跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 04:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅映筑
研究生(外文):Ying-ChuLo
論文名稱:開花基因在玉山阿拉伯芥之演化
論文名稱(外文):The evolution of flowering genes in Arabidopsis kamchatica
指導教授:蔣鎮宇蔣鎮宇引用關係
指導教授(外文):Tzen-Yuh Chiang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生命科學系碩博士班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:79
中文關鍵詞:玉山阿拉伯芥開花機制開花基因遺傳變異族群遺傳結構
外文關鍵詞:Arabidopsis kamchaticaflowering genesgenetic variationpopulation genetic structureflowering mechanism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:1
玉山阿拉伯芥(Arabidopsis kamchatica)為模式物種阿拉伯芥之近緣種,藉由比對阿拉伯芥及玉山阿拉伯芥之種間差異將有助於瞭解開花基因演化歷史,生長於高海拔之玉山阿拉伯芥屬於冰河孑遺物種,過去在冰河時期、氣候變動下,玉山阿拉伯芥進入台灣後因冰河退卻,逐漸和中國、日本族群產生地理隔離,進而演化出現今具有獨特之物種。玉山阿拉伯芥分布棲地範圍極為多樣,在台灣族群中適應各自棲地之族群更能保有其獨特之表型與基因型。在野外觀察發現台灣南橫與鳶峰玉山阿拉伯芥族群有冬天開花現象,和阿拉伯芥研究所瞭解的春季與夏季開花有所不同,此外,台灣與日本地處不同地理區域和緯度,可能在開花基因上亦有所差異。因此本研究選取春化作用、光週期影響、自發性開花與吉貝素影響四種不同開花路徑的20個開花基因,探討台灣南橫、鳶峰與石門山族群與日本富士山、靜岡族群開花基因遺傳變異和分化程度,並進一步探討玉山阿拉伯芥之冬天開花可能機制。結果顯示台灣南橫、鳶峰與石門山族群,在春化和光週期相關的開花基因有明顯的胺基酸變異,STRUCTURE分析顯示台灣各族群在春化、光週期以及吉貝素相關開花基因遺傳結構有顯著差異。進一步分析核苷酸變異度(π)與核甘酸位置平均變異(θ)發現在20個開花基因中,台灣南橫核苷酸變異較鳶峰與石門山族群高。在台灣和日本兩地理區亦發現光週期和春化作用基因上有明顯的胺基酸變異且開花基因上有分化的現象,以STRUCTURE分析顯示日本和台灣主要在春化與光週期開花基因上有遺傳組成,結果顯示,玉山阿拉伯芥的開花基因可能因為生長環境或是地理區域不同,而有不同演化結果,而開花基因的變異導致玉山阿拉伯芥不同族群之間的分化。
Arabidopsis kamchatica is a relative species of model plant, A. thaliana, and also a relic species in Taiwan. Compared with A. kamchatica and A. thaliana, it will help to understand evolution history of A. kamchatica in flowing genes. According to geographic records, Taiwan populations of A. kamchatica were not isolated from China and Japan until last glacial retreat. The wide distributions and variable habitats of A. kamchatica in Taiwan may resulted in significant differentiation of flowering genes. According to filed observation , we found thatNanhenand Yuanfeng populations of A. kamchatica in Taiwan flowered in winter, and it was different from previous study of A. thaliana, showing different flowering mechanism among them. In addition, Taiwan and Japan were location at the different longitude and latitude, and we expected significant differentiation in flowering genes. In this study, twenty flowering genes, including vernalization、autonomous、gibberellin and light-dependent pathway were chose to explore genetic variation and population structure of A. kamchatica in Taiwan and Japan populations. The variations of vernalization and light-dependent flowering genes is most nonsynonymous substitutions in Nanhen, Yuanfeng and Mountain Shimen populations of Taiwan. The STRUCTURE analysis indicated the significant differentiation of vernalization、gibberellin and light-dependent pathway flowering genes between populations in Taiwan, and the highest nucleotide variation was detected in Nanhen population of Taiwan. As similar scenario in Taiwan populations, the genetic differentiations of vernalization and light-dependent flowering genes between Taiwan and Japan populations were also suggested.
目錄
摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
壹、前言 1
一、阿拉伯芥屬(Arabidopsis)基本介紹 1
二、玉山阿拉伯芥(Arabidopsis kamchatica)的基本介紹 2
三、玉山阿拉伯芥(Arabidopsis kamchatica)與近緣物種演化關係 3
四、台灣與日本之地理差異與台灣植物起源 3
五、植物開花週期以及阿拉伯芥屬(Arabidopsis)植物開花現象相關研究 4
貳、研究目的 10
參、材料與方法 11
一、研究材料 11
二、實驗方法 11
三、資料分析 15
肆、實驗結果 18
一、實驗結果-台灣南橫、石門山與鳶峰族群開花基因研究 19
二、實驗結果-日本與台灣玉山阿拉伯芥族群開花基因研究 26
伍、討論 30
陸、結論 36
柒、參考文獻 37
捌、附件 42
表目錄
表一、玉山阿拉伯芥樣本採集資料 42
表二、 基因引子 43
表三、 DNASP分析各族群開花基因的TAJIMA’S D、Π、Θ、 KA/KS數值 45
表四、 台灣與日本五個族群之間的族群分化數值(FST) 52
表五、台灣與日本族群在開花基因的核甘酸多型性(SINGLE NUCLEOTIDE POLYMORPHISM) 59
表六、 程式STRUCTURE模擬計算各K值之平均LIKELIHOOD值與DELTA K值 61
表七、利用DNASP軟體分析葉綠體Π與Θ值 62

圖目錄
圖一、ATMYB33親緣演化樹 63
圖二、CRY2親緣演化樹 63
圖三、CO親緣演化樹 63
圖四、ELF 親緣演化樹 64
圖五、FCA親緣演化樹 64
圖六、FD親緣演化樹 64
圖七、FKF親緣演化樹 65
圖八、FLC親緣演化樹 65
圖九、FRI親緣演化樹 65
圖十、FRL2親緣演化樹 66
圖十一、GAI親緣演化樹 66
圖十二、LD親緣演化樹 67
圖十三、PFT親緣演化樹 67
圖十四、PHYB親緣演化樹 68
圖十五、PHYE親緣演化樹 69
圖十六、PI2親緣演化樹 69
圖十七、PIE1 親緣演化樹 70
圖十八、VIN3親緣演化樹 70
圖十九、VIN3L 親緣演化樹 71
圖二十、TRNL (F/L) TRNL(E/T)親緣演化樹 71
圖二十一、ITS親緣演化樹 71
圖二十二、STRUCTURE 模擬K=2 ATMYB33基因之各族群遺傳結構分析圖 72
圖二十三、STRUCTURE 模擬K=2 CRY2基因之各族群遺傳結構分析圖 72
圖二十四、STRUCTURE 模擬K=2 CO基因之各族群遺傳結構分析圖 72
圖二十五、STRUCTURE 模擬K=3 ELF基因之各族群遺傳結構分析圖 73
圖二十六、STRUCTURE 模擬K=7 FCA基因之各族群遺傳結構分析圖 73
圖二十七、STRUCTURE 模擬K=3 FD基因之各族群遺傳結構分析圖 73
圖二十八、STRUCTURE 模擬K=3 FLC基因之各族群遺傳結構分析圖 74
圖二十九、STRUCTURE 模擬K=2 FKF基因之各族群遺傳結構分析圖 74
圖三十、STRUCTURE 模擬K=2 FRL2基因之各族群遺傳結構分析圖 74
圖三十一、STRUCTURE 模擬K=2 FRI基因之各族群遺傳結構分析圖 75
圖三十二、STRUCTURE 模擬K=2 GAI基因之各族群遺傳結構分析圖 75
圖三十三、STRUCTURE 模擬K=2 K=7 LD基因之各族群遺傳結構分析圖 75
圖三十四、STRUCTURE 模擬K=2 PHYB基因之各族群遺傳結構分析圖 76
圖三十五、STRUCTURE 模擬K=2 PHYE基因之各族群遺傳結構分析圖 76
圖三十六、STRUCTURE 模擬K=2 PFT基因之各族群遺傳結構分析圖 76
圖三十七、STRUCTURE 模擬K=2 PI2基因之各族群遺傳結構分析圖 77
圖三十八、STRUCTURE 模擬K=2 PIE1基因之各族群遺傳結構分析圖 77
圖三十九、STRUCTURE 模擬K=2 VIN3基因之各族群遺傳結構分析圖 77
圖四十、STRUCTURE 模擬K=2 VIN3基因之各族群遺傳結構分析圖 78
圖四十一、GENE NETWORK – 日本與台灣族群分化以FKF基因為例 78
圖四十二、GENE NETWORK – 台灣族群分化以GAI基因為例 79
圖四十三、GENE NET WORK –台灣與日本族群沒分化以ATMYB33基因為例 79

陳玉峰 (1995). 台灣植被誌. 台灣自然史系列 (第一卷):總論及植被帶概論.
Amasino, Y.-S. N. a. R. M. (2003). PIE1, an ISWI family Gene, is required for FLC activation and floral repression in Arabidopsis. The Plant Cell 15, 1671-1682.
Balloux, F., and Lugon-Moulin, N. (2002). The estimation of population differentiation with microsatellite markers. Molecular Ecology 11(2), 155-165.
Blazquez MA, G. R., Nilsson O, Sussman, and MR, W. D. (1998). Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell 10, 791–800.
Chandler, J., Wilson, A., and Dean, C. (1996). Arabidopsis mutants showing an altered response to vernalization. The Plant Journal 10(4), 637-644.
Clauss, M. J., and Koch, M. A. (2006). Poorly known relatives of Arabidopsis thaliana. Trends in Plant Science 11(9), 449-459.
Devlin, P. F., Patel, S. R., and Whitelam, G. C. (1998). Phytochrome E influences internode elongation and flowering time in Arabidopsis. The Plant Cell Online 10(9), 1479-1488.
Excoffier, L., and Smouse, P. E. (1994). Using allele frequencies and geographic subdivision to reconstruct gene trees within a species - molecular variance parsimony. Genetics 136(1), 343-359.
Felsenstein, J. (1985). Confidence-limits on phylogenies - an approach using the bootstrap. Evolution 39(4), 783-791.
Flowers, J. M., Hanzawa, Y., Hall, M. C., Moore, R. C., and Purugganan, M. D. (2009). Population genomics of the Arabidopsis thaliana flowering time gene network. Molecular Biology and Evolution 26(11), 2475-2486.
Gendall, A. R., Levy, Y. Y., Wilson, A., and Dean, C. (2001). The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107(4), 525-535.
Grennan, A. K. (2006). Variations on a theme. regulation of flowering time in Arabidopsis. Plant Physiology 140(2), 399-400.
Halliday, K. J., Salter, M. G., Thingnaes, E., and Whitelam, G. C. (2003). Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. The Plant Journal 33(5), 875-885.
Helmi Kuittinen, A. A. d. H., Claus Vogl,Sami Oikarinen, Johanna Leppa la and Marcus Koch, T. M.-O., Charles H. Langleyand Outi Savolainen (2004). Comparing the linkage maps of the close relatives
Arabidopsis lyrata and A. thaliana. Genetics 168, 1575–1584.
Higashi, H., Ikeda, H., and Setoguchi, H. (2012). Population fragmentation causes randomly fixed genotypes in populations of Arabidopsis kamchatica in the Japanese Archipelago. Journal of Plant Research 125(2), 223-233.
Hillis, D. M., and Bull, J. J. (1993). An Empirical-Test of Bootstrapping as a Method for Assessing Confidence in Phylogenetic analysis. Systematic Biology 42(2), 182-192.
Ian M. Ehrenreich1 Yoshie Hanzawa, L. C., Judith L. Roe,Paula X. KoveR and Michael D. Purugganan (2009). Candidate gene association mapping of Arabidopsis flowering time. Genetics 183.
Jinrong Peng, P. C., Donald E. Richards, Kathryn E. King, Rachel J. Cowling,and George P. Murphy, a. N. P. H. (1997). The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes & Development 11, 3194-3205.
Jiro Sugisaka , E. H. K. (2008). Breeding system of the annual Cruciferae, Arabidopsis kamchatica subsp. kawasakiana. J Plant Res 121, 65-68.
Johanson, U., West, J., Lister, C., Michaels, S., Amasino, R., and Dean, C. (2000). Molecular Analysis of FRIGIDA, a Major Determinant of Natural Variation in Arabidopsis Flowering Time. Science 290(5490), 344-347.
Jukes, T. H., and Cantor, C. R. (1969). Evolution of protein molecules. In Mammalian Protein Metabolism (H. N. Munroled, Ed.), pp. 31-132. Academic Press, New York.
Jung, C., and Müller, A. E. (2009). Flowering time control and applications in plant breeding. Trends in Plant Science 14(10), 563-573.
Karen J. Halliday , G. C. W. (2003). Changes in photoperiod or temperature alter the functional relationships between phytochromes and reveal roles for phyD and phyE. Plant Physiology 131, 1913-1920.
Keara A Franklin , G. C. W. (2007). Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Nature 10(1038).
Kenneth M. Olsen, S. S. H., John R. Stinchcombe, Cynthia Weinig,, and Purugganan, J. S. a. M. D. (2004). Linkage disequilibrium mapping of Arabidopsis CRY2 flowering time alleles. Genetics(167), 1361–1369.
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111-120.
Koch, M. A., and Matschinger, M. (2007). Evolution and genetic differentiation among relatives of Arabidopsis thaliana. Proceedings of the National Academy of Sciences 104(15), 6272-6277.
Komeda, Y. (2004). Genetic regulation of time to flower in Arabidopsis thaliana. Annual Review of Plant Biology 55(1), 521-535.
Koornneef, M., Hanhart, C. J., and Veen, J. H. (1991). A genetic and physiological analysis of late flowering mutants inArabidopsis thaliana. Molecular and General Genetics MGG 229(1), 57-66.
Koornneef M, H. C., van der Veen JH. (1991). A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229, 57-66.
Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2007). Clustal W and clustal X version 2.0. Bioinformatics 23(21), 2947-2948.
Lee, Y. H., Ota, T., and Vacquier, V. D. (1995). Positive selection Is a general phenomenon in the evolution of abalone sperm lysin. Molecular Biology and Evolution 12(2), 231-238.
Levy YY, D. C. (1998). The transition to flowering. Plant Cell 10, 973–89.
Levy, Y. Y., Mesnage, S., Mylne, J. S., Gendall, A. R., and Dean, C. (2002). Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297(5579), 243-246.
Librado, P., and Rozas, J. (2009). Dnasp v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11), 1451-1452.
Maki Ohgishi, K. S., Kiyotaka Okada, and Tatsuya Sakai (2004). Functional analysis of each blue light receptor, cry1,cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. PNAS 101, 2223-2228.
Nei, M., and Tajima, F. (1983). Maximum-Likelihood estimation of the number of nucleotide substitutions from restriction sites data. Genetics 105(1), 207-217.
Panjabi, P., Jagannath, A., Bisht, N., Padmaja, K. L., Sharma, S., Gupta, V., Pradhan, A., and Pental, D. (2008). Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics 9(1), 113.
Parks BM, Q. P. (1993). hy8, a new class of Arabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell.
ParkW, L. J., Song R, Messing J, Chen X. (2002). Carpel factory, a dicer homolog,and HEN1, a novel protein, actin microRNA metabolism in Arabidopsisthaliana. Curr. Biol. 12, 1484–95.
Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155(2), 945-959.
Putterill, J., Laurie, R., and Macknight, R. (2004). It's time to flower: the genetic control of flowering time. BioEssays 26(4), 363-373.
Ramesh Katam, D. R. P., Anjanabha Bhattacharya, Sheikh M. Basha, and Chittaranjan Kole (2011). Arabidopsis. Springer-Verlag Berlin Heidelberg.
Saitou, N., and Nei, M. (1987). The Neighbor-Joining method - a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4), 406-425.
Sally Adams, T. A. a. G. C. W. (2009). Interaction between the light quality and flowering time pathways in Arabidopsis. The Plant Journal(60), 257-267.
Samach A, O. H., Gold SE, Ditta GS,Schwarz-Sommer Z, et al. (2000). Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science.
Schmickl, R., Jorgensen, M., Brysting, A., and Koch, M. (2010). The evolutionary history of the Arabidopsis lyrata complex: a hybrid in the amphi-Beringian area closes a large distribution gap and builds up a genetic barrier. BMC Evolutionary Biology 10(1), 98.
Sheldon, C. C., Finnegan, E. J., Rouse, D. T., Tadege, M., Bagnall, D. J., Helliwell, C. A., Peacock, W. J., and Dennis, E. S. (2000). The control of flowering by vernalization. Current Opinion in Plant Biology 3(5), 418-422.
Shimizu-Inatsugi, R. I. E., LihovÁ, J., Iwanaga, H., Kudoh, H., Marhold, K., Savolainen, O., Watanabe, K., Yakubov, V. V., and Shimizu, K. K. (2009). The allopolyploid Arabidopsis kamchatica originated from multiple individuals of Arabidopsis lyrata and Arabidopsis halleri. Molecular Ecology 18(19), 4024-4048.
Somerville, R. N. W. a. C. R. (1995). Phenotypic suppression of the cibberellin-lnsensitive mutant (gai) of Arabidopsis. Plant Physiol. 108, 495-502.
Suarez-Lopez P, W. K., RobsonF, Onouchi H, Valverde F, Coupland G. (2001). CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis thaliana. Nature(410), 1116–20.
Sung, S., and Amasino, R. M. (2004). Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427(6970), 159-164.
Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24(8), 1596-1599.
Tanaka Kenta, A. Y., Yoshihiko Onda (2011). Clinal variation in flowering time and vernalisation requirement across a 3000-M altitudinal range in perennial Arabidopsis kamchatica ssp.Kamchatica and annual lowland subspecies kawasakiana. Ecosystem & Ecography(Special Issue 6).
Thompson, S. W. G. a. E. A. (1992). Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48(2), 361-372.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top