazar, J.P.L.C., Collins, L.R. and Meng, H., (2009). Dissipation rate estimation from PIV in zero-mean isotropic turbulence. Experiments in Fluids, Vol. 46(3), pp. 499-515.
24. Doron, P., Bertuccioli, L., Katz, J. and Osborn, T.R., (2001). Turbulence characteristics and dissipation estimates in the coastal ocean bottom boundary layer from PIV data. Journal of Physical Oceanography, Vol. 31(8), pp. 2108-2134.
25. Fellouah, H., Ball, C.G. and Pollard, A., (2009). Reynolds number effect within the development region of a turbulent round free jet. International Journal of Heat and Mass Transfer, Vol. 52, pp. 3943-3954.
26. Ferdman, E., Ötügen, M.V. and Kim, S., (2000). Effect of initial velocity profile on the development of round jets. Journal of Propulsion and Power, Vol. 16(4), pp. 676-686.
27. Ferrari, S. and Querzoli, G., (2010). Mixing and re-entrainment in a negatively buoyant jet. Journal of Hydraulic Research, Vol. 48(5), pp. 632-640.
28. Fischer, H.B., List, E.J., Koh, R.C.Y., Imberger, J. and Brooks, N.H., (1979). Mixing in Inland and Coastal Water. Academic Press, London.
29. Gargett, A.E., Osborn, T.R. and Nasmyth, P.W., (1984). Local isotropy and the decay of turbulence in a stratified fluid. Journal of Fluid Mechanics, Vol. 144, pp. 231-280.
30. George, W.K. and Hussein, H.J., (1991). Locally axisymmetric turbulence. Journal of Fluid Mechanics, Vol. 233, pp. 1-23.
31. Govender, K., Mocke, G.P. and Alport, M.J., (2004). Dissipation of isotropic turbulence and length-scale measurements through the wave roller in laboratory spilling waves. Journal of Geophysical Research-Oceans, Vol. 109(C8), pp. C08018.
32. Grue, J., Liu, P.L.F. and Pedersen, G.K., (2004). PIV and water waves. Advances in Coastal and Ocean Engineering, Vol. 9, World Scientific, Taipei.
33. Horner-Devine, A.R., (2006). Velocity, density and transport measurements in rotating, stratified flows. Experiments in Fluids, Vol. 41(4), pp. 559-571.
34. Hsiao, S.C., Hsu, T.W., Lin, J.F. and Chang, K.A., (2011). Mean and turbulence properties of neutrally buoyant round jet in wave environment. Journal of Waterway, Port, Coastal and Ocean Engineering-ASCE, Vol. 137(3), pp. 109-122.
35. Huang, J.F., Davidson, M.J. and Nokes, R.I., (2005). Two-dimensional and line jets in a weak cross-flow. Journal of Hydraulic Research, Vol. 43(4), pp. 390-398.
36. Huang, Z.C., Hsiao, S.C., Hwung, H.H. and Chang, K.A., (2009). Turbulence and energy dissipations of surf-zone spilling breakers. Coastal Engineering, Vol. 56(7), pp. 733-746.
37. Huang, Z.C., Hwung, H.H., Hsiao, S.C. and Chang, K.A., (2010). Laboratory observation of boundary layer flow under spilling breakers in surf zone using particle image velocimetry. Coastal Engineering, Vol. 57(3), pp. 343-357.
38. Hussein, H.J., Capp, S.P. and George, W.K., (1994). Velocity measurements in a high-Reynolds-number, momentum-conserving, axis-symmetric, turbulent jet. Journal of Fluid Mechanics, Vol. 258, pp. 31-75.
39. Hwung, H.H., (1981). Velocity and temperature distributions of turbulent plane jet interaction with small amplitude wave. Ph. D. Dissertation, National Cheng Kung University, (in Chinese).
40. Hwung, H.H., Wang, S.C. and Lin, C., (1988). The investigation of turbulent characteristics in the surf zone by LDV. Proceedings of the 10th Ocean Engineering Conference in Taiwan, Taipei, Taiwan, pp. 17-34, (in Chinese).
41. Hwung, H.H., Chyan, J.M. and Chang, C.Y., (2002). Effect of discharge angles on the dilution of buoyant jet in wave motions. Proceedings of the 24th Ocean Engineering Conference in Taiwan, Taichung, Taiwan, pp. 132-139, (in Chinese).
42. Jirka, G.H., (2004). Integral model for turbulent buoyant jets in unbounded stratified flows. Part I: Single round jet. Environmental Fluid Mechanics, Vol. 4(1), pp. 1-56.
43. Jirka, G.H., (2006). Integral model for turbulent buoyant jets in unbounded stratified flows Part 2: Plane jet dynamics resulting from multiport diffuser jets. Environmental Fluid Mechanics, Vol. 6(1), pp. 43-100.
44. Jirka, G.H., (2007). Buoyant surface discharges into water bodies. II: Jet integral model. Journal of Hydraulic Engineering-ASCE, Vol. 133(9), pp. 1021-1036.
45. Jirka, G.H., (2008). Improved discharge configurations for brine effluents from desalination plants. Journal of Hydraulic Engineering-ASCE, Vol. 134(1), pp. 116-120.
46. Johnston, A.J., Nguyen, N. and Volker, R.E., (1993). Round buoyant jet entering shallow water in motion. Journal of Hydraulic Engineering-ASCE, Vol. 119(12), pp. 1364-1382.
47. Johnston, A.J., Phillips, C.R. and Volker, R.E., (1994). Modeling horizontal round buoyant jets in shallow water. Journal of Hydraulic Engineering-ASCE, Vol. 120(1), pp. 41-59.
48. Johnston, A.J. and Volker, R.E., (1993). Round buoyant jet entering shallow water. Journal of Hydraulic Research, Vol. 31(1), pp.121-138.
49. Jones, G.R., Nash, J.D., Doneker, R.L. and Jirka, G.H., (2007). Buoyant surface discharges into water bodies. I: Flow classification and prediction methodology. Journal of Hydraulic Engineering-ASCE, Vol. 133(9), pp. 1010-1020.
50. Kelso, R.M., Lim, T.T. and Perry, A.E., (1996). An experimental study of round jet cross-flow. Journal of Fluid Mechanics, Vol. 306, pp. 111-144.
51. Kikkerk, G.A., Davidson, M.J. and Nokes, R.I., (2007). Inclined negatively buoyant discharges. Journal of Hydraulic Engineering-ASCE, Vol. 133(5), pp. 545-554.
52. Kimmoun, O. and Branger, H., (2007). A particle images velocimetry investigation on laboratory surf-zone breaking waves over a sloping beach. Journal of Fluid Mechanics, Vol. 588, pp. 353-397.
53. Kolmogorov, A.N., (1941). The local structure of turbulence in an incompressible viscous fluid for very large Reynolds numbers. Dokl Akad Nauk SSSR, Vol. 30, pp. 299-303.
54. Koole, R. and Swan, C., (1994). Measurements of a 2-D non-buoyant jet in a wave environment. Coastal Engineering, Vol. 24(1-2), pp. 151-169.
55. Kuang, C.P. and Lee, J.H.W., (2006). Stability and mixing of a vertical axisymmetric buoyant jet in shallow water. Environmental Fluid Mechanics, Vol. 6(2), pp. 153-180.
56. Kwon, S.J. and Seo, I.W., (2005). Reynolds number effects on the behavior of a non-buoyant round jet. Experiments in Fluids, Vol. 38(6), pp. 801-812.
57. Lam, K.M. and Chan, C.H.C., (2002). Time-averaged mixing behavior of circular jet in counterflow: Velocity and concentration measurements. Journal of Hydraulic Engineering-ASCE, Vol. 128(9), pp. 861-865.
58. Lam, K.M., Lee, W.Y., Chan, C.H.C. and Lee, J.H.W., (2006). Global behaviors of a round buoyant jet in a counterflow. Journal of Hydraulic Engineering-ASCE, Vol. 132(6), pp. 589-604.
59. Law, A.W.K. and Wang, H.W., (2000). Measurement of mixing processes with combined digital particle image velocimetry and planar laser induced fluorescence. Experimental Thermal and Fluid Science, Vol. 22(3-4), pp. 213-229.
60. Liu, S., Meneveau, C. and Katz, J., (1994). On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. Journal of Fluid Mechanics, Vol. 275, pp. 83-119.
61. Lee, J.H.W. and Cheung, V., (1990). Generalized Lagrangian model for buoyant jets in current. Journal of Environmental Engineering, Vol. 116(6), pp. 1085-1106.
62. Lee, J.H.W. and Chu, V.H., (2003). Turbulent Jets and Plumes: A Lagrangian Approach. Kluwer Academic Publishers, Boston.
63. Lee, J.H.W. and Neville-Jones, P., (1987). Initial dilution of horizontal jet in crossflow. Journal of Hydraulic Engineering-ASCE, Vol. 113(5), pp. 615-629.
64. Lipari, G. and Stansby, P.K., (2011). Review of experimental data on incompressible turbulent round jets. Flow Turbulence Combust, Vol. 87(1), pp. 79-114.
65. List, E.J., (1982). Turbulent jets and plumes. Annual Review of Fluid Mechanics, Vol. 14, pp. 189-212.
66. Malmström, T.G., Kirkpatrick, A.T., Christensen, B. and Knappmiller, K.D., (1997). Centreline velocity decay measurements in low-velocity axisymmetric jets. Journal of Fluid Mechanics, Vol. 346, pp. 363-377.
67. Mansard, E.P.D. and Funke, E.R., (1980). The measurement of incident and reflected spectra using a least squares method. Proc. 17th Int. Conf. Coastal Eng., Sydney, Australia, pp. 154-172.
68. Mei, C.C., (1989). The applied dynamics of ocean surface waves. Advanced Series on Ocean Engineering, Vol. 1, World Scientific.
69. Mori, N. and Chang, K.A., (2003). Experimental study of a horizontal jet in a wavy environment. Journal of Engineering Mechanics-ASCE, Vol. 129(10), pp. 1149-1155.
70. Mossa, M., (2004). Experimental study on the interaction of non-buoyant jets and waves. Journal of Hydraulic Research, Vol. 42(1), pp. 13-28.
71. Muir Wood, A.M., (1969). Coastal hydraulics. London, England, Mac Millon.
72. Panchapakesan, N.R. and Lumley, J.L., (1993). Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet. Journal of Fluid Mechanics, Vol. 246, pp. 197-223.
73. Pantokratoras, A., (2001). Effect of ambient temperature on vertical turbulent buoyant water jets. International Journal of Heat and Mass Transfer, Vol. 44(10), pp. 1889-1898.
74. Papanicolaou, P.N. and List, E.J., (1988). Investigations of round vertical turbulent buoyant jets. Journal of Fluid Mechanics, Vol. 195, pp. 341-391.
75. Papanicolaou, P.N., Papakonstantis, I.G. and Christodoulou, G.C. (2008). On the entrainment coefficient in negatively buoyant jets. Journal of Fluid Mechanics, Vol. 614, pp. 447-470.
76. Pratte, B.D. and Baines, M., (1967). Profiles of the round turbulent jet in a cross flow. Journal of the Hydraulic Division -ASCE, Vol. 93(6), pp. 53-64.
77. Pope, S.B., (2000). Turbulent flows. Cambridge University Press, Cambridge.
78. Prasad, A.K., Adrian, R.J., Landreth, C.C. and Offutt, P.W., (1992). Effect of resolution on the speed and accuracy of particle image velocimetry interrogations. Experiments in Fluids, Vol. 13(2-3), pp. 105-116.
79. Raffel, M., Willert, C.E. and Kompenhans, J., (1998). Particle image velocimetry, Springer, New York.
80. Rajaratnam, N., (1976). Turbulent Jets. Elsevier Scientific Publishing Company, New York.
81. Hussain, A.K.M.F. and Reynolds, W.C., (1970). The mechanics of an organized wave in turbulent shear flow. Journal of Fluid Mechanics, Vol. 41, pp. 241-258.
82. Reynolds, W.C. and Hussain, A.K.M.F., (1972). The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. Journal of Fluid Mechanics, Vol. 54, pp. 263-288.
83. Richards, C.D. and Pitts, W.M., (1993). Global density effects on the self-preservation behavior of turbulent free jets. Journal of Fluid Mechanics, Vol. 254, pp. 417-435.
84. Ryu, Y., Chang, K.A. and Mori, N., (2005). Dispersion of neutrally buoyant horizontal round jet in wave environment. Journal of Hydraulic Engineering-ASCE, Vol. 131(12), pp. 1088-1097.
85. Schlichting, H. and Gersten, K., (2000). Boundary Layer Theory, 8th Ed., Springer, Berlin.
86. Shao, D. and Law, A.W.K., (2009). Turbulent mass and momentum transport of a circular offset dense jet. Journal of Turbulence, Vol. 10(40), pp. 1-24.
87. Shao, D. and Law, A.W.K., (2011). Boundary impingement and attachment of horizontal offset dense jets. Journal of Hydro-Environment Research, Vol. 5(1), pp. 15-24.
88. Sheng, J., Meng, H. and Fox, R.O., (2000). A large eddy PIV method for turbulence dissipation rate estimation. Chemical Engineering Science, Vol. 55(20), pp. 4423-4434.
89. Shinneeb, A.M., Balachandar, R. and Bugg, J.D., (2011). Confinement effects in shallow-water jets. Journal of Hydraulic Engineering-ASCE, Vol. 137(3), pp. 300-314.
90. Shinneeb, A.M., Bugg, J.D. and Balachandar, R., (2008). Quantitative investigation of vortical structures in the near-exit region of an axisymmetric turbulent jet. Journal of Turbulence, Vol. 9(19), pp. 1-20.
91. Shuto, N. and Ti, L.H., (1974). Wave effects on buoyant plumes. Proc. 14th Int. Conf. Coastal Eng., Copenhagen, Denmark, pp. 2199-2209.
92. Sobey, R.J., Johnston, A.J. and Keane, R.D., (1988). Horizontal round buoyant jet in shallow water. Journal of Hydraulic Engineering-ASCE, Vol. 114(8), pp. 910-929.
93. Tam, B.Y.F. and Li, C.W., (2008). Flow induced by a turbulent jet under random waves. Journal of Hydraulic Research, Vol. 46(6), pp. 820-829.
94. Tanaka, T. and Eaton, J.K., (2007). A correction method for measuring turbulence kinetic energy dissipation rate by PIV. Experiments in Fluids, Vol. 42(6), pp. 893-902.
95. Tandalam, A., Balachandar, R. and Barron, R., (2010). Reynolds number effects on the near-exit region of turbulent jets. Journal of Hydraulic Engineering-ASCE, Vol. 136(9), pp. 633-641.
96. Tennekes, L. and Lumley, J.L., (1972). A First Course in Turbulence. MIT Press.
97. Turner, J.S., (1966). Jets and plumes with negative or reversing buoyancy. Journal of Fluid Mechanics, Vol. 26(4), pp. 779-792.
98. van Wissen, R.J.E., Schreel, K.R.A.M. and van der Geld, C.W.M., (2005). Particle image velocimetry measurements of a steam-driven confined turbulent water jet. Journal of Fluid Mechanics, Vol. 530, pp. 353-368.
99. Wang, H.W. and Law, A.W.K., (2002). Second-order integral model for a round turbulent buoyant jet. Journal of Fluid Mechanics, Vol. 459, pp. 397-428.
100. Weisgraber, T.H. and Liepmann, D., (1998). Turbulent structure during transition to self-similarity in a round jet. Experiments in Fluids, Vol. 24(3), pp. 210-224.
101. Westerweel, J., Fukushima, C., Pedersen, J.M. and Hunt, J.C.R., (2009). Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. Journal of Fluid Mechanics, Vol. 631, pp. 199-230.
102. Wood, I.R., Bell, R.G. and Wilkinson, D.L., (1993). Ocean Disposal of Wastewater. Advanced Series on Ocean Engineering, Vol. 8, World Scientific, Singapore.
103. Wright, S.J., (1977). Mean behavior of buoyant jets in a crossflow. Journal of the Hydraulics Division-ASCE, Vol. 103(5), pp.499-513.
104. Wygnanski, I. and Fiedler, H., (1969). Some measurements in the self-preserving jet. Journal of Fluid Mechanics, Vol. 38, pp. 577-612.
105. Xia, L.P. and Lam, K.M., (2004). Unsteady effluent dispersion in a round jet interacting with an oscillating cross-flow. Journal of Hydraulic Engineering-ASCE, Vol. 130(7), pp. 667-677.
106. Xia, L.P. and Lam, K.M., (2009). Velocity and concentration measurements in initial region of submerged round jets in stagnant environment and in coflow. Journal of Hydro-Environment Research, Vol. 3(1), pp. 21-34.
107. Xu, G. and Antonia, R.A., (2002). Effect of different initial conditions on a turbulent round free jet. Experiments in Fluids, Vol. 33(5), pp. 677-683.
108. Yannopoulos, P.C., (2006). An improved integral model for plane and round turbulent buoyant jets. Journal of Fluid Mechanics, Vol. 547, pp. 267-296.
109. Yannopoulos, P.C., (2010). Advanced integral model for groups of interacting round turbulent buoyant jets. Environmental Fluid Mechanics, Vol. 10(4), pp. 415-450.
110. Yu, D., Ali, M.S. and Lee, J.H.W., (2006). Multiple tandem jets in cross-flow. Journal of Hydraulic Engineering-ASCE, Vol. 132(9), pp. 971-982.
111. Zarruk, G.A. and Cowen, E.A., (2008). Simultaneous velocity and passive scalar concentration measurements in low Reynolds number neutrally buoyant turbulent round jets. Experiments in Fluids, Vol. 44(6), pp. 865-872.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top