( 您好!臺灣時間:2021/07/27 11:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


論文名稱(外文):On the distributions of the velocity and volume fraction of dry density-varying granular flows
指導教授(外文):Yih-Chin Tai
外文關鍵詞:granular flowstwo-phase flowdensity-varyingcorrection parameter
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
The flow of dry granular materials is common in natural and industrial environment. Depth integration along the flow thickness is a common methodology for simplifying the complexity of numerical computation as well as reducing the computation time in 3-D simulation. A most simplistic assumption is the uniform distribution of the density and velocity. However, this assumption may not meet the reality. The correction parameters are alternatives of including the non-uniform distribution of the physical quantities in the governing equations. In the present work, the flow body is treated as a fluid of variable density, and its behavior is described by a two-phase flow mixture model, which consists of the continuity equations and momentum equations. In this thesis, the interstitial air is allowed to flow through the flow surface into or out from the flowing body. In addition, the force of interaction between the solid constituent material and the interstitial fluid is taken into account. Two versions of model are proposed, according to different scales. The first model is devoted to the flows of large scale, such as the landslides or debris flows in nature. In the second model, flows of smaller scale are considered, for examples, flows of standard sand in laboratory. In this study, a dam-break flow and an inclined chute flow serve as bench mark examples for investigating the dynamic behaviors of the granular flows, in which the effect of the interaction force, the entrainment rate and the corresponding correction parameters are discussed.
中文摘要 I
誌謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 序論 1
1.1 研究背景 2
1.2 前人研究 4
1.3 本文組織 5
第二章 理論基礎 6
2.1 控制方程式 6
2.2 邊界條件 9
2.3 深度積分平衡方程式的推導 11
2.4 無因次化之控制方程式 15
2.5 適用小粒徑之控制方程式 23
第三章 方程組參數 32
3.1 修正係數分析 32
3.2 動床上的流況分析 34
3.3 定床上的流況分析 38
3.4 係數的敏感度分析 41
第四章 以數值方法探討各係數之影響 48
4.1 潰壩及傾斜槽條件設置 48
4.2 係數對結果之影響 51
第五章 結果與討論 70
5.1 結論 70
5.2 未來展望 71
參考文獻 74
1.Baines, P. G.,“Mixing in flows down gentle slopes into stratified environments.J. Fluid Mech., 443, 237–270. (2001)
2.Baines, P. G.,“Mixing regimes for the flow of dense fluid down slopes into stratified environments.J. Fluid Mech., 538, 245–267. (2005)
3.Clancy, L. J.,“Aerodynamics. Pitman Publishing Limited.London, TL570. C53. (1975)
4.Campbell, C. S. and Brennen, C. E.,“Chute flows of granular material: some computer simulations.J. Appl. Mech. Trans., ASME 52, 172–178. (1985)
5.Chen, K. C. and Tai, Y. C.,“Volume-weighted mixture theory for granular materials.Contin. Mech. Thermodyn, 19, 457-474. (2008)
6.Egashira, S., Ashida, K., Yajima, H. and Takahama, J.,“Constitutive equation of debris flow.Annuals Disaster Prevention Research Institute, Kyoto Univ., 32B-2,487-501. (in Japanese). (1989)
7.Egashira, S., Miyamoto, K. and Itoh, T.,“Constitutive equations of debris flow and their applicability.Proc. Zst Int. Conf., Debris-Flow Hazards Mitigation, New York: AXE, 340-349. (1997)
8.Egashira, S., Itoh, T. and Takeuchi, H.,“Transition Mechanism of Debris Flows Over Rigid Bed to Over Erodible Bed.Phys. Chem. Earth (B), Vol. 26, No. 2, pp. 169-174. (2001)
9.Egashira, S. and Itoh, T.,“River, Coastal and Estuarine Morphodynamics. Proceedings of the 4th IAHR Symposium on River, Coastal and Estuarine Morphodynamics.RCEM, Urbana, Illinois, USA, 4-7 October 33-38. (2005)
10.Fernando, H. J. S.,“Turbulent mixing in stratified fluid.Annu. Rev. Fluid Mech., 23, 455–493. (1991)
11.Greve, R., Koch, T. and Hutter, K.,“Unconfined flow of granular avalanches along a partly curved chute. i. theory.Proc. R. Soc. A-Math. Phys. Eng. Sci., 445, 399–1413. (1994)
12.Glasser, B. J., Kevrekidis, I. and Sundaresan, S.,“One and two dimensional travelling wave solutions in gas-fluidized beds.J. Fluid Mech., 306, 183–221. (1996)
13.Gray, J. M. N. T., Wieland, M. and Hutter, K.,“Gravity-driven free surface flow of granular avalanches over complex basal topography.Proc. Royal Soc. Lond., A 455, 1841–1874. (1999)
14.Iverson, R. M.,“Differential equations governing slip-induced pore-pressure fluctuations in a water-saturated granular medium.Mathematical Geology, 25, 1027–1048. (1993)
15.Iverson, R. M. and Denlinger, R. P.,“Flow of variably fluidized granular masses across three-dimensional terrain. 1. coulomb mixture theory.J. Geophys. Res., 106, 537–552. (2001)
16.Itoh, T. and Egashira, S.,“Importance of correction factor associated with sediment concentration and velocity distribution in debris flow simulations.Journal of Hydroscience and Hydraulic Engineering, 23, 1-12. (2005)
17.Jiang, G. and Tadmor, E.,“Non-oscillatory central schemes for multidimensional hyperbolic conservation laws.SIAM J. Sci. Comput., 19, 1892–1917. (1997)
18.Jackson, R.,“The dynamics of fluidized particles.Cambridge University Press, (2000)
19.LeVeque, R. J.,“Finite volumes methods for hyperbolic problems.Cambridge Univ. Press, (2002)
20.LeVeque, R. J.,“Numerical methods for conservation laws.Birkhäuser Verlag Press, (2006)
21.Munson, B. R., Young, D. F. and Okiishi, T. H.,“Fundamental of Fluid Mechanics. Wiley Sons, New York, (2006)
22.Pudasaini, S. P. and Hutter, K.,“Rapid shear flows of dry granular masses down curved and twisted channels.J. Fluid Mech., 495, 193–208. (2003)
23.Pitman, E. B. and Le, L.,“A two-fluid model for avalanche and debris flows.Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 363, 1573–1601. (2005)
24.Pudasaini, S. P. and Hutter, K.,“Avalanche dynamics.Springer Verlag, Berlin/Heidelberg, (2007)
25.Pelanti, M., Bouchut, F. and Mangeney, A.,“A roe-type scheme for two- phase shallow granular flows over variable topography.ESAIM – Math. Model. Numer. Anal., 42, 851–885. (2008)
26.Princevas, M., Fernando, H. J. S. and Whiteman, C.,“Turbulent entrainment into natural gravity-driven flows.J. Fluid Mech., 533, 259–268. (2005)
27.Princevas, M., Bühler, J. and Schleiss, A. J.,“Mass-based depth and velocity scales for gravity currents and related flows.Environ. Fluid Mech., 9, 369–387. (2009)
28.Princevas, M., Bühler, J. and Schleiss, A. J.,“Alternative depth-averaged models for gravity currents and free shear flows.Environ. Fluid Mech., 10, 369–386. (2010)
29.Rouse, H.,“Modern conceptions of the mechanics of turbulence.Transaction of the ASCE., 102, 4630. (1937)
30.Richardson, J. F. and Zaki, W.,“Sedimentation and fluidization: part i.Trans. Inst. Chem. Eng., 32, 35–53. (1954)
31.Simons, D. B. and Şentürk, F.,“Sediment transport technology.Fort Collins, Colo., USA (1977)
32.Savage, S. B. and Sayed, M.,“Stress developed by dry cohesionless granular materials sheared in an annular shear cell.J. Fluid Mech., 127, 453-472. (1984)
33.Savage, S. B. and Hutter, K.,“The motion of a finite mass of granular material down a rough incline.J. Fluid Mech., 199, 177–215. (1989)
34.Silbert, L. E., Ertas, D., Grest, G. S., Halsey, T.C., Levine, D. and Plimpton, S. J., “Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E, 64, 051302. (2001)
35.Salciarini, D., Tamagnini, C. and Coversini, P.,“Discrete element modeling of debris-avalanche impact on earthfill barriers.Phys. Chem. Earth, 35, 172–181. (2010)
36.Simoni, A., Mammoliti, M. and Berti, M.,“Uncertainty of debris flow mobility relationships and its influence on the prediction of inundated areas.Geomorphology, 132, 249-259. (2011)
37.Takahashi, T.,“A mechanism of occurrence of mud-debris flows and their characteristics in motion.Annuals, DPRI, 20B-2. 405-435. (1977)
38.Takahashi, T.,“Debris Flow.Monograph of IAHR, Balkema, Rotterdam, 1-165. (1991)
39.Takahashi, T.,“Debris Flow.Taylor &Francis Group, London, UK. (2007)
40.Truesdell, C.,“Rational Thermodynamics.Springer Verlag, New York, (1984)
41.Teufelsbauer, H., Wang, Y., Wang, M. C. and Wu, W.,“Flow–obstacle interaction in rapid granular avalanches: DEM simulation and comparison with experiment.Granul. Matter, 11, 209–220. (2009)
42.Tai, Y. C., Noelle, S., Gray, J. N. T. and Hutter, K.,“Shock-capturing and front tracking methods for granular avalanches.J. Comput. Phys., 175, 269–301. (2002)
43.Tai, Y. C. and Kuo, C. Y.,“A new model of granular flows over general topography with erosion and deposition.Acta Mech., 199, 71–96. (2008)
44.Tai, Y. C. and Lin, Y. C.,“A focused view of the behavior of granular flows down a confined inclined chute into the horizontal run-out zone.Phys. Fluids, 20, 123302. (2008)
45.Tai, Y. C., Kuo, C. Y. and Hui, W. H.,“An alternative depth-integrated formulation for granular avalanches over temporally varying topography with small curvature. Gephys. Astrophys. FluiDyn., DOI. 10. 1080/03091929. 2011. 648630. (2012)
46.Vanoni, V. A.,“Some experiments on the transportation of suspended loads.Trans. Am. Geophys. Union, 20, 608~621. (1941)
47.Vallet, J., Turnbull, B., Joly, S. and Dufour, F.,“Observations on powder snow avalanches using videogrammetry.Cold Reg. Sci. Tech., 39, 153–159. (2004)
48.Wang, Y. and Hutter, K.,“Granular material theories revisited.Geomorphological Fluid Mechanics, Springer Verlag, Heidelberg-New York.79-107. (2001)

註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top