跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 18:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳祥珠
研究生(外文):Siang-JhuChen
論文名稱:以多基因分析木賊屬之親緣關係研究
論文名稱(外文):Phylogenetic relationships of Equisetum based on multilocus analysis
指導教授:蔣鎮宇蔣鎮宇引用關係
指導教授(外文):Tzen-Yuh Chiang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生命科學系碩博士班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:77
中文關鍵詞:木賊屬親緣關係多基因分析
外文關鍵詞:Equisetumphylogenetic relationshipsmultilocus analysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:257
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
  木賊屬植物為楔葉蕨綱(Sphenopsida)現存物種,分類位階上可分為兩個亞屬,分別為問荊亞屬與木賊亞屬。過往研究多藉由少數葉綠體基因重建木賊屬親緣關係,顯示 Equisetum bogotense物種的分類地位仍有諸多爭論。相對於胞器DNA的單系遺傳,細胞核DNA則帶有父母雙方的遺傳資訊,藉由核基因與粒線體、葉綠體基因的比較可幫助我們探討物種的演化機制的演化。近年多基因分析發展可提供學者研究物種演化等相關資訊之一強而有力的工具。本研究希望藉多基因分析探討木賊屬物種之親緣關係,了解木賊屬演化歷史並且探討木賊屬植物的生物地理分布。本研究共利用12個葉綠體基因、2個粒線體基因、13個核基因分析木賊屬14個物種,結果顯示E. bogotense是現今存在的木賊屬植物中最古老的物種且亦不會與其他木賊屬物種發生雜交。然而先前研究亦顯示E. bogotense分類位階上的爭論可能是由於木賊屬物種受到遺傳漂變或是具有較大的有效族群數量等原因使得本屬物種處於譜系排序(lineage sorting)過程。除E. bogotense之外,其他物種親緣關係符合先前研究的歸群可明顯區分為兩亞屬,亞屬內的雜交頻繁,且基因交流是影響木賊屬物種親緣關係不可忽略的因子。以生物地理的角度來看,現今存在的木賊屬植物大都分布在北緯四十度至六十度之間的歐洲以及北美洲,以Dispersal-Vicariance Analysis (S-DIVA) 分析木賊屬物種可能起源地可能為歐洲中心或是南美洲起源,而後藉由多次的播遷(dispersal)或受到地質上重大歷史事件(vicariance)的影響造成現今地理分布。
Equisetum is a genus which is the only one surviving on the class Sphenosida. The general taxonomy of Equisetum is acquainted with two subgenera: subg. Equisetum and subg. Hippochaete. Previous studies have investigated the phylogeny of Equisetum based on a few of chloroplast genes, an argument were found about clarify the position of E. bogotense. A multilocus analysis provides genealogical information of a species history and power to detect many evolutionary forces. In this study, we use 12 chloroplast genes, two mitochondrial genes and 13 nuclear genes to analysis 14 species of Equisetum, the results imply that E. bogotense is the oldest species on extant species and don't hybrid with other species. Comparative phylogenies from nuclear, chloroplast and mitochondrial gene markers which can provide biparental and uniparental information are useful for resolving phylogenic patterns. However, previous studies found doubts what clarify the position of E. bogotense, this is discussed that phylogenetic relationships of E. bogotense is maybe at the stage of lineage sorting which is a cause of genetic drift or large population sizes. Except for E. bogotense, the results imply that the phylogenetic relationship of Equisetum make a distinction between subg. Equisetum and subg. Hippochaete. They are many hybrids inter-subgenera, and gene flow plays an important role in the phylogenetic relationships of Equisetum. Phylogeographical, most living species of horsetails have very broad distributions in Europe and North America, their latitude ranging between 40°and 60° north. In a Statistical Dispersal-Vicariance Analysis (S-DIVA), an ancestral reconstruction of horsetails is the highest possible origin in Europe or South American, and then Equisetum evolved now species by several times of dispersal and vicariance.
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII

壹、 前言 1
一、 親緣基因體學 1
二、 親緣地理學(phylogeography) 4
三、 溯祖理論(coalescent theory) 5
四、 木賊屬植物介紹 6
五、 木賊屬遺傳多樣性研究 7
六、 研究目的 9
貳、 材料與方法 10
一、 研究材料 10
二、 實驗方法 11
三、 資料分析 19
參、 結果 21
一、 木賊屬粒線體基因親緣關係 21
二、 木賊屬葉綠體基因親緣關係 21
三、 木賊屬核基因親緣關係 23
四、 木賊屬物種之親緣地理學 27
肆、 討論 28
一、 探討木賊屬物種多基因呈現親緣關係之不一致性 28
二、 木賊屬物種之親緣關係 30
三、 探討木賊屬植物之親緣地理學 32
伍、 結論 34
陸、 參考文獻 35

表目錄
表一、木賊屬兩亞屬採集資料 43
表二、核基因引子序列 44
表三、葉綠體基因引子序列 45
表四、粒線體基因引子序列 46
表五、葉綠體與粒線體基因引子序列 47
表六、基因描述 47
表七、問荊亞屬葉綠體基因序列ID 48
表八、木賊亞屬葉綠體基因序列ID 48
表九、葉綠體基因演化速率與所呈現基因樹的最高likelihood值 49
表十、粒線體與細胞核所呈現基因樹的最高likelihood值 50
表十一、木賊屬問荊亞屬植物的雜交與其分布地區 51
表十二、木賊屬木賊亞屬植物的雜交與其分布地區 51
表十三、RASP軟體估算物種樹每分支的分歧時間 52

圖目錄
圖1、粒線體cox3之基因樹 53
圖2、粒線體atp1之基因樹 53
圖3、葉綠體基因之物種樹 54
圖4、葉綠體accD之基因樹 55
圖5、葉綠體atpB之基因樹 55
圖6、葉綠體ccsA之基因樹 56
圖7、葉綠體matK之基因樹 56
圖8、葉綠體ndhJ之基因樹 57
圖9、葉綠體psbA-trnH之基因樹 57
圖10、葉綠體rbcL之基因樹 58
圖11、葉綠體rpl2之基因樹 58
圖12、葉綠體rpoB之基因樹 59
圖13、葉綠體rpoC1之基因樹 59
圖14、葉綠體rps4之基因樹 60
圖15、葉綠體trnL-trnF之基因樹 60
圖16、核基因之物種樹 61
圖17、核基因ITS2之基因樹 62
圖18、核基因PAL之基因樹 63
圖19、核基因sod2之基因樹 64
圖20、核基因編號309之基因樹 65
圖21、核基因編號325-1之基因樹 66
圖22、核基因編號325-2之基因樹 67
圖23、核基因編號347之基因樹 68
圖24、核基因編號366之基因樹 69
圖25、核基因編號369之基因樹 70
圖26、核基因編號161之基因樹 71
圖27、核基因編號282之基因樹 72
圖28、核基因編號303-1之基因樹 73
圖29、核基因編號eachiA之基因樹 74
圖30、問荊亞屬E. palustre與其他問荊亞屬物種之基因交流 75
圖31、RASP軟體以S-DIVA分析木賊屬祖先種分布地 76
圖32、推測木賊屬播遷模式 77


Ali, S. S., Yu, Y., Pfosser, M., and Wetschnig, W. (2012). Inferences of biogeographical histories within subfamily Hyacinthoideae using S-DIVA and Bayesian binary MCMC analysis implemented in RASP (Reconstruct Ancestral State in Phylogenies). Annals of Botany 109(1), 95-107.
Avise, J. C. (2000). Phylogeography: The History and Formation of Species. Harvard University Press.
Barrington, D. S. (1993). Ecological and historical factors in fern biogeography v. 20, no. 3, p. 275-279.
Bir, S. S. (1960). Chromosome numbers of some Equisetum species from the Netherlands. Acta Botanica Neerlandica 9(2), 224-234.
Brune, T., Thiv, M., and Haas, K. (2008). Equisetum (Equisetaceae) species or hybrids? ISSR fingerprinting profiles help improve diagnoses based on morphology and anatomy. Plant Systematics and Evolution 274(1-2), 67-81.
Chiang, Y.-C., Hung, K.-H., Moore, S.-J., Ge, X.-J., Huang, S., Hsu, T.-W., Schaal, B., and Chiang, T. Y. (2009). Paraphyly of organelle DNAs in Cycas Sect. Asiorientale s due to ancient ancestral polymorphisms. BMC Evolutionary Biology 9(1), 1-19.
David L. Des Marais, A. R. S., Donald M. Britton, and Kathleen M. Pryer (2003). Phylogenetic Relationships and Evolution of Extant Horsetails, Equisetum, Based on Chloroplast DNA Sequence Data (rbcL and trnL-F). International Journal of Plant Sciences 164(5), 737-751.
Degnan, J. H., and Rosenberg, N. A. (2009). Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends in Ecology & Evolution 24(6), 332-340.
Drummond, A., and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7(1), 1-8.
Duckett, J. G. (1973). Comparative morphology of the gametophytes of the genus Equisetum, subgenus Equisetum. Botanical Journal of the Linnean Society 66(1), 1-22.
Duckett, J. G. (1979). Comparative morphology of the gametophytes of Equisetum subgenus Hippochaete and the sexual behaviour of E. ramosissimum subsp. debile, (Roxb.) Hauke, E. hyemale var. affine (Engelm.) A.A., and E. laevigatum A. Br. Botanical Journal of the Linnean Society 79(3), 179-203.
Eisen, J. A. (1998). Phylogenomics: Improving Functional Predictions for Uncharacterized Genes by Evolutionary Analysis. Genome Research 8(3), 163-167.
Eisen, J. A., and Fraser, C. M. (2003). Phylogenomics: intersection of evolution and genomics. Science (New York, N.Y.) 300(5626), 1706-7.
Engelhardt, B. E., Jordan, M. I., Muratore, K. E., and Brenner, S. E. (2005). Protein Molecular Function Prediction by Bayesian Phylogenomics. PLoS Comput Biol 1(5), e45.
Gallo, F. R., Multari, G., Federici, E., Palazzino, G., Giambenedetti, M., Petitto, V., Poli, F., and Nicoletti, M. (2011). Chemical fingerprinting of Equisetum arvense L. using HPTLC densitometry and HPLC. Natural Product Research 25(13), 1261-1270.
Graefe, E. U., and Veit, M. (1999). Urinary metabolites of flavonoids and hydroxycinnamic acids in humans after application of a crude extract from Equisetum arvense. Phytomedicine 6(4), 239-246.
Guillon, J.-M. (2004). Phylogeny of Horsetails (Equisetum) based on the Chloroplast rps4 Gene and Adjacent Noncoding Sequences. Systematic Botany 29(2), 251-259.
Guillon, J.-M. (2007). Molecular phylogeny of horsetails (Equisetum) including chloroplast atpB sequences. Journal of Plant Research 120(4), 569-574.
Guillon, J.-M., and Raquin, C. (2002). Environmental sex determination in the genus Equisetum: sugars induce male sex expression in cultured gametophytes. . International Journal of Plant Sciences 163(5), 825-830.
Hauke, R. L. (1963). A taxonomic monograph of the genus Equisetum subgenus Hippochaete. Beih. Nova Hedwigia 8.
Hauke, R. L. (1978). A taxonomic monograph of Equisetum subgenus Equisetum. . Nova Hedwigia 30, 385-455.
Hey, J., and Nielsen, R. (2004). Multilocus Methods for Estimating Population Sizes, Migration Rates and Divergence Time, With Applications to the Divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167(2), 747-760.
Hung, K.-H., Schaal, B. A., Hsu, T.-W., Chiang, Y.-C., Peng, C.-I., and Chiang, T.-Y. (2009). Phylogenetic relationships of diploid and polyploid species in Ludwigia sect. Isnardia (Onagraceae) based on chloroplast and nuclear DNAs. Taxon 58(4), 1216-1226.
Hyuncheol Oh, Do-Hoon Kim, Jung-Hee Cho, and Youn-Chul Kim (2004). Hepatoprotective and free radical scavenging activities of phenolic petrosins and flavonoids isolated from Equisetum arvense. Journal of Ethnopharmacology 95(2–3), 421-424.
John P. Huelsenbeck, J. J. B. (1996). A likelihood ratio test to detect conflicting phylogenetic signal. Systematic Biology 45(1), 92-98.
Johnson, K. P., and Clayton, D. H. (2000). Nuclear and Mitochondrial Genes Contain Similar Phylogenetic Signal for Pigeons and Doves (Aves: Columbiformes). Molecular Phylogenetics and Evolution 14(1), 141-151.
Kathleen M. Pryer, E. S., Paul G. Wolf, Harald Schneider, Alan R. Smith and Raymond Cranfill (2004). Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. American Journal of Botany 91, 1582-1598.
Kingman, J. F. C. (1982). The coalescent. Stochastic Processes and their Applications 13(3), 235-248.
Kliman, R. M., Andolfatto, P., Coyne, J. A., Depaulis, F., Kreitman, M., Berry, A. J., McCarter, J., Wakeley, J., and Hey, J. (2000). The Population Genetics of the Origin and Divergence of the Drosophila simulans Complex Species. Genetics 156(4), 1913-1931.
Kumar, S., Nei, M., Dudley, J., and Tamura, K. (2008). MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics 9(4), 299-306.
Librado, P., and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11), 1451-1452.
Lubienski, M., Bennert, H. W., and rner, S. (2010). Two new triploid hybrids in Equisetum subgenus Hippochaete for Central Europe and notes on the taxonomic value of Equisetum trachyodon forma Fuchsii (Equisetaceae, Pteridophyta). Nova Hedwigia 90(3-4), 321-341.
Maddison, W. P., and Knowles, L. L. (2006). Inferring Phylogeny Despite Incomplete Lineage Sorting. Systematic Biology 55(1), 21-30.
McMahon, M. M., and Sanderson, M. J. (2006). Phylogenetic Supermatrix Analysis of GenBank Sequences from 2228 Papilionoid Legumes. Systematic Biology 55(5), 818-836.
Mohan Ram, H. Y., and Chatterjee, J. (1970). Gametophytes of Equisetum ramosissimum subsp. ramosissimum. II. Sexuality and its modification. Phytomorphology 20(2), 151-172.
Murray, M. G. T., W.F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8(19), 4321-4326.
O'Brien, S. J., and Stanyon, R. (1999). Phylogenomics: Ancestral primate viewed. Nature 402(6760), 365-366.
Obermayer, R., Leitch, I. J., Hanson, L., and Bennett, M. D. (2002). Nuclear DNA C‐values in 30 Species Double the Familial Representation in Pteridophytes. Annals of Botany 90(2), 209-217.
Osada, N., and Wu, C.-I. (2005). Inferring the Mode of Speciation From Genomic Data. Genetics 169(1), 259-264.
Page, C. N. (1972). An Assessment of Inter-Specific Relationships in Equisetum Subgenus Equisetum. New Phytologist 71(2), 355-369.
Page, R. D. M., and Charleston, M. A. (1997). From Gene to Organismal Phylogeny: Reconciled Trees and the Gene Tree/Species Tree Problem. Molecular Phylogenetics and Evolution 7(2), 231-240.
Pollard, D. A., Iyer, V. N., Moses, A. M., and Eisen, M. B. (2006). Widespread discordance of gene trees with species tree in Drosophila: evidence for incomplete lineage sorting. PLoS genetics 2(10).
Radulović, N., Stojanović, G., and Palić, R. (2006). Composition and antimicrobial activity of Equisetum arvense L. essential oil. Phytotherapy Research 20(1), 85-88.
Ree, R. H., Moore, B. R., Webb, C. O., and Donoghue, M. J. (2005). A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 59(11), 2299-2311.
Ree, R. H., and Smith, S. A. (2008). Maximum Likelihood Inference of Geographic Range Evolution by Dispersal, Local Extinction, and Cladogenesis. Systematic Biology 57(1), 4-14.
Reeck, G. R., de Haën, C., Teller, D. C., Doolittle, R. F., Fitch, W. M., Dickerson, R. E., Chambon, P., McLachlan, A. D., Margoliash, E., Jukes, T. H., and Zuckerkandl, E. (1987). “Homology in proteins and nucleic acids: A terminology muddle and a way out of it. Cell 50(5), 667.
Retief, J. D. (1999). Phylogenetic Analysis Using PHYLIP
Bioinformatics Methods and Protocols (S. Misener, and S. A. Krawetz, Eds.), Vol. 132, pp. 243-258. Humana Press.
Revilla, M. C., Andrade-Cetto, A., Islas, S., and Wiedenfeld, H. (2002). Hypoglycemic effect of Equisetum myriochaetum aerial parts on type 2 diabetic patients. Journal of Ethnopharmacology 81(1), 117-120.
Ronquist, F. (1997). Dispersal-Vicariance Analysis: A New Approach to the Quantification of Historical Biogeography. Systematic Biology 46(1), 195-203.
Roselius, K., Stephan, W., and Städler, T. (2005). The Relationship of Nucleotide Polymorphism, Recombination Rate and Selection in Wild Tomato Species. Genetics 171(2), 753-763.
Rosenberg, N. A. (2002). The Probability of Topological Concordance of Gene Trees and Species Trees. Theoretical Population Biology 61(2), 225-247.
Rosenberg, N. A., and Nordborg, M. (2002). Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nat Rev Genet 3(5), 380-390.
Roure, B., Rodriguez-Ezpeleta, N., and Philippe, H. (2007). SCaFoS: a tool for selection, concatenation and fusion of sequences for phylogenomics. BMC Evolutionary Biology 7.
Sanmartin, I., Van der Mark, P., and Ronquist, F. (2008). Inferring dispersal: a Bayesian approach to phylogeny-based island biogeography, with special reference to the Canary Islands. Journal of Biogeography 35(3), 428-449.
Schaffner, J. H. (1930). Geographic Distribution of the Species of Equisetum in Relation to Their Phylogeny. American Fern Journal 20(3), 89-106.
Sigwart, J. (2009). Coalescent Theory: An Introduction. Systematic Biology 58(1), 162-165.
Snel, B., Huynen, M. A., and Dutilh, B. E. (2005). Genome trees and the nature of genome evolution. Annual Review of Microbiology 59(1), 191-209.
Syring, J., Farrell, K., Businský, R., Cronn, R., and Liston, A. (2007). Widespread genealogical nonmonophyly in species of Pinus subgenus Strobus. Systematic Biology 56(2), 163-181.
Takahashi, K., Terai, Y., Nishida, M., and Okada, N. (2001). Phylogenetic relationships and ancient incomplete lineage sorting among cichlid fishes in lake Tanganyika as revealed by analysis of the insertion of retroposons. Molecular Biology and Evolution 18(11), 2057-2066.
Taylor, T. N., Taylor, E. L., and Krings, M. (2008). Paleobotany: the biology and evolution of fossil plants. 2 ed. Academic Press.
Tiffin, P., and Gaut, B. S. (2001). Molecular Evolution of the Wound-Induced Serine Protease Inhibitor wip1 in Zea and Related Genera. Molecular Biology and Evolution 18(11), 2092-2101.
Wang, W.-K., Ho, C.-W., Hung, K.-H., Wang, K.-H., Huang, C.-C., Araki, H., Hwang, C.-C., Hsu, T.-W., Osada, N., and Chiang, T.-Y. (2010). Multilocus analysis of genetic divergence between outcrossing Arabidopsis species: evidence of genome-wide admixture. New Phytologist 188(2), 488-500.
Wilfried Bennert, Marcus Lubienski, Simone Korner, and Matthias Steinberg (2005). Triploidy in Equisetum subgenus Hippochaete (Equisetaceae, Pteridophyta). Annals of Botany 95(5), 807-815.
Wright, S. I., Lauga, B., and Charlesworth, D. (2002). Rates and patterns of molecular evolution in inbred and outbred Arabidopsis. Molecular Biology and Evolution 19(9), 1407-1420.
Yu, Y., Harris, A. J., and He, X. (2010). S-DIVA (Statistical Dispersal-Vicariance Analysis): A tool for inferring biogeographic histories. Molecular Phylogenetics and Evolution 56(2), 848-850.
Zhang, Z., Pang, A. W. C., and Gerstein, M. (2007). Comparative analysis of genome tiling array data reveals many novel primate-specific functional RNAs in human. BMC Evolutionary Biology 7.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top