跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/06 08:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周承緯
研究生(外文):Cheng-WeiChou
論文名稱:新型可攜式光學凝血偵測儀於全血凝血酶原時間檢測之評估
論文名稱(外文):Evaluation of a novel portable optical-based coagulation detector for testing whole blood prothrombin time
指導教授:楊孔嘉楊孔嘉引用關係
指導教授(外文):Kung-Chia Young
學位類別:碩士
校院名稱:國立成功大學
系所名稱:醫學檢驗生物技術學系碩博士班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:98
中文關鍵詞:全血凝血酶原時間光學檢測重點醫療照護檢驗
外文關鍵詞:whole blood prothrombin timeoptical sensorpoint-of-care testing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:684
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:1
凝血酶原時間(PT)試驗,可以用來檢測凝血路徑中的外在途徑及共同途徑的凝血因子的功能是否正常,也可以用來監控口服抗凝劑病患之用藥劑量,以免服用過多而導致產生自發性出血。利用重點醫療照護試驗(POCT),在病患身邊立即進行PT檢驗,可提供給口服抗凝劑的病人一個更有效率的方式來監控用藥情況。本篇實驗中設計出一個利用光學原理的可攜式POCT凝血偵測儀來偵測全血PT,並與自動化ACL TOP凝血分析儀作比較。設計的凝血偵測儀可記錄全血在凝血過程中透光度的改變,並利用一階微分找出凝血時透光度改變速度最快的時間點,定義它為PT時間。實驗結果顯示,全血PT經由調整過檢體體積之後,結果與血漿PT(r=0.996, p〈0.001, n=20)及ACL TOP plasma PT(r=0.980, p〈0.001, n=60)呈現高度相關性,同時也發現了當低血比容的全血(〈35%),全血PT會顯著地縮短(n=32, 平均=-2.2±2.2s),而正常血比容(36-50%)則差異小(n=28, 平均=-0.1±0.6s)。在儀器設計上,使用黑色壓克力製作成一個黑盒子來隔絕外在環境光的影響,並優化檢測區的流道高度,以及全血和反應試劑的比例。最後使用167個全血樣本,實際測試可攜式光學凝血偵測儀。結果顯示,在167個樣本當中,有153個檢體(91.6%)成功地測出全血PT時間,且所測得的結果與手工全血PT (r=0.985, p〈0.001)及自動化ACL TOP plasma PT (r=0.948, p〈0.001)的結果呈現高度相關性。此外,實驗中利用纖維蛋白原及完全血球計算的結果(包含白血球、紅血球、血紅素、血比容、平均血球容積、平均血球血紅素、平均血球血紅素濃度、紅血球分佈幅及血小板)與凝血圖形進行分析,發現了紅血球及纖維蛋白原會影響全血的凝血圖形:紅血球數量增加的聚集效應會使凝血曲線的轉折點變大,而纖維蛋白原的增加會使凝血時間的最大速度點顯著。另外,紅血球數量會造成全血與血漿凝血時間的不同,這就表示,使用全血凝血試驗可能可以更精確的預估活體內的凝血功能。綜合實驗結果:實驗中所計設的可攜式光學凝血偵測儀,可成功地檢測全血PT時間,並與自動化儀器結果呈現相關性。在臨床上也值得評估全血凝血對於凝血功能檢測的應用。
Prothrombin time (PT), testing the function of coagulation factors in the extrinsic and common pathways, is used to monitor the safe range of anticoagulants for avoiding spontaneous hemorrhage. Point-of-care testing (POCT) devices monitoring PT on-site might be much effectively benefit to the patients receiving anticoagulant therapy. In this study, a novel portable optical-based coagulation detector was designed for POCT whole blood (WB) PT test and was compared to the automatic ACL TOP coagulation analyzer. The portable coagulation detector detected the light transmittance of WB, which was decreased during coagulation process and the PT time was determined as the time of the maximum speed point from first-order derivative of coagulation curve. The results showed that the manual WB PT after the adjustment of the sample volume was highly correlated with plasma PT by either the manual method (r=0.996, p〈0.001, n=20) or the ACL TOP coagulation analyzer (r=0.980, p〈0.001, n=60). The result also showed that WB PT was significantly faster in the low (〈35%) hematocrit (HCT) samples (n=32 average difference=-2.2±2.2s) comparing to normal (36-50%) HCT samples (n=28 average difference=-0.1±0.6s). An acrylic black box encircled the electric circuit was made to reduce the environmental effect. Additionally, the parameters for testing chamber and the ratio of WB to reagent were optimized. Finally, 167 WB samples were tested with our portable WB coagulation detector. It showed that PT of 153 of 167 samples (91.6%) was determined successfully, and WB PT results obtained from portable coagulation detector were highly correlated with manual WB PT (r=0.985, p〈0.001) and ACL TOP plasma PT (r=0.948, p〈0.001). Fibrinogen (FIB) and complete blood count data, including white blood cell, red blood cell, hemoglobin, HCT, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, red cell distribution width and platelet, were used to discover the substances in WB that affected the detection of WB coagulation. Only RBC and FIB were found to affect the pattern of coagulation curve. Increasing RBC number might enhance RBC aggregation which causes a more conspicuous turning point on coagulation curve, and increasing FIB enlarged the signal at maximum speed of clotting time. Moreover, the amount of RBC also cause the difference of PT between WB and plasma sample, which indicates WB coagulation test might be able to predict the coagulation function in vitro more precisely than plasma. In conclusion, the designed portable optical coagulation detector can determine the WB PT time, and the results were highly comparable with clinical reports. WB coagulation tests might be suitable for evaluation of coagulation function.
中文摘要 I
Abstract III
Acknowledgement V
Contents VII
Index of tables and figures IX
Abbreviations XI
Chapter I: Introduction 1
1. Coagulation pathway and hemostasis 2
2. Prothrombin time and other clinical coagulation tests 4
3. Point-of-care testing 6
4. Principle of detecting coagulation 9
5. Aim of this study 10
Chapter II: Materials and methods 13
1. Sample collection and clinical results 14
2. Prothrombin time test 14
2.1. Commercial thromboplastin 14
2.2. Plasma PT test by manual method 15
2.3. WB PT test 16
2.4. Modified WB PT 16
3. WB PT test with portable optical coagulation detector 17
3.1. Electric circuit and experimental setup 17
3.2. Coagulation chips and detecting area 18
3.3. Procedures 19
3.4. Determination of PT and interpretation of WB coagulation curve 19
4. Coomassie blue stain of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 20
5. Observation of RBC aggregation in micro-channel 21
6. Statistics 22
Chapter III: Results 23
1. Establishing WB PT test 24
2. Designing WB coagulation detector 26
2.1. Testing WB coagulation with designed optical coagulation detector 26
2.2. Optimization of coagulation curve 27
2.3. Optimization of light source and detector 28
2.4. Determination of PT clotting time 29
3. Comparing Dade Innovin and HemosIL Recombiplastin 30
4. Testing WB PTs of 167 samples with the portable optical coagulation detector 31
5. Discovery the effect of RBC in coagulation detection 34
Chapter IV: Discussion 37
1. Development of WB PT and portable coagulation detector 38
2. Difference between WB PT and plasma PT 39
3. The factors that affects] detecting WB coagulation with portable optical coagulation detector 40
3.1. RBC aggregation 40
3.2. Fibrinogen and platelet 42
4. Conclusion 43
References 45
Tables and figures 51

Amukele, T.K., Ferrell, C., Chandler, W.L., 2010. Comparison of plasma with whole blood prothrombin time and fibrinogen on the same instrument. Am J Clin Pathol 133(4), 550-556.
Bauman, M.E., Black, K.L., Massicotte, M.P., Bauman, M.L., Kuhle, S., Howlett-Clyne, S., Cembrowski, G.S., Bajzar, L., 2008. Accuracy of the CoaguChek XS for point-of-care international normalized ratio (INR) measurement in children requiring warfarin. Thrombosis and haemostasis 99(6), 1097-1103.
Butenas, S., Orfeo, T., Brummel-Ziedins, K.E., Mann, K.G., 2007. Tissue factor in thrombosis and hemorrhage. Surgery 142(4 Suppl), S2-14.
Caen, J., Wu, Q., 2010. Hageman factor, platelets and polyphosphates: early history and recent connection. J Thromb Haemost 8(8), 1670-1674.
Cappellini, M.D., 2007. Coagulation in the pathophysiology of hemolytic anemias. Hematology / the Education Program of the American Society of Hematology. American Society of Hematology. Education Program, 74-78.
Chavez, J.J., Weatherall, J.S., Strevels, S.M., Liu, F., Snider, C.C., Carroll, R.C., 2004. Evaluation of a point-of-care coagulation analyzer on patients undergoing cardiopulmonary bypass surgery. Journal of clinical anesthesia 16(1), 7-10.
Colella, M.P., Fiusa, M.M., Orsi, F.L., de Paula, E.V., Annichino-Bizzacchi, J.M., 2012. Performance of a point-of-care device in determining prothrombin time in an anticoagulation clinic. Blood Coagul Fibrinolysis 23(2), 172-174.
Coughlin, S.R., 2005. Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost 3(8), 1800-1814.
Cromheecke, M.E., Levi, M., Colly, L.P., de Mol, B.J., Prins, M.H., Hutten, B.A., Mak, R., Keyzers, K.C., Buller, H.R., 2000. Oral anticoagulation self-management and management by a specialist anticoagulation clinic: a randomised cross-over comparison. Lancet 356(9224), 97-102.
D'Angelo, A., Seveso, M.P., D'Angelo, S.V., Gilardoni, F., Macagni, A., Manotti, C., Bonini, P., 1989. Comparison of two automated coagulometers and the manual tilt-tube method for the determination of prothrombin time. Am J Clin Pathol 92(3), 321-328.
David, J.S., Levrat, A., Inaba, K., Macabeo, C., Rugeri, L., Fontaine, O., Cheron, A., Piriou, V., 2012. Utility of a point-of-care device for rapid determination of prothrombin time in trauma patients: a preliminary study. The journal of trauma and acute care surgery 72(3), 703-707.
Davie, E.W., Fujikawa, K., Kisiel, W., 1991. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry 30(43), 10363-10370.
Davis, H.E., Rosinski, M., Morgan, J.R., Yarmush, M.L., 2004. Charged polymers modulate retrovirus transduction via membrane charge neutralization and virus aggregation. Biophysical journal 86(2), 1234-1242.
Despotis, G.J., Goodnough, L.T., 2000. Management approaches to platelet-related microvascular bleeding in cardiothoracic surgery. The Annals of thoracic surgery 70(2 Suppl), S20-32.
Dorfman, D.M., Goonan, E.M., Boutilier, M.K., Jarolim, P., Tanasijevica, M., Goldhaber, S.Z., 2005. Point-of-care (POC) versus central laboratory instrumentation for monitoring oral anticoagulation. Vasc Med 10(1), 23-27.
Faivre, M., Peltie, P., Planat-Chretien, A., Cosnier, M.L., Cubizolles, M., Nougier, C., Negrier, C., Pouteau, P., 2011. Coagulation dynamics of a blood sample by multiple scattering analysis. Journal of biomedical optics 16(5), 057001.
Fitzmaurice, D.A., Gardiner, C., Kitchen, S., Mackie, I., Murray, E.T., Machin, S.J., 2005. An evidence-based review and guidelines for patient self-testing and management of oral anticoagulation. British journal of haematology 131(2), 156-165.
Harsfalvi, J., Pfliegler, G., Udvardy, M., Boda, Z., Tornai, I., Rak, K., 1990. The use of polybrene for heparin neutralization in protein C activity assay. Blood Coagul Fibrinolysis 1(4-5), 357-361.
Hayward, C.P., Moffat, K.A., Plumhoff, E., Van Cott, E.M., 2012. Approaches to investigating common bleeding disorders: an evaluation of North American coagulation laboratory practices. American journal of hematology 87 Suppl 1, S45-50.
Heneghan, C., Ward, A., Perera, R., Bankhead, C., Fuller, A., Stevens, R., Bradford, K., Tyndel, S., Alonso-Coello, P., Ansell, J., Beyth, R., Bernardo, A., Christensen, T.D., Cromheecke, M.E., Edson, R.G., Fitzmaurice, D., Gadisseur, A.P., Garcia-Alamino, J.M., Gardiner, C., Hasenkam, J.M., Jacobson, A., Kaatz, S., Kamali, F., Khan, T.I., Knight, E., Kortke, H., Levi, M., Matchar, D., Menendez-Jandula, B., Rakovac, I., Schaefer, C., Siebenhofer, A., Souto, J.C., Sunderji, R., Gin, K., Shalansky, K., Voller, H., Wagner, O., Zittermann, A., 2012. Self-monitoring of oral anticoagulation: systematic review and meta-analysis of individual patient data. Lancet 379(9813), 322-334.
Hoel, R.W., Albright, R.C., Beyer, L.K., Santrach, P.J., Magtibay, D.L., Everson, S.L., McBane, R.D., 2009. Correlation of point-of-care International Normalized Ratio to laboratory International Normalized Ratio in hemodialysis patients taking warfarin. Clinical journal of the American Society of Nephrology : CJASN 4(1), 99-104.
Iwata, H., Kaibara, M., 2002. Activation of factor IX by erythrocyte membranes causes intrinsic coagulation. Blood Coagul Fibrinolysis 13(6), 489-496.
Iwata, H., Kaibara, M., Dohmae, N., Takio, K., Himeno, R., Kawakami, S., 2004. Purification, identification, and characterization of elastase on erythrocyte membrane as factor IX-activating enzyme. Biochemical and biophysical research communications 316(1), 65-70.
Jan, K.M., Chien, S., 1973. Role of surface electric charge in red blood cell interactions. The Journal of general physiology 61(5), 638-654.
Kaibara, M., Iwata, H., Ujiie, H., Himeno, R., 2005. Rheological analyses of coagulation of blood from different individuals with special reference to procoagulant activity of erythrocytes. Blood Coagul Fibrinolysis 16(5), 355-363.
Kanji, S., Buffie, J., Hutton, B., Bunting, P.S., Singh, A., McDonald, K., Fergusson, D., McIntyre, L.A., Hebert, P.C., 2005. Reliability of point-of-care testing for glucose measurement in critically ill adults. Critical care medicine 33(12), 2778-2785.
Kaplan, Z.S., Jackson, S.P., 2011. The role of platelets in atherothrombosis. Hematology / the Education Program of the American Society of Hematology. American Society of Hematology. Education Program 2011, 51-61.
Kong, M.C., Lim, T.G., Ng, H.J., Chan, Y.H., Lee, L.H., 2008. Feasibility, cost-effectiveness and patients' acceptance of point-of-care INR testing in a hospital-based anticoagulation clinic. Annals of hematology 87(11), 905-910.
Lawrie, A.S., Hills, J., Longair, I., Green, L., Gardiner, C., Machin, S.J., Cohen, H., 2012. The clinical significance of differences between point-of-care and laboratory INR methods in over-anticoagulated patients. Thromb Res 130(1), 110-114.
Levy, J.H., Szlam, F., Tanaka, K.A., Sniecienski, R.M., 2012. Fibrinogen and hemostasis: a primary hemostatic target for the management of acquired bleeding. Anesthesia and analgesia 114(2), 261-274.
Lim, H., Nam, J., Xue, S., Shin, S., 2011. Measurement of blood coagulation with considering RBC aggregation through a microchip-based light transmission aggregometer. Clinical hemorheology and microcirculation 47(3), 211-218.
Lison, S., Spannagl, M., 2011. Monitoring of direct anticoagulants. Wien Med Wochenschr 161(3-4), 58-62.
Ludecke, G., Pilatz, A., Hauptmann, A., Bschleipfer, T., Weidner, W., 2012. Comparative Analysis of Sensitivity to Blood in the Urine for Urine-based Point-of-Care Assays (UBC rapid, NMP22 BladderChek and BTA-stat) in Primary Diagnosis of Bladder Carcinoma. Interference of Blood on the Results of Urine-based POC Tests. Anticancer research 32(5), 2015-2018.
Maddox, J.M., Bogo, P.H., McGregor, E., Pippard, M.J., Kerr, R., 2009. Quality assurance for point-of-care testing of oral anticoagulation: a large-scale evaluation of the Hemochron Junior Signature Microcoagulation System. Int J Lab Hematol 31(2), 142-150.
McBane, R.D., 2nd, Felty, C.L., Hartgers, M.L., Chaudhry, R., Beyer, L.K., Santrach, P.J., 2005. Importance of device evaluation for point-of-care prothrombin time international normalized ratio testing programs. Mayo Clinic proceedings. Mayo Clinic 80(2), 181-186.
Medcalf, R.L., 2007. Fibrinolysis, inflammation, and regulation of the plasminogen activating system. J Thromb Haemost 5 Suppl 1, 132-142.
Merlani, P.G., Chenaud, C., Cottini, S., Reber, G., Garnerin, P., de Moerloose, P., Ricou, B., 2006. Point of care management of heparin administration after heart surgery: A randomized, controlled trial. Intensive care medicine 32(9), 1357-1364.
Muller, L., Sinn, S., Drechsel, H., Ziegler, C., Wendel, H.P., Northoff, H., Gehring, F.K., 2010. Investigation of prothrombin time in human whole-blood samples with a quartz crystal biosensor. Anal Chem 82(2), 658-663.
Nam, J.H., Yang, Y., Chung, S., Shin, S., 2010. Comparison of light-transmission and -backscattering methods in the measurement of red blood cell aggregation. Journal of biomedical optics 15(2), 027003.
Ng, V.L., 2009. Liver disease, coagulation testing, and hemostasis. Clin Lab Med 29(2), 265-282.
Peck-Radosavljevic, M., 2007. Review article: coagulation disorders in chronic liver disease. Alimentary pharmacology & therapeutics 26 Suppl 1, 21-28.
Pena, J.A., Lewandrowski, K.B., Lewandrowski, E.L., Gregory, K., Baron, J.M., Van Cott, E.M., 2012. Evaluation of the i-STAT point-of-care capillary whole blood prothrombin time and international normalized ratio: comparison to the Tcoag MDAII coagulation analyzer in the central laboratory. Clinica chimica acta; international journal of clinical chemistry 413(11-12), 955-959.
Perry, D.J., Fitzmaurice, D.A., Kitchen, S., Mackie, I.J., Mallett, S., 2010. Point-of-care testing in haemostasis. British journal of haematology 150(5), 501-514.
Persson, E., Olsen, O.H., 2010. Current status on tissue factor activation of factor VIIa. Thromb Res 125 Suppl 1, S11-12.
Petersen, J.R., Vonmarensdorf, H.M., Weiss, H.L., Elghetany, M.T., 2010. Use of error grid analysis to evaluate acceptability of a point of care prothrombin time meter. Clinica chimica acta; international journal of clinical chemistry 411(3-4), 131-134.
Puckett, L.G., Barrett, G., Kouzoudis, D., Grimes, C., Bachas, L.G., 2003. Monitoring blood coagulation with magnetoelastic sensors. Biosensors & bioelectronics 18(5-6), 675-681.
Rampling, M.W., Meiselman, H.J., Neu, B., Baskurt, O.K., 2004. Influence of cell-specific factors on red blood cell aggregation. Biorheology 41(2), 91-112.
Rossi, E., Mondonico, P., Lombardi, A., Preda, L., 1988. Method for the determination of functional (clottable) fibrinogen by the new family of ACL coagulometers. Thromb Res 52(5), 453-468.
Rother, R.P., Bell, L., Hillmen, P., Gladwin, M.T., 2005. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA : the journal of the American Medical Association 293(13), 1653-1662.
Salooja, N., Perry, D.J., 2001. Thrombelastography. Blood Coagul Fibrinolysis 12(5), 327-337.
Samocha-Bonet, D., Lichtenberg, D., Tomer, A., Deutsch, V., Mardi, T., Goldin, Y., Abu-Abeid, S., Shenkerman, G., Patshornik, H., Shapira, I., Berliner, S., 2003. Enhanced erythrocyte adhesiveness/aggregation in obesity corresponds to low-grade inflammation. Obesity research 11(3), 403-407.
Santucci, R.A., Erlich, J., Labriola, J., Wilson, M., Kao, K.J., Kickler, T.S., Spillert, C., Mackman, N., 2000. Measurement of tissue factor activity in whole blood. Thrombosis and haemostasis 83(3), 445-454.
Shin, S., Yang, Y., Suh, J.S., 2009. Measurement of erythrocyte aggregation in a microchip stirring system by light transmission. Clinical hemorheology and microcirculation 41(3), 197-207.
Shivkumar, S., Peeling, R., Jafari, Y., Joseph, L., Pai, N.P., 2012. Rapid Point-of-Care First-Line Screening Tests for Hepatitis B Infection: A Meta-Analysis of Diagnostic Accuracy (1980-2010). The American journal of gastroenterology.
Singh, M., Shin, S., 2009. Changes in erythrocyte aggregation and deformability in diabetes mellitus: a brief review. Indian journal of experimental biology 47(1), 7-15.
Smith, S.A., Comp, P.C., Morrissey, J.H., 2006. Phospholipid composition controls thromboplastin sensitivity to individual clotting factors. J Thromb Haemost 4(4), 820-827.
Sobieraj-Teague, M., Daniel, D., Farrelly, B., Coghlan, D., Gallus, A., 2009. Accuracy and clinical usefulness of the CoaguChek S and XS Point of Care devices when starting warfarin in a hospital outreach setting. Thromb Res 123(6), 909-913.
Solano, C., Zerafa, P., Bird, R., 2011. A study of atypical APTT derivative curves on the ACL TOP coagulation analyser. Int J Lab Hematol 33(1), 67-78.
Spoerke, N.J., Van, P.Y., Differding, J.A., Zink, K.A., Cho, S.D., Muller, P.J., Karahan, Z.A., Sondeen, J.L., Holcomb, J.B., Schreiber, M.A., 2010. Red blood cells accelerate the onset of clot formation in polytrauma and hemorrhagic shock. J Trauma 69(5), 1054-1059; discussion 1059-1061.
Szucs, T.D., Bramkamp, M., 2006. Pharmacoeconomics of anticoagulation therapy for stroke prevention in atrial fibrillation: a review. J Thromb Haemost 4(6), 1180-1185.
van den Besselaar, A.M., Witteveen, E., van der Meer, F.J., 2008. Influence of haematocrit on international normalised ratio (INR) differences between a whole blood point-of-care coagulation monitor and reference prothrombin time in plasma. Thrombosis and haemostasis 100(6), 1181-1184.
van Hinsbergh, V.W., 2012. Endothelium--role in regulation of coagulation and inflammation. Seminars in immunopathology 34(1), 93-106.
Vikinge, T.P., Hansson, K.M., Benesch, J., Johansen, K., Ranby, M., Lindahl, T.L., Liedberg, B., Lundstom, I., Tengvall, P., 2000. Blood plasma coagulation studied by surface plasmon resonance. Journal of biomedical optics 5(1), 51-55.
Wang, J.S., Lin, C.Y., Karp, R.B., 1994. Comparison of high-dose thrombin time with activated clotting time for monitoring of anticoagulant effects of heparin in cardiac surgical patients. Anesthesia and analgesia 79(1), 9-13.
Welsby, I.J., McDonnell, E., El-Moalem, H., Stafford-Smith, M., Toffaletti, J.G., 2002. Activated clotting time systems vary in precision and bias and are not interchangeable when following heparin management protocols during cardiopulmonary bypass. Journal of clinical monitoring and computing 17(5), 287-292.
Winkelmayer, W.C., Liu, J., Setoguchi, S., Choudhry, N.K., 2011. Effectiveness and safety of warfarin initiation in older hemodialysis patients with incident atrial fibrillation. Clinical journal of the American Society of Nephrology : CJASN 6(11), 2662-2668.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top