跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/25 02:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施幸慧
研究生(外文):Hsing-HuiShih
論文名稱:大葉蝴蝶蘭GDPS_SSU II之鑑定及功能分析
論文名稱(外文):Identification and functional analysis of geranyl diphosphate synthase small subunit II (GDPS_SSU II) in Phalaenopsis bellina
指導教授:陳虹樺陳虹樺引用關係
指導教授(外文):Hong-Hwa Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生命科學系碩博士班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:58
中文關鍵詞:GDPS_SSU II類異戊二烯轉移酶萜類生合成路徑
外文關鍵詞:GDPS_SSU IIprenyltransferaseterpenoid biosynthesis pathway
相關次數:
  • 被引用被引用:0
  • 點閱點閱:100
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
萜類化合物(terpenoid)為植物體中的二次代謝物,參與許多植物生理作用,包括植物生長發育、光合色素的生合成、吸引昆蟲幫助植物授粉、對草食動物或病原菌的防禦等。此類化合物的生合成由類異戊二烯轉移酶(prenyltransferase)催化,利用五個碳的單元IDP與DMADP產生不同碳鏈長度的產物,目前已有許多類異戊二烯轉移酶被發現。GDPS_SSU II為一群在親緣演化分群上不屬於任何一群已知GDPS的酵素,目前只有來自阿拉伯芥的geranylgeranyl reductase (AtGGR) 進行過功能鑑定,研究發現其單獨存在時不具有酵素活性,需與AtGGDSP11結合形成具有活性的GDPS。由於目前對於GDPS_SSU II功能的研究不多,因此目前仍不清楚他們在植物中所扮演的角色。
本研究在大葉蝴蝶蘭中找到一個與AtGGR有高度序列相似的基因,並將其命名為PbGDPS_SSU II。序列分析顯示PbGDPS_SSU II具有完整的FARM及不完整的SARM,且在蛋白質的N端帶有可轉運至葉綠體的訊號胜肽。在親緣演化上,PbGDPS_SSU II會與其它植物的GDPS_SSU II分在同一群,且與GDPS_SSU較為接近。功能鑑定顯示PbGDPS_SSU II可將IDP與DMADP或GDP結合,產生帶有十個碳及十五個碳的產物,利用大腸桿菌功能性互補實驗亦發現,PbGDPS_SSU II不具有調控PeGGDPS產物的能力。相反地, PbGDPS_SSU卻能使PeGGDPS產生的C20產物減少。進一步檢測PbGDPS_SSU II在時間與空間上的表現分布,發現其在不同花部發育時期皆有持續性表現,且在植物營養組織及生殖組織廣泛分布,顯示PbGDPS_SSU II可能與花香成分分子的合成無直接相關。鑑定PbGDPS_SSU II的功能將有助於我們了解GDPS_SSU II酵素在植物體中所扮演的角色,對蝴蝶蘭中萜類生合成路徑也將有更進一步的認識。

Terpenoids are a group of plant secondary metabolites that are involved in many biological processes, including plant growth and development, biosynthesis of photosynthetic pigments, attracting pollinators and plant defense against herbivores or pathogens. The biosynthesis of terpenoid is catalyzed by prenyltransferases using isopentenyl diphosphate (IDP, C5) and dimethylallyl diphosphate (DMADP, C5) as building blocks to form linear products with different carbon chain length. Many prenyltransferases involved in terpenoid biosynthesis have been identified and functional characterized. GDPS_SSU II is a recently identified clade of enzymes that is phylogenetically distinct from other GDPS. AtGGR, a member of GDPS_SSU II, is the only enzyme that has been functionally characterized in this clade. It is an inactive enzyme per se and only forms active GDPS with AtGGDPS11. Since the functional characterization of enzymes in this clade is scarce, the role of GDPS_SSU II in plants is still largely unknown.
In this study, an orchid gene with high similarity to AtGGR in Phalaenopsis bellina was identified and named as PbGDPS_SSU II. Sequence analysis revealed that PbGDPS_SSU II contains the first Asp-rich motif, but the second Asp-rich motif is incomplete. In addition, it possesses a chloroplast transit peptide at its N-terminus. Phylogenetically, it forms a distinct clade with other GDPS_SSU II proteins and is close to other GDPS_SSUs. Functional characterization of PbGDPS_SSU II indicated that it can accept DMADP and GDP as substrates to form GDP (C10) and FDP (C15). Moreover, the functional complementation assay in E. coli showed that PbGDPS_SSU, rather than PbGDPS_SSU II, has the ability to alter the product of PeGGDPS and reduce its C20 production. Temporal and spatial expression analyses showed that PbGDPS_SSU II was constitutively expressed during flower development and was highly expressed in both vegetative and reproductive organs. In contrast, the expression of PbGDPS_SSU is flower-specific and is highly correlated to the emission of floral scent. These results indicated that PbGDPS_SSU II may not directly involve in the biosynthesis of floral scent. Identification and functional characterization of PbGDPS_SSU II may lead to a better understanding of the function of plant GDPS_SSU II and their role in terpenoid biosynthesis in orchids.

中文摘要 I
Abstract II
致謝 III
List of Tables VI
List of Figures VII
List of Appendix Tables VIII
List of Appendix Figures VIII
1. Introduction 1
1.1 The Phalaenopsis orchids 1
1.2 Terpenoids 1
1.2.1 Plant secondary metabolites 1
1.2.2 The significance of terpenoid in higher plants 2
1.2.3 The biosynthesis pathway of terpenoids 2
1.3 Prenyltransferases 3
1.3.1 Different types of prenyltransferases 3
1.3.2 Conserved motifs in short-chain prenyltransferase 4
1.4 Geranyl diphosphate synthase 4
1.4.1 Phylogenetic relationship of GDPS 4
1.4.2 GDPS_SSU 5
1.4.3 GDPS_SSU II 6
1.5 Product chain length regulation of prenyltransferases 6
1.5.1 Mechanisms of product chain length regulation 6
1.5.2 Product chain length regulation by GDPS_SSU and GDPS_SSU II 7
1.6 Previously studies of prenyltransferases in Phalaenopsis orchids 8
1.6.1 Geranyl diphosphate synthases isolated from P. bellina 8
1.6.2 Other short-chain prenyltransferases from Phalaenopsis orchids 8
2. Purpose 10
3. Materials and methods 11
3.1 Plant materials 11
3.2 Molecular cloning of GDPS_SSU II from P. bellina 11
3.3 Sequence analysis 12
3.4 Phylogenetic analysis 12
3.5 Isolation of total RNA 13
3.6 RT-PCR 13
3.7 Expression and purification of PbGDPS_SSU II recombinant proteins 14
3.8 Prenyltransferase activity assay 15
3.9 Thin layer chromatography (TLC) 16
3.10 Measurement of kinetic properties of PbGDPS_SSU II 16
3.11 Functional complementation assay 17
3.12 Molecular modeling of PbGDPS_SSU II 18
3.13 Yeast two-hybrid analysis 18
4. Results 20
4.1 Isolation and sequence analysis of GDPS_SSU II from P. bellina 20
4.2 Phylogenetic analysis 20
4.3 Functional characterization of PbGDPS_SSU II 20
4.4 Functional complementation assay of PbGDPS_SSU II 22
4.5 Protein-protein interaction between PbGDPS_SSU II and PeGGDPS 23
4.6 Temporal and spatial expression patterns of PbGDPS_SSU II 23
4.7 Homology modeling structure of PbGDPS_SSU II 24
5. Discussion 25
5.1 PbGDPS_SSU II is a functional prenyltransferase that generate GDP and FDP 25
5.2 PbGDPS_SSU II could not generate products longer than C15 26
5.3 PbGDPS_SSU, rather than PbGDPS_SSU II, has the ability to regulate the product chain length specificity of PeGGDPS 27
5.4 The role of PbGDPS_SSU II in P. bellina 29
5.5 Functional redundancy of PbGDPS_LSU, PbGDPS_SSU and PbGDPS_SSU II 30
6. Conclusion 31
7. Perspectives 32
8. References 33

List of Tables
Table 1. Apparent Km and Kcat values for recombinant PbGDPS_SSU II 37
Table 2. Templates used for constructing 3D structure of prenyltransferases 38
Table 3. All primers used in this study 39

List of Figures
Figure 1. Multiple sequence alignment of AtGGR-like proteins 40
Figure 2. Phylogenetic tree of plant prenyltransferases 41
Figure 3. Protein purification and prenyltransferase activity of PbGDPS_SSU II 42
Figure 4. TLC characterization of PbGDPS_SSU II products 43
Figure 5. in vivo functional complementation assay 44
Figure 6. Yeast two-hybrid analysis of PbGDPS_SSU II and PeGGDPS interaction 45
Figure 7. Temporal and spatial expression patterns of PbGDPS_SSU II 46
Figure 8. Molecular models of PbGDPS_SSU II, AtGGR, PbGDPS_SSU and SaGGDPS 47
Figure 9. Amino acid residues referred in discussion 48
Figure 10. Overview of terpenoid biosynthesis pathway in Phalaenopsis orchids 49

List of Appendix Table
Appendix Table. Short-chain prenyltransferases isolated from Phalaenopsis orchids 50

List of Appendix Figures
Appendix Figure 1. The terpenoid biosynthesis pathway 51
Appendix Figure 2. Phylogenetic analysis of GDPSs and GGDPSs 52
Appendix Figure 3. The chain-length determination region 53
Appendix Figure 4. Regulation of GGDPS product chain length specificity by GDPS_SSU and AtGGR 54
Appendix Figure 5. The pACCAR25ΔcrtE plasmid 55
Appendix Figure 6. Temporal expression of PbGDPS_SSU and the emission of linalool and geraniol in P. bellina 56
Appendix Figure 7. Spatial expression pattern of AtGGR 57
Appendix Figure 8. Spatial expression patterns of short-chain prenyltransferases identified in Phalaenopsis orchids 58

Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195-201.
Bohlmann, J., Stauber, E.J., Krock, B., Oldham, N.J., Gershenzon, J., and Baldwin, I.T. (2002). Gene expression of 5-epi-aristolochene synthase and formation of capsidiol in roots of Nicotiana attenuata and N. sylvestris. Phytochemistry 60, 109-116.
Bos, R., Koulman, A., Woerdenbag, H.J., Quax, W.J., and Pras, N. (2002). Volatile components from Anthriscus sylvestris (L.) Hoffm. J Chromatogr A 966, 233-238.
Bouvier, F., Suire, C., d'Harlingue, A., Backhaus, R.A., and Camara, B. (2000). Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. Plant Journal 24, 241-252.
Burke, C., and Croteau, R. (2002a). Interaction with the small subunit of geranyl diphosphate synthase modifies the chain length specificity of geranylgeranyl diphosphate synthase to produce geranyl diphosphate. J Biol Chem 277, 3141-3149.
Burke, C., and Croteau, R. (2002b). Geranyl diphosphate synthase from Abies grandis: cDNA isolation, functional expression, and characterization. Arch Biochem Biophys 405, 130-136.
Burke, C.C., Wildung, M.R., and Croteau, R. (1999). Geranyl diphosphate synthase: cloning, expression, and characterization of this prenyltransferase as a heterodimer. Proc Natl Acad Sci 96, 13062-13067.
Chang, T.H., Hsieh, F.L., Ko, T.P., Teng, K.H., Liang, P.H., and Wang, A.H.J. (2010). Structure of a heterotetrameric geranyl pyrophosphate synthase from mint (Mentha piperita) reveals intersubunit regulation. Plant Cell 22, 454-467.
Chen, F., Ro, D.K., Petri, J., Gershenzon, J., Bohlmann, J., Pichersky, E., and Tholl, D. (2004). Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiol 135, 1956-1966.
Delano, W.L. (2002). The PyMOL Molecular Graphic System. (http://www.pymol.org/:DeLano Scientific).
Dicke, M., and van Loon, J.J.A. (2000). Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol Exp Appl 97, 237-249.
Dudareva, N., and Pichersky, E. (2000). Biochemical and molecular genetic aspects of floral scents. Plant Physiol 122, 627-633.
Dudareva, N., Pichersky, E., and Gershenzon, J. (2004). Biochemistry of plant volatiles. Plant Physiol 135, 1893-1902.
Dudareva, N., Negre, F., Nagegowda, D.A., and Orlova, I. (2006). Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25, 417-440.
Fu, C.H., Chen, Y.W., Hsiao, Y.Y., Pan, Z.J., Liu, Z.J., Huang, Y.M., Tsai, W.C, and Chen, H.H. (2011) OrchidBase: a collection of sequences of the transcriptome derived from orchids. Plant Cell Physiol 52, 238–243.
Fujii, H., Sagami, H., Koyama, T., Ogura, K., Seto, S., Baba, T., and Allen, C.M. (1980). Variable product specificity of solanesyl pyrophosphate synthetase. Biochem Biophys Res Commun 96, 1648-1653.
Gietz, D., St Jean, A., Woods, R.A., and Schiestl, R.H. (1992). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20, 1425.
Guex, N., and Peitsch, M.C. (1997). SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714-2723.
Hsiao, Y.Y. (2008). Studies on the biosynthesis pathway and its related genes of Phalaenopsis bellina floral scent. Doctoral Dissertation, National Cheng Kung University.
Hsiao, Y.Y., Tsai, W.C., Kuoh, C.S., Huang, T.H., Wang, H.C., Wu, T.S., Leu, Y.L., Chen, W.H., and Chen, H.H. (2006). Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway. BMC Plant Biol 6, 14.
Hsiao, Y.Y., Jeng, M.F., Tsai, W.C., Chuang, Y.C., Li, C.Y., Wu, T.S., Kuoh, C.S., Chen, W.H., and Chen, H.H. (2008). A novel homodimeric geranyl diphosphate synthase from the orchid Phalaenopsis bellina lacking a DD(X)2-4D motif. Plant J 55, 719-733.
Hsieh, F.L., Chang, T.H., Ko, T.P., and Wang, A.H. (2010). Enhanced specificity of mint geranyl pyrophosphate synthase by modifying the R-loop interactions. J Mol Biol 404, 859-873.
Hsieh, F.L., Chang, T.H., Ko, T.P., and Wang, A.H. (2011). Structure and mechanism of an Arabidopsis medium/long-chain-length prenyl pyrophosphate synthase. Plant Physiol 155, 1079-1090.
Kainou, T., Kawamura, K., Tanaka, K., Matsuda, H., and Kawamukai, M. (1999). Identification of the GGPS1 genes encoding geranylgeranyl diphosphate synthases from mouse and human. Biochim Biophys Acta 1437, 333-340.
Kessler, A., and Baldwin, I.T. (2001). Defensive function of herbivore-induced plant volatile emissions in nature. Science 291, 2141-2144.
Kovacevic, N., Pavlovic, M., Menkovic, N., Tzakou, O., and Couladis, M. (2002). Composition of the essential oil from roots and rhizomes of Valeriana pancicii Halacsy & Bald. Flavour Frag J 17, 355-357.
Koyama, T., Obata, S., Osabe, M., Takeshita, A., Yokoyama, K., Uchida, M., Nishino, T., and Ogura, K. (1993). Thermostable farnesyl diphosphate synthase of Bacillus stearothermophilus: molecular cloning, sequence determination, overproduction, and purification. J Biochem 113, 355-363.
Kroymann, J. (2011). Natural diversity and adaptation in plant secondary metabolism. Curr Opin Plant Biol 14, 246-251.
Laule, O., Furholz, A., Chang, H.S., Zhu, T., Wang, X., Heifetz, P.B., Gruissem, W., and Lange, M. (2003). Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci 100, 6866-6871.
Liang, P.H. (2009). Reaction kinetics, catalytic mechanisms, conformational changes, and inhibitor design for prenyltransferases. Biochemistry 48, 6562-6570.
Liang, P.H., Ko, T.P., and Wang, A.H. (2002). Structure, mechanism and function of prenyltransferases. Eur J Biochem 269, 3339-3354.
Matsuoka, S., Sagami, H., Kurisaki, A., and Ogura, K. (1991). Variable product specificity of microsomal dehydrodolichyl diphosphate synthase from rat-liver. J Biol Chem 266, 3464-3468.
Newman, J.D., and Chappell, J. (1999). Isoprenoid biosynthesis in plants: carbon partitioning within the cytoplasmic pathway. Crit Rev Biochem Mol Biol 34, 95-106.
Ogura, K., and Koyama, T. (1998). Enzymatic aspects of isoprenoid chain elongation. Chem Rev 98, 1263-1276.
Ohnuma, S., Koyama, T., and Ogura, K. (1993). Alteration of the product specificities of prenyltransferases by metal-ions. Biochem Bioph Res Co 192, 407-412.
Ohnuma, S., Hirooka, K., Ohto, C., and Nishino, T. (1997). Conversion from archaeal geranylgeranyl diphosphate synthase to farnesyl diphosphate synthase. Two amino acids before the first aspartate-rich motif solely determine eukaryotic farnesyl diphosphate synthase activity. J Biol Chem 272, 5192-5198.
Okada, K., Saito, T., Nakagawa, T., Kawamukai, M., and Kamiya, Y. (2000). Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiol 122, 1045-1056.
Orlova, I., Nagegowda, D.A., Kish, C.M., Gutensohn, M., Maeda, H., Varbanova, M., Fridman, E., Yamaguchi, S., Hanada, A., Kamiya, Y., Krichevsky, A., Citovsky, V., Pichersky, E., and Dudareva, N. (2009). The small subunit of snapdragon geranyl diphosphate synthase modifies the chain length specificity of tobacco geranylgeranyl diphosphate synthase in planta. Plant Cell 21, 4002-4017.
Pare, P.W., and Tumlinson, J.H. (1999). Plant volatiles as a defense against insect herbivores. Plant Physiol 121, 325-332.
Pichersky, E., and Gershenzon, J. (2002). The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5, 237-243.
Rohmer, M., Knani, M., Simonin, P., Sutter, B., and Sahm, H. (1993). Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295 ( Pt 2), 517-524.
Schwede, T., Kopp, J., Guex, N., and Peitsch, M.C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res 31, 3381-3385.
Song, L., and Poulter, C.D. (1994). Yeast farnesyl-diphosphate synthase: site-directed mutagenesis of residues in highly conserved prenyltransferase domains I and II. Proc Natl Acad Sci 91, 3044-3048.
Tarshis, L.C., Proteau, P.J., Kellogg, B.A., Sacchettini, J.C., and Poulter, C.D. (1996). Regulation of product chain length by isoprenyl diphosphate synthases. Proc Natl Acad Sci 93, 15018-15023.
Tholl, D. (2006). Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9, 297-304.
Tholl, D., Kish, C.M., Orlova, I., Sherman, D., Gershenzon, J., Pichersky, E., and Dudareva, N. (2004). Formation of monoterpenes in Antirrhinum majus and Clarkia breweri flowers involves heterodimeric geranyl diphosphate synthases. Plant Cell 16, 977-992.
Tsai, W.C., Pan, Z.J., Hsiao, Y.Y., Jeng, M.F., Wu, T.F., Chen, W.H., and Chen, H.H. (2008). Interactions of B-class complex proteins involved in tepal development in Phalaenopsis orchid. Plant Cell Physiol 49, 814-824.
Vandermoten, S., Haubruge, E., and Cusson, M. (2009). New insights into short-chain prenyltransferases: structural features, evolutionary history and potential for selective inhibition. Cell Mol Life Sci 66, 3685-3695.
Wang, G., and Dixon, R.A. (2009). Heterodimeric geranyl(geranyl)diphosphate synthase from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis. Proc Natl Acad Sci 106, 9914-9919.
Wang, K., and Ohnuma, S. (1999). Chain-length determination mechanism of isoprenyl diphosphate synthases and implications for molecular evolution. Trends Biochem Sci 24, 445-451.
Waterman, R.J., and Bidartondo, M.I. (2008). Deception above, deception below: linking pollination and mycorrhizal biology of orchids. J Exp Bot 59, 1085-1096.
Yao, S.H. (2010). Investigation of geranylgeranyl diphosphate (GGDP) biosynthesis pathway in Phalaenopsis orchids. Master Thesis, National Cheng Kung University.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top