跳到主要內容

臺灣博碩士論文加值系統

(34.236.36.94) 您好!臺灣時間:2021/07/24 22:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖浤鈞
研究生(外文):Hong-JunLiao
論文名稱:神經壞死病毒所誘導細胞內氧化壓力能影響細胞自體吞噬作用及病毒複製之研究
論文名稱(外文):Studies on demonstrating betanodavirus-induced oxidative stress can affect autophagic process and viral replication
指導教授:洪健睿洪健睿引用關係
指導教授(外文):Jiann-Ruey Hong
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生物科技研究所碩博士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:106
中文關鍵詞:神經壞死病毒石斑魚活性氧分子氧化壓力自體吞噬作用抗氧化藥劑病毒複製細胞死亡
外文關鍵詞:Betanodavirus (RGNNV)reactive oxygen species (ROS)oxidative stressautophagyantioxidantsviral replicationcell death
相關次數:
  • 被引用被引用:5
  • 點閱點閱:142
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
自噬作用是一種代謝分解的途徑,細胞借此機制回收利用半衰期較長的蛋白質以及老舊或受損的胞器。若細胞於存在壓力的環境、發育的過程或受病原體侵擾的狀況下會激活此現象的產生。在此,對於會感染石斑魚幼苗與多種經濟魚種的石斑魚神經壞死病毒(RGNNV),我們已經證實RGNNV的感染會使細胞內的粒線體受損而導致細胞死亡。但是RGNNV感染的過程是否會因此而引起自噬作用仍然未知? 再者氧化壓力與誘導細胞自噬作用之相關性也未明。在本篇論文中,我們透過感染病毒後觀察到的現象,例如穩定表現蛋白質mRFP-LC3的細胞內增加的螢光圓點。利用西方點墨法偵測到,自噬體標的蛋白質LC3-I轉換為LC3-II與p62/SQSTM1被降解的跡象,證實RGNNV感染會誘發自噬作用。進而,添加自噬作用的專一性抑制劑3-methyladenine (3-MA),發現可以降低病毒的複製與病毒誘導的死亡。相反地,若是自噬作用因為添加藥劑Rapamycin而被大量誘發,則會促進病毒的複製,加快細胞死亡。所以可以進一步說明活化自噬作用有利於RGNNV的複製。接著,分析ROS在RGNNV誘發自噬作用的過程中所扮演的角色。結果顯示RGNNV感染會刺激O2-與H2O2的產生,其中O2-累積與自噬作用的誘導過程有關。因為使用DPI (Diphenyliodonium)或Tiron兩者可避免形成O2-,因此減少自噬體的生成以及p62蛋白質的降解。即使處理Tiron會增加H2O2的含量,DPI或Tiron存在都可以抑制自噬作用的產生,並且降低病毒的複製與病毒誘導的死亡。令人意外的是,感染過程中處理GSH清除過多的H2O2,並不會影響O2-的含量、自噬作用的產生與細胞存活率。但是卻會些微增加RGNNV的複製。最後發現,在沒有病毒感染的狀況下,直接促進或抑制細胞自噬作用,對GF-1細胞內O2-與H2O2含量的改變都不明顯。總結以上的結果,可以說明RGNNV感染造成O2-的累積,會調控自噬作用的產生,且自噬作用能連動影響到病毒複製。
Autophagy is a catabolic process by which cells remove long-lived proteins and damaged organelles for recycling. This pathway is activated under environmental stress conditions, during development and various pathogen infections. Here, betanodavirus (RGNNV), a pathogen that causes infectious disease in larva of grouper fish and in other economic fishes. Previously, we have found that betanodavirus can induces host mitochondria-mediated cell death, but whether can trigger autophagic response in cell cultures is still unknown. And the relative function of oxidative stress in autophagy induction is also unclear. In this study, we determined RGNNV can trigger autophagy through demonstrating increased number of the dot formation in mRFP-LC3-contained cells, accompanied with examining LC3-I/-II conversion and p62/SQSTM1 degradation by immunoblotting in virus-infected cells. Additionally, we further revealed that the activation of autophagy may facilitate virus reproduction, since inactivating autophagy by using the class III PI3K inhibitor 3-methyladenine (3-MA) can suppress viral replication and RGNNV-induced cell death. By contrast, when autophagy was promoted by rapamycin, mTOR inhibitor, the RGNNV yield and virus-induced cell death were enhanced. Furthermore, we analyzed he role of ROS in RGNNV-induced autophagy. We found that RGNNV stimulates O2- and H2O2 production, and that accumulation of O2- is essential for autophagy. Because of preventing O2- formation by DPI (Diphenyliodonium)or Tiron perturbed the formation of autophagosomes and the consequent degradation of p62 proteins. Although Tiron increased H2O2 levels, both antioxidants DPI and Tiron impaired viral replication and virus-caused cell death via interference with autophagy. Interestingly, blocking H2O2 production in infected cells by GSH treatment didn’t affect O2- generation, autophagy and viability, but slightly enhanced RGNNV replication. Finally, treatment of autophagic reagents had no significant effect on the formation of O2- or H2O2 in GF-1 cells without infection. Taken together, these results indicate that RGNNV induced ROS(O2-) can regulate the autophagy, that correlated to enhance viral replication in fish cells.
致謝............................................................................................................I
中文摘要.....................................................................................................II
英文摘要....................................................................................................III
目錄..........................................................................................................IV
圖表目錄...................................................................................................VII
附錄目錄...................................................................................................VII
縮寫表.......................................................................................................IX
第一章、緒論.............................................................................................1
第一節、台灣石斑魚養殖概況......................................................................1
(一) 石斑魚背景簡介
(二) 魚苗繁養殖現況與瓶頸
第二節、神經壞死病毒背景簡介..................................................................3
(一) 神經壞死病毒株之發展史
(二) 神經壞死病毒感染魚類之病徵
(三) 神經壞死病毒之遺傳物質及其蛋白質功能
(四) 神經壞死病毒引起細胞死亡之研究
第三節、粒線體與氧化壓力........................................................................8
(一) 活性氧分子(ROS)的產生和來源
(二) 活性氧分子與氧化壓力(Oxidative stress)
(三) 抗氧化系統
第四節、自體吞噬作用.............................................................................11
(一) 自噬體與溶酶體
(二) 自體吞噬作用的分子機制
(三) 自體吞噬作用的調控途徑
(四) 自體吞噬作用與氧化壓力
第五節、病毒感染與自體吞噬作用之互動...................................................18
(一) 自體吞噬作用參與先天與後天免疫系統
(二) 自體吞噬作用影響病毒增殖
第六節、研究目的與動機..........................................................................21
第二章、材料與方法................................................................................22
第一節、實驗材料....................................................................................22
第二節、實驗儀器....................................................................................30
第三節、實驗方法及步驟..........................................................................32
第三章、實驗結果....................................................................................41
第一節、神經壞死病毒感染石斑魚背鰭細胞會誘發自噬作用.........................41
第二節、誘發細胞內自噬作用可以促進病毒複製及細胞壞死.........................42
第三節、抑制細胞內自噬作用可以減少病毒複製及細胞壞死.........................43
第四節、添加抗氧化藥劑能減少病毒感染所產生的ROS...............................44
第五節、細胞因感染病毒而產生的O2-能夠調節自噬作用.............................47
第六節、減少細胞內O2-的累積能抑制病毒複製與細胞壞死..........................48
第七節、細胞內產生自噬作用與否不直接影響ROS的形成............................49
第四章、討論..........................................................................................51
第一節、神經壞死病毒如何啟動自噬作用...................................................51
第二節、自噬作用如何調節病毒的複製......................................................52
第三節、ROS與自噬作用之關係...............................................................54
第五章、未來展望...................................................................................55
參考文獻................................................................................................57
圖表.......................................................................................................71
附錄.......................................................................................................99
自述......................................................................................................107

呂明偉、韓宛娟(2012),石斑魚的病毒性疾病。科學發展,472期,頁66-71。
周信佑(2006),石斑魚健康種苗之建立與疫苗開發策略。農業生技產業季刊,頁47-50。
柯德宏(1993),石斑魚的繁養殖。養魚世界雜誌社。
黃淑敏(2011),石斑魚虹彩病毒疫苗研發,行政院農業委員會家畜衛生試驗所,獸醫專訊 No.3。
楊玉婷、陳葦芋、陳政忻(2009),石斑魚產業概況及趨勢。動物與水產生技,NO.19。
羅秉真(1997),南台灣養殖石斑魚病毒性神經壞死症之研究。國立台灣大學動物學研究所碩士論文。
Ahlberg, J., Marzella, L., and Glaumann, H. (1982). Uptake and degradation of proteins by isolated rat liver lysosomes. Suggestion of a microautophagic pathway of proteolysis. Lab Invest 47, 523-532.
A Le Breton., L Grisez., J Sweetman., and F Ollevier. (1997). Viral nervous necrosis (VNN) associated with mass mortalities in cage-reared sea bass, Dicentrarchus labrax. J. Fish. Dis. 20, 2, 145–151.
Aspehaug, V., Devold, M., and Nylund, A. (1999). The phylogenetic relationship of nervous necrosis virus from halibut (Hippoglossus hippoglossus). Bull Eur. Assoc. Fish Pathol. 19, 196–202.
Balaban, R. S., Nemoto, S., and Finkel, T. (2005). Mitochondria, oxidants, and ageing. Cell. 120, 483–495.
Ball L. A., and Johnson K. L. (1999). Reverse genetics of nodaviruses. Adv. Virus. Res. 53, 229-244.
Bannister, J.V., Bannister, W.H., and Rotilio, G. (1987). Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit Rev Biochem 22, 111-180.
Berg, T.O., Stromhaug, P.E., Berg, T., and Seglen, P.O. (1994). Separation of lysosomes and autophagosomes by means of glycyl-phenylalanine-naphthylamide, a lysosome-disrupting cathepsin-C substrate. Eur J Biochem 221, 595-602.
Berkova, Z., Crawford, S.E., Trugnan, G., Yoshimori, T., Morris, A.P., and Estes, M.K. (2006). Rotavirus NSP4 induces a novel vesicular compartment regulated by calcium and associated with viroplasms. J Virol 80, 6061-6071.
Birmingham, C.L., Smith, A.C., Bakowski, M.A., Yoshimori, T., and Brumell, J.H. (2006). Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J Biol Chem 281, 11374-11383.
Bowie, A.G., and Unterholzner, L. (2008). Viral evasion and subversion of pattern-recognition receptor signalling. Nat Rev Immunol 8, 911-922.
Brown, D.G., Sun, X.M., and Cohen, G.M. (1993). Dexamethasone-induced apoptosis involves cleavage of DNA to large fragments prior to internucleosomal fragmentation. J Biol Chem 268, 3037-3039.
Budanov, A.V., and Karin, M. (2008). p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134, 451-460.
Cadenas, E., and Davies, K.J. (2000). Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29, 222-230.
Chang, C.W., Su, Y.C., Her, G.M., Ken, C.F., and Hong, J.R. (2011). Betanodavirus induces oxidative stress-mediated cell death that prevented by anti-oxidants and zfcatalase in fish cells. PLoS ONE 6, e25853.
Chen, K., Albano, A., Ho, A., and Keaney, J.F., Jr. (2003). Activation of p53 by oxidative stress involves platelet-derived growth factor-beta receptor-mediated ataxia telangiectasia mutated (ATM) kinase activation. J Biol Chem 278, 39527-39533.
Chen, L.J., Su, Y.C., and Hong, J.R. (2009). Betanodavirus non-structural protein B1: A novel anti-necrotic death factor that modulates cell death in early replication cycle in fish cells. Virology 385, 444-454.
Chen, S.P., Wu, J.L., Su, Y.C., and Hong, J.R. (2007). Anti-Bcl-2 family members, zfBcl-x(L) and zfMcl-1a, prevent cytochrome c release from cells undergoing betanodavirus-induced secondary necrotic cell death. Apoptosis 12, 1043-1060.
Chen, Y., McMillan-Ward, E., Kong, J., Israels, S.J., and Gibson, S.B. (2008). Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ 15, 171-182.
Chen, Y., Azad, M.B., and Gibson, S.B. (2009). Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 16, 1040-1052.
Chi, S.C., Lin, S.C., Su, H.M., and Hu, W.W. (1999). Temperature effect on nervous necrosis virus infection in grouper cell line and in grouper larvae. Virus Res 63, 107-11
Codogno, P., and Meijer, A.J. (2005). Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 12 Suppl 2, 1509-1518.
Crighton, D., Wilkinson, S., O'Prey, J., Syed, N., Smith, P., Harrison, P.R., Gasco, M., Garrone, O., Crook, T., and Ryan, K.M. (2006). DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126, 121-134.
Delsert, C., Morin N., and Comps M. (1997). Fish nodavirus lytic cycle and semipermissive expression in mammalian and fish cell cultures. J Virol. 71, 5673-5677.
Deretic, V., and Levine, B. (2009). Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5, 527-549.
Dewaele, M., Maes, H., and Agostinis, P. (2010). ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy. Autophagy 6, 838-854.
Dreux, M., Gastaminza, P., Wieland, S.F., and Chisari, F.V. (2009). The autophagy machinery is required to initiate hepatitis C virus replication. Proc Natl Acad Sci U S A 106, 14046-14051.
Elmore, S.P., Qian, T., Grissom, S.F., and Lemasters, J.J. (2001). The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J 15, 2286-2287.
Eskelinen, E.L. (2005). Maturation of autophagic vacuoles in Mammalian cells. Autophagy 1, 1-10.
Finkel, T. (2003). Oxidant signals and oxidative stress. Curr Opin Cell Biol 15, 247-254.
Fukuda, Y., Nguyen, H. D., Furuhashi, M., and Nakai, T. (1996). Mass mortality of cultured sevenband grouper, Epinephelus septemfasciatus, associated with viral nervous necrosis. Fish Pathol. 31, 165-170.
Genova, M.L., Ventura, B., Giuliano, G., Bovina, C., Formiggini, G., Parenti Castelli, G., and Lenaz, G. (2001). The site of production of superoxide radical in mitochondrial Complex I is not a bound ubisemiquinone but presumably iron-sulfur cluster N2. FEBS Lett 505, 364-368.
Glick, D., Barth, S., and Macleod, K.F. (2010). Autophagy: cellular and molecular mechanisms. J Pathol 221, 3-12.
Guevin, C., Manna, D., Belanger, C., Konan, K.V., Mak, P., and Labonte, P. (2010). Autophagy protein ATG5 interacts transiently with the hepatitis C virus RNA polymerase (NS5B) early during infection. Virology 405, 1-7.

Guo, Y.X., Wei, T., Dallmann, K., and Kwang, J. (2003). Induction of caspase-dependent apoptosis by betanodaviruses GGNNV and demonstration of protein alpha as an apoptosis inducer. Virology 308, 74-82.
Gutierrez, M.G., Master, S.S., Singh, S.B., Taylor, G.A., Colombo, M.I., and Deretic, V. (2004). Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753-766.
Hailey, D.W., Rambold, A.S., Satpute-Krishnan, P., Mitra, K., Sougrat, R., Kim, P.K., and Lippincott-Schwartz, J. (2010). Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141, 656-667.
Hamanaka, R.B., and Chandel, N.S. (2010). Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35, 505-513.
Halliwell, B., and Chirico, S. (1993). Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57, 715S-724S; discussion 724S-725S.
Hara, T., Takamura, A., Kishi, C., Iemura, S., Natsume, T., Guan, J.L., and Mizushima, N. (2008). FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 181, 497-510.
Hayashi-Nishino, M., Fujita, N., Noda, T., Yamaguchi, A., Yoshimori, T., and Yamamoto, A. (2009). A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11, 1433-1437.
Heaton, N.S., and Randall, G. (2010). Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 8, 422-432.
Hong, J.R., Lin, T.L., Hsu, Y.L., and Wu, J.L. (1998). Apoptosis precedes necrosis of fish cell line with infectious pancreatic necrosis virus infection. Virology 250, 76-84.
Hornung, V., Ellegast, J., Kim, S., Brzozka, K., Jung, A., Kato, H., Poeck, H., Akira, S., Conzelmann, K.K., Schlee, M., et al. (2006). 5'-Triphosphate RNA is the ligand for RIG-I. Science 314, 994-997.
Jackson, C.A., Messinger, J., Peduzzi, J.D., Ansardi, D.C., and Morrow, C.D. (2005). Enhanced functional recovery from spinal cord injury following intrathecal or intramuscular administration of poliovirus replicons encoding IL-10. Virology 336, 173-183.
Jiang, J., Maeda, A., Ji, J., Baty, C.J., Watkins, S.C., Greenberger, J.S., and Kagan, V.E. (2011). Are mitochondrial reactive oxygen species required for autophagy? Biochem Biophys Res Commun 412, 55-60.
Jounai, N., Takeshita, F., Kobiyama, K., Sawano, A., Miyawaki, A., Xin, K.Q., Ishii, K.J., Kawai, T., Akira, S., Suzuki, K., et al. (2007). The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc Natl Acad Sci U S A 104, 14050-14055.
Jung, C.H., Jun, C.B., Ro, S.H., Kim, Y.M., Otto, N.M., Cao, J., Kundu, M., and Kim, D.H. (2009). ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20, 1992-2003.
Kabeya, Y., Kamada, Y., Baba, M., Takikawa, H., Sasaki, M., and Ohsumi, Y. (2005). Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol Biol Cell 16, 2544-2553.
Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., and Yoshimori, T. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19, 5720-5728.
Kamada, Y., Funakoshi, T., Shintani, T., Nagano, K., Ohsumi, M., and Ohsumi, Y. (2000). Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150, 1507-1513.
Khakpoor, A., Panyasrivanit, M., Wikan, N., and Smith, D.R. (2009). A role for autophagolysosomes in dengue virus 3 production in HepG2 cells. J Gen Virol 90, 1093-1103.
Kiffin, R., Bandyopadhyay, U., and Cuervo, A.M. (2006). Oxidative stress and autophagy. Antioxid Redox Signal 8, 152-162.
Kim, E.H., Sohn, S., Kwon, H.J., Kim, S.U., Kim, M.J., Lee, S.J., and Choi, K.S. (2007). Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells. Cancer Res 67, 6314-6324.
Klionsky, D.J. (2005). Autophagy. Curr Biol 15, R282-283.
Kloetzel, P.M. (2001). Antigen processing by the proteasome. Nat Rev Mol Cell Biol 2, 179-187.
Kuma, A., Matsui, M., and Mizushima, N. (2007). LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization. Autophagy 3, 323-328.
Kyei, G.B., Dinkins, C., Davis, A.S., Roberts, E., Singh, S.B., Dong, C., Wu, L., Kominami, E., Ueno, T., Yamamoto, A., et al. (2009). Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J Cell Biol 186, 255-268.
Lee, H.K., Lund, J.M., Ramanathan, B., Mizushima, N., and Iwasaki, A. (2007). Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315, 1398-1401.

Lee, J., Giordano, S., and Zhang, J. (2012). Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 441, 523-540.
Lee, Y.R., Lei, H.Y., Liu, M.T., Wang, J.R., Chen, S.H., Jiang-Shieh, Y.F., Lin, Y.S., Yeh, T.M., Liu, C.C., and Liu, H.S. (2008). Autophagic machinery activated by dengue virus enhances virus replication. Virology 374, 240-248.
Lemasters, J.J. (2005). Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8, 3-5.
Li, W.X., Li, H.W., Lu, R., Li, F., Dus, M., Atkinson, P.W., Brydon, E., Johnson, K.L., Garcia-Sastre, A., Bal,l L.A., Palese, P. and Ding, S.W. (2004). Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc. Natl. Acad. Sci. USA, 101, 1350–1355.
Masaki, N., Kyle, M.E., Serroni, A., and Farber, J.L. (1989). Mitochondrial damage as a mechanism of cell injury in the killing of cultured hepatocytes by tert-butyl hydroperoxide. Arch Biochem Biophys 270, 672-680.
Massey, A.C., Zhang, C., and Cuervo, A.M. (2006). Chaperone-mediated autophagy in aging and disease. Curr Top Dev Biol 73, 205-235.
Menzies, R.A., and Gold, P.H. (1971). The turnover of mitochondria in a variety of tissues of young adult and aged rats. J Biol Chem 246, 2425-2429.
Mizushima, N. (2007). Autophagy: process and function. Genes Dev 21, 2861-2873.
Mizushima, N., and Klionsky, D.J. (2007). Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 27, 19-40.
Mizushima, N., Noda, T., Yoshimori, T., Tanaka, Y., Ishii, T., George, M.D., Klionsky, D.J., Ohsumi, M., and Ohsumi, Y. (1998). A protein conjugation system essential for autophagy. Nature 395, 395-398.
Mori, K., Nakai, T., Muroga, K., Arimoto, M., Mushiake, K., and Furusawa, I. (1992). Properties of a new virus belonging to nodaviridae found in larval striped jack (Pseudocaranx dentex) with nervous necrosis. Virology 187, 368-371.
Morinobu, S., and Kumagai, S. (2004). [Glutathione, glutathione peroxidase (GPx), glutathione S-transferase (GST)]. Nihon Rinsho 62 Suppl 11, 557-559.
Mugge, A. (1998). The role of reactive oxygen species in atherosclerosis. Z Kardiol 87, 851-864.
Munday, B.L., Nakai, T., and Nguyen, H.D.(1994). Antigenic relationship of the picorna-like virus of larval barramundi, Lates calcarifer Bloch to the nodavirus of larval striped jack, Pseudocaranx dentex (Bloch & Schneider). Aust Vet J 71, 384-385.
Munday, B. L. and Nakai, T. (1997). Special topic review: Nodaviruses as pathogens in larval and juvenile marine finfish. World J Microbiol Biotechnol .13, 375 -381.
Munday, B. L., Kwang, J. and Moody, N. (2002). Betanodavirus infection of teleost fish: a review. J Fish Dis, 25, 127-142.
Nagai, T., and Nishizawa, T. (1999).Sequence of the non-structural protein gene encoded by RNA1 of striped jack nervous necrosis virus. J. Gen. Virol. 80, 3019-3022.
Nakagawa, I., Amano, A., Mizushima, N., Yamamoto, A., Yamaguchi, H., Kamimoto, T., Nara, A., Funao, J., Nakata, M., Tsuda, K., et al. (2004). Autophagy defends cells against invading group A Streptococcus. Science 306, 1037-1040.
Nauseef, W.M. (2008). Biological roles for the NOX family NADPH oxidases. J Biol Chem 283, 16961-16965.
Nimmerjahn, F., Milosevic, S., Behrends, U., Jaffee, E.M., Pardoll, D.M., Bornkamm, G.W., and Mautner, J. (2003). Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy. Eur J Immunol 33, 1250-1259.
Nishizawa, T., Furuhashi, M., Nagai, T., Nakai, T., and Muroga, K. (1997). Genomic classification of fish nodaviruses by molecular phylogenetic analysis of the coat protein gene. Appl Environ Microbiol 63, 1633-1636.
Nishizawa, T., Mori, K., Furuhashi, M., Nakai, T., Furusawa, I., and Muroga, K., (1995).Comparison of the coat protein genes of five fish nodaviruses, the causative agents of viral nervous necrosis in marine fish. J. Gen. Virol. 76, 1563 -1569.
Novo, E., and Parola, M. (2008). Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair 1, 5.
Ogawa, M., and Sasakawa, C. (2006). Shigella and autophagy. Autophagy 2, 171-174.
Ohsumi, Y. (2001). Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2, 211-216.
Orvedahl, A., MacPherson, S., Sumpter, R., Jr., Talloczy, Z., Zou, Z., and Levine, B. (2010). Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 7, 115-127.
Packer, L. (1992). Interactions among antioxidants in health and disease: vitamin E and its redox cycle. Proc Soc Exp Biol Med 200, 271-276.
Packer, L., Tritschler, H.J., and Wessel, K. (1997). Neuroprotection by the metabolic antioxidant alpha-lipoic acid. Free Radic Biol Med 22, 359-378.
Paludan, C., Schmid, D., Landthaler, M., Vockerodt, M., Kube, D., Tuschl, T., and Munz, C. (2005). Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307, 593-596.
Pankiv, S., Clausen, T.H., Lamark, T., Brech, A., Bruun, J.A., Outzen, H., Overvatn, A., Bjorkoy, G., and Johansen, T. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282, 24131-24145.
Panyasrivanit, M., Khakpoor, A., Wikan, N., and Smith, D.R. (2009). Co-localization of constituents of the dengue virus translation and replication machinery with amphisomes. J Gen Virol 90, 448-456.
Pattingre, S., Tassa, A., Qu, X., Garuti, R., Liang, X.H., Mizushima, N., Packer, M., Schneider, M.D., and Levine, B. (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927-939.
Johansen, R., Sommerset, I., Torud, B., Korsnes, K., Hjortaas, M.J., Nilsen, F., Nerland, A.H., and Dannevig, B.H. (2004). Characterization of nodavirus and viral encephalopathy and retinopathy in farmed turbot, Scophthalmus maximus (L.). J Fish Dis 27, 591-601.
Salonen, A., Ahola, T., and Kaariainen, L. (2005). Viral RNA replication in association with cellular membranes. Curr Top Microbiol Immunol 285, 139-173.
Samali, A., Gorman, A.M., and Cotter, T.G. (1996). Apoptosis -- the story so far. Experientia 52, 933-941.
Scherz-Shouval, R., Shvets, E., Fass, E., Shorer, H., Gil, L., and Elazar, Z. (2007). Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26, 1749-1760.
Seglen, P.O., and Gordon, P.B. (1982). 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci U S A 79, 1889-1892.
Shelly, S., Lukinova, N., Bambina, S., Berman, A., and Cherry, S. (2009). Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. Immunity 30, 588-598.
Singh, S.B., Davis, A.S., Taylor, G.A., and Deretic, V. (2006). Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313, 1438-1441.
Sir, D., Chen, W.L., Choi, J., Wakita, T., Yen, T.S., and Ou, J.H. (2008). Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology 48, 1054-1061.
Sir, D., Tian, Y., Chen, W.L., Ann, D.K., Yen, T.S., and Ou, J.H. (2010). The early autophagic pathway is activated by hepatitis B virus and required for viral DNA replication. Proc Natl Acad Sci U S A 107, 4383-4388.
Sir, D., Kuo, C.F., Tian, Y., Liu, H.M., Huang, E.J., Jung, J.U., Machida, K., and Ou, J.H. (2012). Replication of hepatitis C virus RNA on autophagosomal membranes. J Biol Chem
Su, Y.C., Wu, J.L., and Hong, J.R. (2009). Betanodavirus non-structural protein B2: A novel necrotic death factor that induces mitochondria-mediated cell death in fish cells. Virology 385, 143-154.
Su, Y.C., and Hong, J.R. (2010). Betanodavirus B2 causes ATP depletion-induced cell death via mitochondrial targeting and Complex II inhibition in vitro and in vivo. J Biol Chem.
Su, Y.C., Wu, J.L., and Hong, J.R. (2011). Betanodavirus up-regulates chaperone GRP78 via ER stress: roles of GRP78 in viral replication and host mitochondria-mediated cell death. Apoptosis 16, 272-287.
Sumimoto, H. (2008). Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J 275, 3249-3277
Talloczy, Z., Jiang, W., Virgin, H.W.t., Leib, D.A., Scheuner, D., Kaufman, R.J., Eskelinen, E.L., and Levine, B. (2002). Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc Natl Acad Sci U S A 99, 190-195.
Talloczy, Z., Virgin, H.W.t., and Levine, B. (2006). PKR-dependent autophagic degradation of herpes simplex virus type 1. Autophagy 2, 24-29.
Tang, H., Da, L., Mao, Y., Li, Y., Li, D., Xu, Z., Li, F., Wang, Y.,Tiollais, P., Li, T., et al. (2009). Hepatitis B virus X protein sensitizes cells to starvation-induced autophagy via upregulation of beclin 1 expression. Hepatology 49, 60-71.
Tasdemir, E., Maiuri, M.C., Galluzzi, L., Vitale, I., Djavaheri-Mergny, M., D'Amelio, M., Criollo, A., Morselli, E., Zhu, C., Harper, F., et al. (2008). Regulation of autophagy by cytoplasmic p53. Nat Cell Biol 10, 676-687.
Toffolo, V., Negrisolo, E., Maltese, C., Bovo, G., Belvedere, P., Colombo, L., and Valle, L.D. (2007). Phylogeny of betanodaviruses and molecular evolution of their RNA polymerase and coat proteins. Mol Phylogenet Evol 43, 298-308.
Thannickal, V.J., and Fanburg, B.L. (2000). Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279, L1005-1028.
Thiery, R., Cozien, J., de Boisseson, C., Kerbart-Boscher, S., and Nevarez, L. (2004). Genomic classification of new betanodavirus isolates by phylogenetic analysis of the coat protein gene suggests a low host-fish species specificity. J Gen Virol 85, 3079-3087.
van der Vaart, A., and Reggiori, F. (2010). The Golgi complex as a source for yeast autophagosomal membranes. Autophagy 6, 800-801.
Wong, J., Zhang, J., Si, X., Gao, G., Mao, I., McManus, B.M., and Luo, H. (2008). Autophagosome supports coxsackievirus B3 replication in host cells. J Virol 82, 9143-9153.
Wei, Y.H. (1998). Oxidative stress and mitochondrial DNA mutations in human aging. Proc Soc Exp Biol Med 217, 53-63.
Wei, Y., Pattingre, S., Sinha, S., Bassik, M., and Levine, B. (2008). JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30, 678-688.
Wu, H.C., Chiu, C.S., Wu, J.L., Gong, H.Y., Chen, M.C., Lu, M.W., and Hong, J.R. (2008). Zebrafish anti-apoptotic protein zfBcl-xL can block betanodavirus protein alpha-induced mitochondria-mediated secondary necrosis cell death. Fish Shellfish Immunol 24, 436-449.
Xie, Z., and Klionsky, D.J. (2007). Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9, 1102-1109.
Xu, Z., Huang, C.X., Li, Y., Wang, P.Z., Ren, G.L., Chen, C.S., Shang, F.J., Zhang, Y., Liu, Q.Q., Jia, Z.S., et al. (2007). Toll-like receptor 4 siRNA attenuates LPS-induced secretion of inflammatory cytokines and chemokines by macrophages. J Infect 55, e1-9.
Yoshikoshi, K., and Inoue, K.(1990). Viral nervous necrosis in hatchery-reared larve and juveniles of Japanase parrotfish, Oplegnathus fasciatus . J Fish Dis. 13, 69-77.
Zhang, H., Kong, X., Kang, J., Su, J., Li, Y., Zhong, J., and Sun, L. (2009). Oxidative stress induces parallel autophagy and mitochondria dysfunction in human glioma U251 cells. Toxicol Sci 110, 376-388.
Zheng, L., Marcusson, J., and Terman, A. (2006). Oxidative stress and Alzheimer disease: the autophagy connection? Autophagy 2, 143-145.
Zheng, X.F., Florentino, D., Chen, J., Crabtree, G.R., and Schreiber, S.L. (1995). TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell 82, 121-130.
Zhou, Z., Jiang, X., Liu, D., Fan, Z., Hu, X., Yan, J., Wang, M., and Gao, G.F. (2009). Autophagy is involved in influenza A virus replication. Autophagy 5, 321-328.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top