跳到主要內容

臺灣博碩士論文加值系統

(3.235.60.144) 您好!臺灣時間:2021/07/24 01:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘怡君
研究生(外文):I-ChunPan
論文名稱:AP2/ERF 轉錄因子對生物性及非生物性逆境反應之研究
論文名稱(外文):Functional study of AP2/ERF transcription factor in response to biotic and abiotic stresses
指導教授:詹明才
指導教授(外文):Ming-Tsair Chan
學位類別:博士
校院名稱:國立成功大學
系所名稱:生物科技研究所碩博士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:139
中文關鍵詞:AP2/ERF轉錄因子EAR抑制區域抗病抗鹽軟腐病青枯病
外文關鍵詞:AP2/ERFEARRepression domainPathogen resistanceSalt tolerancePccR. solanacearum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
植物遭遇病蟲害或環境逆境時,AP2/ERF (ethylene-reponsive transcription factor) 類型轉錄因子藉由與DNA上轉錄活化鍵結區鍵結,促進或抑制下游基因表現,以因應逆境對植物傷害。本實驗針對阿拉伯芥AF9與番茄SlERF3兩個AP2/ERF轉錄因子進行功能探討分析。AF9基因的表現可受到鹽害、病蟲害、及氧化逆境的誘導,藉由鍵結GCC轉錄活化鍵結區而促進下游基因的表現。在阿拉伯芥中大量表現AF9基因可提高抗鹽能力,並降低轉殖株的葉綠素含量。另外,大量表現AF9基因可增加植物體內PR14 (pathogenesis-related proteins) 基因群,包含LTPs (Lipid transfer protein) 及 LTP-like 基因的表現量,並提升轉殖株對細菌性軟腐病 Pectobacterium carotovora ssp. carotovora (Pcc) 的抗性。

番茄的SlERF3則是經由鍵結GCC轉錄活化鍵結區而抑制下游基因的表現,而大量表現SlERF3基因則會抑制轉殖番茄的生長。將SlERF3基因中的EAR 抑制區域去除後成為SlERF3ΔRD後,發現SlERF3ΔRD仍然保有轉錄因子的功能並與GCC轉錄活化鍵結區鍵結,但原本抑制下游基因表現的特性轉變成誘導下游基因表現。而SlERF3ΔRD轉殖番茄除了比對照組生產更多的番茄之外,同時還能誘導植物體內的PR1、PR2及PR5等抗病基因的表現,並提高SlERF3ΔRD轉殖番茄對青枯病 (Ralstonia solanacearum) 的抗病能力。同時,大量表現SlERF3ΔRD基因可降低轉殖番茄與阿拉伯芥的細胞膜中的過氧化反應,提高轉殖株對鹽害的耐受性。
本實驗除了發現阿拉伯芥的AF9基因可能藉由促進PR14基因群的表現提升轉殖植物的抗性之外,也發現經過去除EAR抑制區域改良的SlERF3基因,可利用基因工程的方法,來提升轉殖植株對於環境逆境及病蟲害逆境的耐受性。此發現開啟了ERF類型的轉錄因子應用於作物品種改良以提升植物抵禦逆境能力的可行性。

APETALA 2/ ethylene-responsive element binding factors (AP2/ERFs) play a crucial role in both plant defense- and stress-signaling pathways through specifically binding to cis-acting DNA regulatory elements such as DRE element or GCC-box. In this study, two ERFs including Arabidopsis AF9 and tomato SlERF3 were functionally investigated. AF9 had early response to salt-, pathogen-, and oxidative stresses, and acted as a GCC-mediated activator. Overexpression of AF9 reduced chlorophyll content through light-dependent pathway, and enhanced salt tolerance of transgenic Arabidopsis. Meanwhile, transgenic plants expressing AF9 resulted in transcripts accumulation of pathogenesis-related proteins 14 (PR14) genes such as LTP1 (lipid transfer proteins 1), LTP2, LTP3, LTP6, LTP7, and three LTP-like genes, and enhanced tolerance of soft rot bacteria.
In addition, tomato SlERF3 acted as GCC-mediated transcriptional repressor and suppressed tomato growth when overexpressed. The character of SlERF3 can be reversed from a transcriptional repressor to an activator after deleting the EAR repressor-domain deletion (SlERF3ΔRD). Constitutively expression of SlERF3ΔRD resulted in incomed expression of PR1, PR2, and PR5, and enhanced tolerance to salinity and to pathogen infection in transgenic plants. Meanwhile, the seed number, fruit number and fresh weight of transgenic SlERF3ΔRD were mostly maintained under normal condition. Furthermore, the SlERF3ΔRD transgenic tomato preserved better agronomical traits under salt stress or pathogen inoculation when compared with wild-type plants.
This study illustrated that Arabidopsis AF9 gene participated in defense pathway possibly through enhanced expression of PR14, and tomato SlERF3 gene enhancing tolerance to both biotic and abiotic stresses in transgenic plants after the deletion of the EAR repressor domain. Our findings suggest that ERF proteins are important and useful in crop improvement or genetic engineering to increase stress tolerance in plants.

中文摘要 i
Abstract iii
Acknowledgement v
Contents I
List of Table V
List of Fig VI
Chapter 1 Environmental stresses and AP2/ERF transcription factor 1
1.1 Abiotic stress 2
1.11 Drought stress 2
1.12 Salt stress 3
1.13 Cold stress 4
1.2 Biotic stress 6
1.3 AP2/ERF transcription factor 7
1.31 Classification of AP2/ERF transcription factor 7
1.32 Functions of ERF transcription factor 8
Chapter 2. Functional study of AF9 transcription factor 11
2.1 Introduction 11
2.2 Materials and methods 16
2.21 Cloning and vector construction 16
2.22 Plant materials 16
2.23 Arabidopsis transformation and GUS histochemical analysis 17
2.24 DNA isolation and Southern blot analysis 18
2.25 RNA isolation and gene expression analysis 20
2.26 Protoplast transformation and subcellular localization 22
2.27 Transactivation assays 22
2.28 Root banding and salt tolerance assay 23
2.29 Pcc inoculation 24
2.3 Result 26
2.31 AF9 was early response to soft rot bacterial and hormone treatments 26
2.32 AF9 was dynamically expression in planta 27
2.33 AF9 located at nucleus and acted as a GCC-mediated transcriptional activator 27
2.24 Overexpression of AF9 enhanced salt tolerance of transgenic plants 28
2.35 AF9 transgenic plants in response to light 29
2.36 AF9 transgenic Arabidopsis exhibit enhanced resistance to Pcc 30
2.37 LTP and LTP-like genes were induced in AF9 transgenic plants 31
2.4 Discussion 32
Chapter 3. Functional analysis of SlERF3 transcription factor 56
3.1 Introduction 56
3.2 Materials and Methods 60
3.21 Cloning and vector construction 60
3.22 Plant materials and sample collection 60
3.23 Amino acid alignment and phylogenetic tree 61
3.24 RNA isolation and gene expression analysis 62
3.25 Protoplast isolation, transfection, and subcellular localization 63
3.26 Transactivation assays 63
3.27 Tomato and Arabidopsis transformations 63
3.28 DNA isolation and genomic PCR 64
3.29 Stresses response assay and growth characteristic measurements of transgenic plants 65
3.3 Result 68
3.31 Identification and isolation of SlERF3 68
3.32 Alignment analysis and phylogenic tree of SlERF3 69
3.33 Expression patterns of SlERF3 70
3.34 Subcellular localization and transcriptional activation of SlERF3 and SlERF3ΔRD 70
3.35 Ecotopic expression of SlERF3ΔRD enhanced R. solanacearum tolerance in tomato 71
3.36 SlERF3ΔRD transgenic tomato enhanced resistance to R. solanacearum 72
3.37 SlERF3ΔRD transgenic Arabidopsis enhanced salt tolerance 73
3.38 Constitutive expression of SlERF3ΔRD enhances salt tolerance in transgenic tomato 74
3.39. Agronomic traits of SlERF3ΔRD transgenic tomato 75
3.4 Discussion 76
Prospect 96
References 100
Appendixes 123
List of Table
Table 1. List of primer sequences 36
Table 2. Genes up/down regulated in AF9Ox plants under normal condition or after Pcc inoculation for 8 h as compared with WT. 37
Table 3. List of primer sequences 79
Table 4. Effects of various treatments on the growth characteristics in transgenic and wild-type tomato plants. 80
List of Fig
Fig. 1. Plasmids construction of AF9 gene 41
Fig. 2. Plasmids construction of AF9 promoter 42
Fig. 3. Expression patterns of under Pcc and hormone treatments 43
Fig. 4. Spatial expression of AF9 gene 44
Fig. 5. Subcellular localization of AF9 45
Fig. 6. Transactivation of GCC-mediated transcription by AF9. 46
Fig. 7. Foreign gene integration and AF9 expression in transgenic Arabidopsis 47
Fig. 8. Phenotype and root bending assay of WT, AF9Ox, and AF9Ko plants under salt stress 48
Fig. 9. Phenotype and chlorophyll loss of WT, AF9Ox, and AF9Ko plants in response to salt stress 49
Fig. 10. Phenotype and chlorophyll content of WT, AF9Ox, and AF9Ko plants under different light intensity 50
Fig. 11. Overexpression of AF9 enhanced tolerance to Pcc in transgenic Arabidopsis. 51
Fig. 12. Gene ontology biological process of genes isolated from microarray analysis 53
Fig. 13. Relative expression of lipid transfer protein genes 54
Fig. 14. Relative expression of LTP-like genes 55
Fig. 15. Plasmids construction of SlERF3 and SlERF3△RD for transformation 81
Fig. 16. Plasmids construction of SlERF3 and SlERF3△RD for subcellular localization 82
Fig. 17. Amino acid alignment of SlERF3 and tomato ERF proteins. 83
Fig. 18. Comparison of the derived amino acid sequence of selected EAR motif-containing genes that have highly sequence similarity with tomato SlERF3. 84
Fig. 19. Phylogenic analysis of SlERF3 protein and some ERF-related proteins. 85
Fig. 20. Expression patterns of SlERF3 under biotic and abiotic stresses, and hormone treatments 86
Fig. 21. Subcellular localization of SlERF3 and SlERF3ΔRD 87
Fig. 22. Transactivation of GCC-mediated transcription by SlERF3 or SlERF3ΔRD in Arabidopsis protoplasts. 88
Fig. 23. SlERF3 and SlERF3ΔRD transgenic tomato and the expression in transgenic plants. 89
Fig. 24. Phenotype of 3-week-old transgenic tomato and wild-type plants treated with a virulent strain of R. solanacearum 90
Fig. 25. Overexpression of SlERF3ΔRD enhanced tolerance to bacterial wilt in transgenic tomato. 91
Fig. 26. Examination and phenotype of SlERF3ΔRD transgenic Arabidopsis under salt treatment. 92
Fig. 27. SlERF3ΔRD transgenic Arabidopsis enhanced tolerance to salt stress. 93
Fig. 28. Phenotype of 2-week-old SlERF3ΔRD transgenic and wild-type tomato plants treated with NaCl 94
Fig. 29. Overexpression of SlERF3ΔRD enhanced salt tolerance in transgenic tomato. 95

Abe, H., T. Urao, T. Ito, M. Seki, K. Shinozaki and K. Yamaguchi-Shinozaki. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. The Plant Cell 15(1): 63-78 (2003).
Abel, S. and A. Theologis. Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. The Plant Journal 5(3): 421-427 (1994).
Anderson, J. P., E. Badruzsaufari, P. M. Schenk, J. M. Manners, O. J. Desmond, C. Ehlert, D. J. Maclean, P. R. Ebert and K. Kazan. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. The Plant Cell 16(12): 3460-3479 (2004).
Atkinson, N. J. and P. E. Urwin. The interaction of plant biotic and abiotic stresses: from genes to the field. Journal Experimental Botany: doi:10.1093/jxb/ers100 (2012).
Bailey-Serres, J., T. Fukao, D. J. Gibbs, M. J. Holdsworth, S. C. Lee, F. Licausi, P. Perata, L. A. C. J. Voesenek and J. T. van Dongen. Making sense of low oxygen sensing. Trends in Plant Science 17: 129-138 (2012).
Bechtold, U., O. Richard, A. Zamboni, C. Gapper, M. Geisler, B. Pogson, S. Karpinski and P. M. Mullineaux. Impact of chloroplastic-and extracellular-sourced ROS on high light-responsive gene expression in Arabidopsis. Journal of Experimental Botany 59(2): 121-133 (2008).
Beffagna, N., B. Buffoli and C. Busi. Modulation of reactive oxygen species production during osmotic stress in Arabidopsis thaliana cultured cells: involvement of the plasma membrane Ca2+-ATPase and H+-ATPase. Plant and Cell Physiology 46(8): 1326-1339 (2005).
Blumwald, E., G. S. Aharon and M. P. Apse. Sodium transport in plant cells. Biochimica et Biophysica Acta 1465(1-2): 140-151 (2000).
Boutilier, K., R. Offringa, V. K. Sharma, H. Kieft, T. Ouellet, L. Zhang, J. Hattori, C. M. Liu, A. A. M. van Lammeren and B. L. A. Miki. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. The Plant Cell 14(8): 1737-1749 (2002).
Cammue, B. P. A., K. Thevissen, M. Hendriks, K. Eggermont, I. J. Goderis, P. Proost, J. Van Damme, R. W. Osborn, F. Guerbette and J. C. Kader. A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiology 109(2): 445-455 (1995).
Cao, Y., F. Song, R. M. Goodman and Z. Zheng. Molecular characterization of four rice genes encoding ethylene-responsive transcriptional factors and their expressions in response to biotic and abiotic stress. Journal of Plant Physiology 163(11): 1167-1178 (2006).
Chan, Y. L., V. Prasad, K. H. Chen, P. C. Liu, M. T. Chan and C. P. Cheng. Transgenic tomato plants expressing an Arabidopsis thionin (Thi2. 1) driven by fruit-inactive promoter battle against phytopathogenic attack. Planta 221(3): 386-393 (2005).
Chassot, C., C. Nawrath and J. P. Métraux. Cuticular defects lead to full immunity to a major plant pathogen. The Plant Journal 49(6): 972-980 (2007).
Chen, G., Z. Hu and D. Grierson. Differential regulation of tomato ethylene responsive factor LeERF3b, a putative repressor, and the activator Pti4 in ripening mutants and in response to environmental stresses. Journal of Plant Physiology 165(6): 662-670 (2008).
Chen, Y. Y., Y. M. Lin, T. C. Chao, J. F. Wang, A. C. Liu, F. I. Ho and C. P. Cheng. Virus‐induced gene silencing reveals the involvement of ethylene‐, salicylic acid and mitogen‐activated protein kinase‐related defense pathways in the resistance of tomato to bacterial wilt. Physiologia Plantarum 136(3): 324-335 (2009).
Ciftci-Yilmaz, S., M. R. Morsy, L. Song, A. Coutu, B. A. Krizek, M. W. Lewis, D. Warren, J. Cushman, E. L. Connolly and R. Mittler. The EAR-motif of the Cys2/His2-type zinc finger protein Zat7 plays a key role in the defense response of Arabidopsis to salinity stress. Journal of Biological Chemistry 282(12): 9260 (2007).
Clarke, J. D., S. M. Volko, H. Ledford, F. M. Ausubel and X. Dong. Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. The Plant Cell 12(11): 2175-2190 (2000).
Conde, A., M. M. Chaves and H. Gerós. Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant and Cell Physiology 52(9): 1583-1602 (2011).
Conn, V. M., A. Walker and C. M. M. Franco. Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Molecular Plant Microbe Interactions 21(2): 208-218 (2008).
Dickinson, D. A. and H. J. Forman. Glutathione in defense and signaling. Annals of the New York Academy of Sciences 973(1): 488-504 (2002).
Durrant, W. and X. Dong. Systemic acquired resistance. Annals Review of Phytopathology 42: 185-209 (2004).
Eckhardt, U., B. Grimm and S. Hörtensteiner. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Molecular Biology 56(1): 1-14 (2004).
Egawa, C., F. Kobayashi, M. Ishibashi, T. Nakamura, C. Nakamura and S. Takumi. Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes and Genetic Systems 81(2): 77 (2006).
Eulgem, T. and I. E. Somssich. Networks of WRKY transcription factors in defense signaling. Current Opinion Plant Biology 10(4): 366-371 (2007).
Feinberg, A. P. and B. Vogelstein. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132(1): 6-13 (1983).
Ferreira, R. B., S. Monteiro, R. Freitas, C. N. Santos, Z. Chen, L. M. Batista, J. Duarte, A. Borges and A. R. Teixeira. The role of plant defence proteins in fungal pathogenesis. Molecular Plant Pathology 8(5): 677-700 (2007).
Fowler, S. and M. F. Thomashow. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. The Plant Cell 14(8): 1675-1690 (2002).
Fujimoto, S. Y., M. Ohta, A. Usui, H. Shinshi and M. Ohme-Takagi. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12(3): 393-404 (2000).
Genin, S. Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytologist 187(4): 920-928 (2010).
Gu, Y. Q., M. C. Wildermuth, S. Chakravarthy, Y. T. Loh, C. Yang, X. He, Y. Han and G. B. Martin. Tomato transcription factors pti4, pti5, and pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14(4): 817-831 (2002).
Gu, Y. Q., C. Yang, V. K. Thara, J. Zhou and G. B. Martin. Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. The Plant Cell 12(5): 771-786 (2000).
Gutierrez, J., S. Gonzalez-Perez, F. Garcia-Garcia, O. Lorenzo and J. B. Arellano. Does singlet oxygen activate cell death in Arabidopsis cell suspension cultures?: analysis of the early transcriptional defense responses to high light stress. Plant Signaling and Behavior 6(12): 1937-1942 (2011).
Gutterson, N. and T. L. Reuber. Regulation of disease resistance pathways by AP2/ERF transcription factors. Current Opinion in Plant Biology 7(4): 465-471 (2004).
Haake, V., D. Cook, J. L. Riechmann, O. Pineda, M. F. Thomashow and J. Z. Zhang. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiology 130(2): 639-648 (2002).
Halfter, U., M. Ishitani and J. K. Zhu. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proceedings of the National Academy of Sciences 97(7): 3735-2740 (2000).
Hayward, A. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annual Review of Phytopathology 29(1): 65-87 (1991).
Hinz, M., I. W. Wilson, J. Yang, K. Buerstenbinder, D. Llewellyn, E. S. Dennis, M. Sauter and R. Dolferus. Arabidopsis RAP2.2: an ethylene response transcription factor that is important for hypoxia survival. Plant Physiology 153(2): 757-772 (2010).
Hiratsu, K., K. Matsui, T. Koyama and M. Ohme‐Takagi. Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. The Plant Journal 34(5): 733-739 (2003).
Hodges, D. M., J. M. DeLong, C. F. Forney and R. K. Prange. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207(4): 604-611 (1999).
Hsieh, T. H., C. W. Li, R. C. Su, C. P. Cheng, Y. C. Tsai and M. T. Chan. A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta 231(6): 1459-1473 (2010).
Hsieh, T. H. Isolation of tomato chilling-, drought-, drought- and salt-stress responsive genes by cDNA microarray system, National Defense Medical Center, Taiwan. PHD Thesis (in Chinese). (2004).
Hsieh, T. H., J. Lee, Y. Charng and M. T. Chan. Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiology 130(2): 618-626 (2002a).
Hsieh, T. H., J. T. Lee, P. T. Yang, L. H. Chiu, Y. Charng, Y. C. Wang and M. T. Chan. Heterology expression of the Arabidopsis C-repeat/dehydration response elementbinding factor 1 gene conferselevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiology 129(3): 1086-1094 (2002b).
Huang, G. T., S. L. Ma, L. P. Bai, L. Zhang, H. Ma, P. Jia, J. Liu, M. Zhong and Z. F. Guo. Signal transduction during cold, salt, and drought stresses in plants. Molecular Biology Reports 39(2): 969-987 (2012).
Igamberdiev, A. U. and R. D. Hill. Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. Journal of Experimental Botany 55(408): 2473-2482 (2004).
Isaac Kirubakaran, S., S. M. Begum, K. Ulaganathan and N. Sakthivel. Characterization of a new antifungal lipid transfer protein from wheat. Plant Physiology and Biochemistry 46(10): 918-927 (2008).
Ishitani, M., J. Liu, U. Halfter, C. S. Kim, W. Shi and J. K. Zhu. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. The Plant Cell 12(9): 1667-1677 (2000).
Ishitani, M., L. Xiong, B. Stevenson and J. K. Zhu. Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. The Plant Cell 9(11): 1935-1949 (1997).
Jia, Y. and G. B. Martin. Rapid transcript accumulation of pathogenesis-related genes during an incompatible interaction in bacterial speck disease-resistant tomato plants. Plant Molecular Biology 40(3): 455-465 (1999).
Jiang, Y. and M. K. Deyholos. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Molecular Biology 69(1): 91-105 (2009).
Jin, L. G. and J. Y. Liu. Molecular cloning, expression profile and promoter analysis of a novel ethylene responsive transcription factor gene GhERF4 from cotton (Gossypium hirstum). Plant Physiology and Biochemistry 46(1): 46-53 (2008).
Jofuku, K. D., B. G. W. Boer, M. V. Montagu and J. K. Okamuro. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. The Plant Cell 6(9): 1211-1225 (1994).
Kachroo, P., J. Shanklin, J. Shah, E. J. Whittle and D. F. Klessig. A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proceedings of the National Academy of Sciences 98(16): 9448 (2001).
Kader, J. C. Lipid-transfer proteins in plants. Annual Review of Plant Physiology and Plant Molecular Biology 47: 627-654 (1996).
Kazan, K. Negative regulation of defence and stress genes by EAR-motif-containing repressors. Trends in Plant Science 11(3): 109-112 (2006).
Kazuoka, T., S. Torikai, H. Kikuchi and K. Oeda. A zinc finger protein RHL41 mediates the light acclimatization response in Arabidopsis. The Plant Journal 24(2): 191-203 (2000).
Kiffin, R., U. Bandyopadhyay and A. M. Cuervo. Oxidative stress and autophagy. Antioxidants and Redox Signaling 8(1-2): 152-162 (2006).
Knight, H., A. J. Trewavas and M. R. Knight. Calcium signalling in Arabidopsis thaliana responding to drought and salinity. The Plant Journal 12(5): 1067-1078 (1997).
Knight, H., A. J. Trewavas and M. R. Knight. Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. The Plant Cell 8(3): 489-503 (1996).
Koornneef, A. and C. M. J. Pieterse. Cross talk in defense signaling. Plant Physiology 146(3): 839-844 (2008).
Kunkel, B. N. and D. M. Brooks. Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology 5(4): 325-331 (2002).
Kumar, S., K. Tamura and M. Nei. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinformation. 5(2): 150-163 (2004).
Laloi, C., M. Stachowiak, E. Pers-Kamczyc, E. Warzych, I. Murgia and K. Apel. Cross-talk between singlet oxygen-and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana. Proceedings of the National Academy of Sciences 104(2): 672 (2007).
Lasserre, E., E. Jobet, C. Llauro and M. Delseny. AtERF38 (At2g35700), an AP2/ERF family transcription factor gene from Arabidopsis thaliana, is expressed in specific cell types of roots, stems and seeds that undergo suberization. Plant Physiology and Biochemistry 46(12): 1051-1061 (2008).
Laurie-Berry, N., V. Joardar, I. H. Street and B. N. Kunkel. The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae. Molecular Plant Microbe Interactions 19(7): 789-800 (2006).
Lee, J. Y., K. Min, H. Cha, D. H. Shin, K. Y. Hwang and S. W. Suh. Rice non-specific lipid transfer protein: the 1.6 å crystal structure in the unliganded state reveals a small hydrophobic cavity1. Journal of Molecular Biology 276(2): 437-448 (1998).
Li, C. W., R. C. Su, C. P. Cheng, S. J. You, T. H. Hsieh, T. C. Chao and M. T. Chan. Tomato RAV transcription factor is a pivotal modulator involved in the AP2/EREBP-mediated defense pathway. Plant Physiology 156(1): 213-227 (2011).
Li, J., G. Brader, T. Kariola and E. Tapio Palva. WRKY70 modulates the selection of signaling pathways in plant defense. The Plant Journal 46(3): 477-491 (2006).
Li, J., G. Brader and E. T. Palva. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. The Plant Cell 16(2): 319-331 (2004).
Liau, C. H., J. C. Lu, V. Prasad, H. Hsiao, S. J. You, J. Lee, N. S. Yang, H. E. Huang, T. Y. Feng and W. H. Chen. The sweet pepper ferredoxin-like protein (pflp) conferred resistance against soft rot disease in Oncidium orchid. Transgenic Research 12(3): 329-336 (2003).
Lin, M. Functional analysis of salt- and water deficit-induced AP2 transcription factor in Arabidopsis, National Central University, Taiwan. Master Thesis (in Chinese) (2005).
Liu, J., M. Ishitani, U. Halfter, C. S. Kim and J. K. Zhu. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences 97(7): 3730-3734 (2000).
Lorenzo, O., R. Piqueras, J. J. Sánchez-Serrano and R. Solano. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. The Plant Cell 15(1): 165-178 (2003).
Low, P. and J. Merida. The oxidative burst in plant defense: function and signal transduction. Physiologia Plantarum 96(3): 533-542 (1996).
Luehrsen, K. R., J. R. de Wet and V. Walbot. Transient expression analysis in plants using firefly luciferase reporter gene. Methods in Enzymology 216: 397-414 (1992).
Luis, A., L. M. Sandalio, F. J. Corpas, J. M. Palma and J. B. Barroso. Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiology 141(2): 330-335 (2006).
Magome, H., S. Yamaguchi, A. Hanada, Y. Kamiya and K. Oda. Dwarf and delayed‐flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. The Plant Journal 37(5): 720-729 (2004).
Mahajan, S. and N. Tuteja. Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics 444(2): 139-158 (2005).
Maldonado, A. M., P. Doerner, R. A. Dixon, C. J. Lamb and R. K. Cameron. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419(6905): 399-403 (2002).
Maleck, K. and R. A. Dietrich. Defense on multiple fronts: how do plants cope with diverse enemies? Trends in Plant Science 4(6): 215-219 (1999).
Matsui, K. and M. Ohme‐Takagi. Detection of protein–protein interactions in plants using the transrepressive activity of the EAR motif repression domain. The Plant Journal 61(4): 570-578 (2010).
Matsukura, S., J. Mizoi, T. Yoshida, D. Todaka, Y. Ito, K. Maruyama, K. Shinozaki and K. Yamaguchi-Shinozaki. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Molecular Genetics and Genomics 283(2): 185-196 (2010).
McCabe, M. S., J. B. Power, A. M. M. de Laat and M. R. Davey. Detection of single-copy genes in DNA from transgenic plants by nonradioactive Southern blot analysis. Molecular Biotechnology 7(1): 79-84 (1997).
McGrath, K. C., B. Dombrecht, J. M. Manners, P. M. Schenk, C. I. Edgar, D. J. Maclean, W. R. Scheible, M. K. Udvardi and K. Kazan. Repressor-and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiology 139(2): 949-959 (2005).
Mittler, R. and E. Blumwald. Genetic engineering for modern agriculture: challenges and perspectives. Annual Review of Plant Biology 61: 443-462 (2010).
Mittler, R., Y. S. Kim, L. Song, J. Coutu, A. Coutu, S. Ciftci-Yilmaz, H. Lee, B. Stevenson and J. K. Zhu. Gain-and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Letters 580(28): 6537-6542 (2006).
Miura, K., J. B. Jin, J. Lee, C. Y. Yoo, V. Stirm, T. Miura, E. N. Ashworth, R. A. Bressan, D. J. Yun and P. M. Hasegawa. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. The Plant Cell 19(4): 1403-1414 (2007).
Mizoi, J., K. Shinozaki and K. Yamaguchi-Shinozaki. AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta 1819(2): 86-96 (2012).
Mole, B. M., D. A. Baltrus, J. L. Dangl and S. R. Grant. Global virulence regulation networks in phytopathogenic bacteria. Trends in Microbiology 15(8): 363-371 (2007).
Moran, R. and D. Porath. Chlorophyll determination in intact tissues using N, N-dimethylformamide. Plant Physiology 65(3): 478-479 (1980).
Mur, L. A., P. Kenton, R. Atzorn, O. Miersch and C. Wasternack. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiology 140(1): 249-262 (2006).
Murashige, T. and F. Skoog. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiology Plant 15: 473-497 (1962).
Murray, M. and W. F. Thompson. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8(19): 4321-4326 (1980).
Nagpal, P., C. M. Ellis, H. Weber, S. E. Ploense, L. S. Barkawi, T. J. Guilfoyle, G. Hagen, J. M. Alonso, J. D. Cohen, E. E. Farmer, J. R. Ecker and J. W. Reed. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132(18): 4107-4118 (2005).
Nakano, T., K. Suzuki, T. Fujimura and H. Shinshi. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology 140(2): 411-432 (2006).
Narusaka, Y., K. Nakashima, Z. K. Shinwari, Y. Sakuma, T. Furihata, H. Abe, M. Narusaka, K. Shinozaki and K. Yamaguchi‐Shinozaki. Interaction between two cis‐acting elements, ABRE and DRE, in ABA‐dependent expression of Arabidopsis rd29A gene in response to dehydration and high‐salinity stresses. The Plant Journal 34(2): 137-148 (2003).
Nieuwland, J., R. Feron, B. A. H. Huisman, A. Fasolino, C. W. Hilbers, J. Derksen and C. Mariani. Lipid transfer proteins enhance cell wall extension in tobacco. The Plant Cell 17(7): 2009-2019 (2005).
Norman-Setterblad, C., S. Vidal and E. T. Palva. Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Molecular Plant Microbe Interactions 13(4): 430-438 (2000).
Oñate-Sánchez, L., J. P. Anderson, J. Young and K. B. Singh. AtERF14, a member of the ERF family of transcription factors, plays a nonredundant role in plant defense. Plant Physiology 143(1): 400-409 (2007).
Oh, D. H., S. Y. Lee, R. A. Bressan, D. J. Yun and H. J. Bohnert. Intracellular consequences of SOS1 deficiency during salt stress. Journal of Experimental Botany 61(4): 1205-1213 (2010).
Ohme-Takagi, M. and H. Shinshi. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. The Plant Cell 7(2): 173-182 (1995).
Ohta, M., K. Matsui, K. Hiratsu, H. Shinshi and M. Ohme-Takagi. Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. The Plant Cell 13(8): 1959-1968 (2001).
Palva, T. K., M. Hurtig, P. Saindrenan and E. T. Palva. Salicylic acid induced resistance to Erwinia carotovora subsp. carotovora in tobacco. Molecular Plant Microbe Interactions 7(3): 356-363 (1994).
Park, J. M., C. J. Park, S. B. Lee, B. K. Ham, R. Shin and K. H. Paek. Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2–type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. The Plant Cell 13(5): 1035-1046 (2001).
Patkar, R. N. and B. B. Chattoo. Transgenic indica rice expressing ns-LTP-like protein shows enhanced resistance to both fungal and bacterial pathogens. Molecular Breeding 17(2): 159-171 (2006).
Perombelon, M. C. M. and A. Kelman. Ecology of the soft rot erwinias. Annual Review of Phytopathology 18(1): 361-387 (1980).
Petersen, M., P. Brodersen, H. Naested, E. Andreasson, U. Lindhart, B. Johansen, H. B. Nielsen, M. Lacy, M. J. Austin and J. E. Parker. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103(7): 1111-1120 (2000).
Ponchet, M., F. Panabieres, M. L. Milat, V. Mikes, J. L. Montillet, L. Suty, C. Triantaphylides, Y. Tirilly and J. P. Blein. Are elicitins cryptograms in plant-Oomycete communications? Cellular and Molecular Life Sciences 56(11): 1020-1047 (1999).
Poueymiro, M. and S. Genin. Secreted proteins from Ralstonia solanacearum: a hundred tricks to kill a plant. Current Opinion in Microbiology 12(1): 44-52 (2009).
Pré, M., M. Atallah, A. Champion, M. De Vos, C. M. J. Pieterse and J. Memelink. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiology 147(3): 1347-1357 (2008).
Provart, N. J., P. Gil, W. Chen, B. Han, H. S. Chang, X. Wang and T. Zhu. Gene expression phenotypes of Arabidopsis associated with sensitivity to low temperatures. Plant Physiology 132(2): 893-906 (2003).
Przybyla, D., C. Gobel, A. Imboden, M. Hamberg, I. Feussner and K. Apel. Enzymatic, but not non-enzymatic, 1O2-mediated peroxidation of polyunsaturated fatty acids forms part of the EXECUTER1-dependent stress response program in the flu mutant of Arabidopsis thaliana. The Plant Journal 54(2): 236-248 (2008).
Py, B., F. Barras, S. Harris, N. Robson and G. Salmond. Extracellular enzymes and their role in Erwinia virulence. Methods in Microbiology 27: 157-168 (1998).
Qin, F., Y. Sakuma, L. S. P. Tran, K. Maruyama, S. Kidokoro, Y. Fujita, M. Fujita, T. Umezawa, Y. Sawano and K. Miyazono. Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress–responsive gene expression. The Plant Cell 20(6): 1693-1707 (2008).
Qiu, J. L., B. K. Fiil, K. Petersen, H. B. Nielsen, C. J. Botanga, S. Thorgrimsen, K. Palma, M. C. Suarez-Rodriguez, S. Sandbech-Clausen and J. Lichota. Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. The EMBO Journal 27(16): 2214-2221 (2008).
Qiu, Q. S., Y. Guo, M. A. Dietrich, K. S. Schumaker and J. K. Zhu. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences 99(12): 8436-8441 (2002).
Raison, J. K. and G. R. Orr. Phase transitions in liposomes formed from the polar lipids of mitochondria from chilling-sensitive plants. Plant Physiology 81(3): 807-811 (1986).
Ramanjulu, S. and D. Bartels. Drought‐and desiccation‐induced modulation of gene expression in plants. Plant, Cell and Environment 25(2): 141-151 (2002).
Rathinasabapathi, B. Metabolic engineering for stress tolerance: installing osmoprotectant synthesis pathways. Annals of Botany 86(4): 709-716 (2000).
Rhee, S. G. H2O2, a necessary evil for cell signaling. Science 312(5782): 1882 (2006).
Rizhsky, L., S. Davletova, H. Liang and R. Mittler. The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. Journal of Biological Chemistry 279(12): 11736-11743 (2004a).
Rizhsky, L., H. Liang, J. Shuman, V. Shulaev, S. Davletova and R. Mittler. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology 134(4): 1683-1696 (2004b).
Sakuma, Y., K. Maruyama, F. Qin, Y. Osakabe, K. Shinozaki and K. Yamaguchi-Shinozaki. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proceedings of the National Academy of Sciences 103(49): 18822-18827 (2006).
Sakuma, Y., Q. Liu, J. G. Dubouzet, H. Abe, K. Shinozaki and K. Yamaguchi-Shinozaki. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochemical and Biophysical Research Communications 290(3): 998-1009 (2002).
Sanjay, P. Y. Hsiao, R. C. Su, S. S. Ko, C. G. Tong, R. Y. Yang and M. T. Chan. Overexpression of Arabidopsis thaliana tryptophan synthase beta 1 (AtTSB1) in Arabidopsis and tomato confers tolerance to cadmium stress. Plant, Cell and Environment 31(8): 1074-1085 (2008).
Sarowar, S., Y. J. Kim, K. D. Kim, B. K. Hwang, S. H. Ok and J. S. Shin. Overexpression of lipid transfer protein (LTP) genes enhances resistance to plant pathogens and LTP functions in long-distance systemic signaling in tobacco. Plant Cell Reports 28(3): 419-427 (2009).
Schaller, A., P. Roy and N. Amrhein. Salicylic acid-independent induction of pathogenesis-related gene expression by fusicoccin. Planta 210(4): 599-606 (2000).
Schenk, P. M., K. Kazan, I. Wilson, J. P. Anderson, T. Richmond, S. C. Somerville and J. M. Manners. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proceedings of the National Academy of Sciences 97(21): 11655-11660 (2000).
Seki, M., M. Narusaka, H. Abe, M. Kasuga, K. Yamaguchi-Shinozaki, P. Carninci, Y. Hayashizaki and K. Shinozaki. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. The Plant Cell 13(1): 61-72 (2001).
Sels, J., J. Mathys, B. De Coninck, B. Cammue and M. F. C. De Bolle. Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiology and Biochemistry 46(11): 941-950 (2008).
Seo, P. J., S. B. Lee, M. C. Suh, M. J. Park, Y. S. Go and C. M. Park. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. The Plant Cell 23(3): 1138-1152 (2011).
Seo, P. J. and C. M. Park. MYB96‐mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New Phytologist 186(2): 471-483 (2010).
Shepherd, T. and D. Wynne Griffiths. The effects of stress on plant cuticular waxes. New Phytologist 171(3): 469-499 (2006).
Shin, D. H., J. Y. Lee, K. Y. Hwang, K. Kyu Kim and S. W. Suh. High-resolution crystal structure of the non-specific lipid-transfer protein from maize seedlings. Structure 3(2): 189-199 (1995).
Shinozaki, K. and K. Yamaguchi-Shinozaki. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany 58(2): 221-227 (2007).
Simorre, J. P., A. Caille, D. Marion and M. Ptak. Two-and three-dimensional proton NMR studies of a wheat phospholipid transfer protein: sequential resonance assignments and secondary structure. Biochemistry 30(49): 11600-11608 (1991).
Son, G. H., J. Wan, H. J. Kim, X. C. Nguyen, W. S. Chung, J. C. Hong and G. Stacey. The ethylene responsive element binding factor 5, ERF5, is involved in the chitin-induced innate immunity response. Molecular Plant Microbe Interactions 25(1): 48-60 (2012).
Song, C. P., M. Agarwal, M. Ohta, Y. Guo, U. Halfter, P. Wang and J. K. Zhu. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. The Plant Cell 17(8): 2384-2396 (2005).
Spoel, S. H., A. Koornneef, S. M. C. Claessens, J. P. Korzelius, J. A. Van Pelt, M. J. Mueller, A. J. Buchala, J. P. Métraux, R. Brown and K. Kazan. NPR1 modulates cross-talk between salicylate-and jasmonate-dependent defense pathways through a novel function in the cytosol. The Plant Cell 15(3): 760-770 (2003).
Stockinger, E. J., S. J. Gilmour and M. F. Thomashow. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proceedings of the National Academy of Sciences 94(3): 1035 (1997).
Tena, G., M. Boudsocq and J. Sheen. Protein kinase signaling networks in plant innate immunity. Current Opinion Plant Biology 14(5): 519-529 (2011).
Thiel, G., M. Lietz and M. Hohl. How mammalian transcriptional repressors work. European Journal of Biochemistry 271(14): 2855-2862 (2004).
Thompson, J. D., T. G. Gibson, F. Plewniak, F. Jeanmougin and D. G. Higgins. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tool. Nucleic Acids Research 25(24) 4876-4882 (1997).
Thomson, N. R., J. D. Thomas and G. P. C. Salmond. Virulence determinants in the bacterial phytopathogen Erwinia. Methods in Microbiology 29: 347-426 (1999).
Torres, M. A., J. D. G. Jones and J. L. Dangl. Pathogen-induced, NADPH oxidase–derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nature Genetics 37(10): 1130-1134 (2005).
Toth, I. K., K. S. Bell, M. C. Holeva and P. R. J. Birch. Soft rot erwiniae: from genes to genomes. Molecular Plant Pathology 4(1): 17-30 (2003).
Tournier, B., M. T. Sanchez-Ballesta, B. Jones, E. Pesquet, F. Regad, A. Latché, J. C. Pech and M. Bouzayen. New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to the GCC box element. FEBS Letters 550(1-3): 149-154 (2003).
Triantaphylidès, C. and M. Havaux. Singlet oxygen in plants: production, detoxification and signaling. Trends in Plant Science 14(4): 219-228 (2009).
Trujillo, L., M. Sotolongo, C. Menéndez, M. Ochogavía, Y. Coll, I. Hernández, O. Borrás-Hidalgo, B. Thomma, P. Vera and L. Hernández. SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when overexpressed in tobacco plants. Plant and Cell Physiology 49(4): 512-525 (2008).
Tsutsui, T., W. Kato, Y. Asada, K. Sako, T. Sato, Y. Sonoda, S. Kidokoro, K. Yamaguchi-Shinozaki, M. Tamaoki and K. Arakawa. DEAR1, a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis. Journal of Plant Research 122(6): 633-643 (2009).
Valliyodan, B. and H. T. Nguyen. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current Opinion in Plant Biology 9(2): 189-195 (2006).
Van Loon, L., M. Rep and C. Pieterse. Significance of inducible defense-related proteins in infected plants. Annals Review of Phytopathology. 44: 135-162 (2006).
Verslues, P. E., M. Agarwal, S. Katiyar‐Agarwal, J. Zhu and J. K. Zhu. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal 45(4): 523-539 (2006).
Wang, H., Z. Huang, Q. Chen, Z. Zhang, H. Zhang, Y. Wu, D. Huang and R. Huang. Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. Plant Molecular Biology 55(2): 183-192 (2004a).
Wang, S. Y., J. H. Wu, T. Ng, X. Y. Ye and P. F. Rao. A non-specific lipid transfer protein with antifungal and antibacterial activities from the mung bean. Peptides 25(8): 1235-1242 (2004b).
Wu, F. H., S. C. Shen, L. Y. Lee, S. H. Lee, M. T. Chan and C. S. Lin. Tape-Arabidopsis Sandwich-a simpler Arabidopsis protoplast isolation method. Plant Methods 5(1): 16 (2009).
Xiong, L., K. S. Schumaker and J. K. Zhu. Cell signaling during cold, drought, and salt stress. The Plant Cell 14(suppl 1): 165-183 (2002).
Xu, K., X. Xu, T. Fukao, P. Canlas, R. Maghirang-Rodriguez, S. Heuer, A. M. Ismail, J. Bailey-Serres, P. C. Ronald and D. J. Mackill. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442(7103): 705-708 (2006).
Xu, Z. S., M. Chen, L. C. Li and Y. Z. Ma. Functions and application of the AP2/ERF transcription factor family in crop improvement. Journal Integrative Plant Biology 53(7): 570-585 (2011).
Yang, T., L. Zhang, T. Zhang, H. Zhang, S. Xu and L. An. Transcriptional regulation network of cold-responsive genes in higher plants. Plant Science 169(6): 987-995 (2005a).
Yang, Z., L. Tian, M. Latoszek-Green, D. Brown and K. Wu. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Molecular Biology 58(4): 585-596 (2005b).
Yeats, T. H. and J. K. C. Rose. The biochemistry and biology of extracellular plant lipid‐transfer proteins (LTPs). Protein Science 17(2): 191-198 (2008).
Yoshida, T., Y. Fujita, H. Sayama, S. Kidokoro, K. Maruyama, J. Mizoi, K. Shinozaki and K. Yamaguchi‐Shinozaki. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE‐dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. The Plant Journal 61(4): 672-685 (2010).
Zarka, D. G., J. T. Vogel, D. Cook and M. F. Thomashow. Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiology 133(2): 910-918 (2003).
Zhang, G., M. Chen, L. Li, Z. Xu, X. Chen, J. Guo and Y. Ma. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. Journal of Experimental Botany 60(13): 3781 (2009a).
Zhang, H., B. Zhu, B. Yu, Y. Hao, D. Fu, W. Xu and L. Luo. Cloning and DNA-binding properties of ethylene response factor, LeERF1 and LeERF2, in tomato. Biotechnology Letters 27(6): 423-428 (2005).
Zhang, H., Z. Huang, B. Xie, Q. Chen, X. Tian, X. Zhang, X. Lu, D. Huang and R. Huang. The ethylene-, jasmonate-, abscisic acid-and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta 220(2): 262-270 (2004).
Zhang, W. and C. K. Wen. Preparation of ethylene gas and comparison of ethylene responses induced by ethylene, ACC, and ethephon. Plant Physiology and Biochemistry 48(1): 45-53 (2010).
Zhang, Z., H. Zhang, R. Quan, X. C. Wang and R. Huang. Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiology 150(1): 365-377 (2009b).
Zheng, Z., S. A. Qamar, Z. Chen and T. Mengiste. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. The Plant Journal 48(4): 592-605 (2006).
Zhou, M., C. Shen, L. Wu, K. Tang and J. Lin. CBF-dependent signaling pathway: A key responder to low temperature stress in plants. Critical Reviews in Biotechnology 31(2): 186-192 (2011).
Zhu, J., P. E. Verslues, X. Zheng, B. Lee, X. Zhan, Y. Manabe, I. Sokolchik, Y. Zhu, C. H. Dong and J. K. Zhu. HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proceedings of the National Academy of Sciences of the United States of America 102(28): 9966-9971 (2005).
Zhu, J., H. Shi, B. Lee, B. Damsz, S. Cheng, V. Stirm, J. K. Zhu, P. M. Hasegawa and R. A. Bressan. An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proceedings of the National Academy of Sciences of the United States of America 101(26): 9873-9878 (2004).
Zhu, J. K. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53: 247 (2002).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top