# 臺灣博碩士論文加值系統

(3.236.84.188) 您好！臺灣時間：2021/07/30 02:51

:::

### 詳目顯示

:

• 被引用:3
• 點閱:191
• 評分:
• 下載:16
• 書目收藏:1
 本文以無網格方法所建立之二維數值模式，求解拉普拉斯方程式(Laplace equation)，模擬非線性波浪之自由液面變形及移動邊界造波。本數值模式主要架構為Wu and Chang (2011)發展之三維RBF(radial basis function)無網格模式，其特色是在邊界上同時滿足控制方程式，改善了以往RBF無網格法在邊界上的函數偏微分值不正確的問題。後經本研究將此模式修改為二維模式，並增加其造波及模擬移動邊界之功能後，進行一系列模擬討論其物理現象及模式適用性。本研究之模式驗證共進行兩組模擬，分別為Beji and Battjes (1994)規則波通過潛堤之試驗及Lynett and Liu (2002)完全潛沒海底崩移造波。前者的模擬結果與試驗數據吻合良好。此外，本研究利用無網格模式之特性，進一步討論水質點運動軌跡特性；後者之模擬結果與Lynett and Liu (2002)之邊界積分法模式、一層及二層布氏模式結果比較，同樣達到良好的吻合度。確認模式的適用性之後，本研究將此模式應用於模擬半潛沒海底崩移。半潛沒海底崩移即一崩移物體初始時由水面上滑落，與完全潛沒崩移造成之波浪特性並不相同。本研究主題共進行兩組模擬，分別討論不同的底床坡度及不同的崩移水平距離下，半潛沒海底崩移造波的傳遞情形與岸線變化的差異。最後，本文提出對於模擬結果的歸納討論，並對此數值模式之未來發展提出建議。
 A two-dimensional numerical model using radial basis functions (RBFs) and collocation points for resolving the Laplace equation is presented in this study. This method is a general meshless method called RBF collocation method. The basic concept of RBF collocation method is to approximate the solution of a PDE as a linear combination of RBFs. The main framework of the present model is developed by Wu and Chang (2011), and is added with the wave-sending boundary, radiation boundary and ability for simulating the moving boundary problem by this study.Two simulations are carried out for the model validation. First, regular waves propagating over a submerged breakwater are simulated. The results are compared with the experimental data, and the water particle trajectory is also discussed. The second one is waves generated by submerged landslide and the results are compared with other numerical solutions, such as BIEM and Boussinesq-type model. Fairly good agreements are observed in both of simulations.Finally, the present model is applied to calculate the subaerial landslide-induced waves. Subaerial landslide on three plane slopes of different angles, which are 6, 15 and 30 degrees, with the same constant water depth at the end of the slopes is studied. Specifically, the landslide-induced wave propagation and shoreline motions are examined. Furthermore, the effects of various sliding horizontal distances along the same slope on induced-wave are also discussed.
 中文摘要 IAbstract II致謝 III目錄 IV表目錄 VII圖目錄 VIII符號表 X第一章 緒論 11.1 研究動機及目的 11.2 文獻回顧 31.2.1 無網格方法 31.2.2 海底崩移 6第二章 理論基礎 72.1 控制方程式 72.2 自由液面邊界條件 82.3 底床邊界條件 92.4 側向邊界條件 92.5 初始條件 11第三章 數值模式 123.1 模式簡介 123.2 幅狀基底函數 123.3 時間域之離散 133.4 配置點之條件 143.5 誤差控制 163.6 移動邊界 173.7 經驗參數 183.8 模式計算流程 20第四章 模式驗證 214.1 固定邊界：規則波通過潛堤 214.1.1 模型配置 214.1.2 驗證結果 224.2 移動邊界：完全潛沒海底崩移 304.2.1 模型配置 304.2.2 驗證結果 34第五章 半潛沒海底崩移 375.1 崩移物體幾何形狀 375.2 崩移物體運動速度 395.3 崩移物體參數設定 405.3.1 Case A：不同底床坡度之半潛沒海底崩移 405.3.2 Case B：不同崩移水平距離之半潛沒海底崩移 425.4 移動邊界模式設定 435.5 結果討論 445.5.1 Case A結果討論 445.5.2 Case B結果討論 54第六章 結論與建議 606.1 結論 606.2 建議 62參考文獻 63附錄A 自述 67
 1.Beji, S. and Battjes, J.A., (1994), “Numerical Simulation of Nonlinear Wave Propagation over a Bar.“ Coastal Engineering, 23 (1–2) pp. 1-16.2.Enet, F., Grilli, S.T. and Watts, P., (2003), “Laboratory Experiments for Tsunamis Generated Underwater Landslides: Comparison with Numerical Modeling.“ Proceeding of the Thirteenth International Offshore and Polar Engineering Conference pp. 372-379.3.Fornberg, B., Driscoll, T.A., Wright, G. and Charles, R., (2002), “Observations on the Behavior of Radial Basis Function Approximations near Boundaries.“ Computers ＆ Mathematics with Applications, 43 (3–5) pp. 473-490.4.Franke, C., (1982), “Scattered Data Interpolation: Test of Some Methods.“ Mathematics of Computation, 38 pp. 181-200.5.Fuhrman, D.R. and Madsen, P.A., (2009), “Tsunami Generation, Propagation, and Run-up with a High-Order Boussinesq Model.“ Coastal Engineering, 56 (7) pp. 747-758.6.Gingold, R. and Maraghan, J., (1977), “Smoothed Particle Hydrodynamics: Theory and Applications to Non-Spherical Stars.“ Monthly Notices of the Royal Astronomical Society, 181 pp. 375-389.7.Grilli, S.T., Vogelmann, S. and Watts, P., (2002), “Development of a 3d Numerical Wave Tank for Modeling Tsunami Generation by Underwater Landslides.“ Engineering Analysis with Boundary Elements, 26 (4) pp. 301-313.8.Grilli, S.T. and Watts, P., (1999), “Modeling of Waves Generated by a Moving Submerged Body. Applications to Underwater Landslides.“ Engineering Analysis with Boundary Elements, 23 (8) pp. 645-656.9.Grilli, S.T. and Watts, P., (2005), “Tsunami Generation by Submarine Mass Failure. I: Modeling,Experimental Validation, and Sensitivity Analysis.“ Journal of Waterway, Port, Coastal, and Ocean Engineering, 131 pp. 283-297.10.Hardy, R.L., (1971), “Multiquadric Equations of Topography and Other Irregular Surfaces.“ J. Geophys. Res., 76 (8) pp. 1905-1915.11.Kansa, E.J., (1990), “Multiquadrics—a Scattered Data Approximation Scheme with Applications to Computational Fluid-Dynamics—Ii Solutions to Parabolic, Hyperbolic and Elliptic Partial Differential Equations.“ Computers ＆ Mathematics with Applications, 19 (8–9) pp. 147-161.12.Lynett, P. and Liu, P.L.-F., (2002), “A Numerical Study of Submarine–Landslide–Generated Waves and Run–Up.“ Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 458 (2028) pp. 2885-2910.13.Lynett, P. and Liu, P.L.-F., (2005), “A Numerical Study of the Run-up Generated by Three-Dimensional Landslides.“ Journal of Geophysical Research, 110.14.Lynett, P. and Liu, P.L.F., (2004), “A Two-Layer Approach to Wave Modelling.“ Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 460 (2049) pp. 2637-2669.15.Mathon, R. and Johnston, R.L., (1977), “The Approximate Solution of Elliptic Boundary-Value Problems by Fundamental Solutions.“ SIAM Journal on Numerical Analysis, 14 (4) pp. 638-650.16.Moody, J. and Darken, C.J., (1989), “Fast Learning in Networks of Locally-Tuned Processing Units.“ Neural Computation, 1 (2) pp. 281-294.17.Nam, M.-D. and Thanh, T.-C., (2003), “Approximation of Function and Its Derivatives Using Radial Basis Function Networks.“ Applied Mathematical Modelling, 27 (3) pp. 197-220.18.Nandasena, N.A.K., Sasaki, Y. and Tanaka, N., (2012), “Modeling Field Observations of the 2011 Great East Japan Tsunami: Efficacy of Artificial and Natural Structures on Tsunami Mitigation.“ Coastal Engineering, 67 (0) pp. 1-13.19.Wang, Y., Liu, P.L.-F. and Mei, C.C., (2011), “Solid Landslide Generated Waves.“ Journal of Fluid Mechanics, 675 pp. 529-539.20.Watts, P., (1997), Water Waves Generated by Underwater Landslides, California Institute of technology.21.Wu, N.-J. and Chang, K.-A., (2011), “Simulation of Free-Surface Waves in Liquid Sloshing Using a Domain-Type Meshless Method.“ International Journal for Numerical Methods in Fluids, 67 (3) pp. 269-288.22.Wu, N.-J. and Tsay, T.-K., (2009), “Applicability of the Method of Fundamental Solutions to 3-D Wave–Body Interaction with Fully Nonlinear Free Surface.“ Journal of Engineering Mathematics, 63 (1) pp. 61-78.23.Wu, N.-J., Tsay, T.-K. and Young, D.L., (2006), “Meshless Numerical Simulation for Fully Nonlinear Water Waves.“ International Journal for Numerical Methods in Fluids, 50 (2) pp. 219-234.24.Wu, N.-J., Tsay, T.-K. and Young, D.L., (2008), “Computation of Nonlinear Free-Surface Flows by a Meshless Numerical Method.“ Journal of Waterway, Port, Coastal and Ocean Engineering, 134 pp. 97-103.
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 以無網格法模擬波浪與結構物作用分析 2 四元樹自調適數值水槽之建立 3 利用無網格法模擬未碎波之孤立波於斜坡上的演化及溯升 4 以無網格法解析非凸領域之位勢問題 5 以無網格徑向函數法解折射介質中的輻射傳遞之積分方程式 6 以帶有幅狀基底函數的基本法解橢圓偏微分方程

 無相關期刊

 1 剪力流中規則波通過拋物線型結構物之數值研究 2 利用無網格法模擬未碎波之孤立波於斜坡上的演化及溯升 3 虛擬社群之潛在顧客搜索機制研發-以食品業應用為例 4 河川表面流速與平均流速之現場試驗研究-以曾文溪中下游流量站為例 5 高屏溪輸電鐵塔基礎沖刷安全性評估 6 沉浸式微過濾系統對去除晶圓封裝廢水懸浮固體顆粒效能之實驗研究 7 三維孤立波通過透水潛堤之數值模擬 8 波浪作用下浮式水槽的動態反應 9 應用無網格Galerkin法於一維梁之靜力與動力分析 10 無網格局部皮得洛夫葛勒金法 11 無網格法於自然聲頻與聲模之分析 12 田口法在軸流風扇扇葉新穎設計上的應用研究 13 利用無網格法連接有限元素法p-與h-局部加密網格以求解彈性波傳問題 14 以無網格法模擬波浪與結構物作用分析 15 微分再生核無網格適點法與無元素Galerkin法之發展及其在功能性材料板和中空圓柱殼之擬三維結構分析

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室