跳到主要內容

臺灣博碩士論文加值系統

(3.235.60.144) 您好!臺灣時間:2021/07/27 01:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾秉翰
研究生(外文):Ping-HanChung
論文名稱:核醣體蛋白L19結合到週期素D1五端非轉譯區內之核醣體結合區來調控週期素D1蛋白質表現與細胞週期進行
論文名稱(外文):Ribosomal protein L19 regulates CCND1 protein expression and cell cycle progression through interacting with the internal ribosome entry site located on the 5’UTR of CCND1 mRNA
指導教授:曾大千曾大千引用關係
指導教授(外文):Ta-Chien Tseng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生物資訊與訊息傳遞研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:63
中文關鍵詞:核醣體蛋白L19週期素D1五端非轉譯區內之核醣體結合區
外文關鍵詞:Ribosomal protein L19CCND1internal ribosome entry site
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
核醣體為4條不同的rRNA、許多不同的核醣體蛋白、與非核醣體蛋白分子所形成的巨大複合體,在生物體內扮演著轉譯蛋白質的角色。過去研究多半認為核醣體蛋白只是核醣體進行轉譯時的附屬物,並不具有調控細胞生理的功能。但越來越多的研究卻顯示,許多核醣體蛋白具有調控不同生理功能的角色。核醣體蛋白L19 (RPL19) 為60S核醣體次單元的一員,在演化分類上屬於L-19E家族,其序列在真核生物與古細菌演化上具有高度保留性,顯示此蛋白質在真核生物的重要。過去報導指出,當RPL19表現量降低時會使週期素D1 (CCND1) 蛋白質表現量下降,卻不全然降低其他細胞週期調控分子的表現量,顯示RPL19並非核醣體的核心單元,並暗指RPL19可能帶有調控細胞週期的角色,但其中的機制在過去並無較為清楚的探討。五端非轉譯區內之核醣體結合區 (IRES) 為RNA上一段能形成次級結構使得細胞可不透過五端帽型結構即可吸引核醣體進行轉譯的序列。過去文獻指出,許多細胞週期調控分子會透過IRES來調控其蛋白質表現,其中CCND1五端非轉譯區也被報導過帶有IRES。基於RPL19會調控CCND1且CCND1帶有IRES,我們推論RPL19可能透過CCND1的IRES來調控其蛋白質表現。為了證明我們的假說,首先將細胞的細胞週期同步化,並且收集不同時間點樣本來進行研究。結果發現,雖然RPL19在細胞中的表現量並無明顯差別,但RPL19卻只在G1/S時期與CCND1 mRNA結合。經由雙報導基因實驗證明CCND1五端非轉譯區的確具有IRES活性並且其活性會受到RPL19所調控。此外許多的IRES活性會透過一些分子來協助轉譯調控,先前曾報導hnRNP A1為共同調控CCND1的分子。我們發現,RPL19會與hnRNP A1結合並且共同調控CCND1的IRES活性。最後,我們也觀察到當RPL19表現量下降時,細胞增生的速率也會顯著下降。本篇研究指出RPL19不僅為核醣體上的附屬蛋白,此蛋白可透過hnRNP A1協助來結合CCND1的IRES結構以調控其表現與細胞週期進行。
Ribosome is composed of rRNAs, ribosomal proteins, and many non-ribosomal factors to conduct the translation function. Traditionally, ribosomal proteins were considered as co-factors to execute the protein translation. But, numerous studies have demonstrated that ribosomal proteins not only play as co-factors of translational complex but also regulate the protein synthesis of specific mRNAs. RPL19 is a component of ribosome large subunit which belonged to the L-19E super-family and conserved among eukaryotes. In previous study, RPL19 was reported to have an impact on cyclin D1 protein expression but not on other cell cycle regulators, which indicated RPL19 may be a regulator of specific cell cycle regulators. During cell cycle progression, internal ribosome entry site (IRES) was reported to mediate the translational regulation of many cell cycle regulators. Since cyclin D1 expression was reported to be regulated by RPL19 and the 5’UTR of cyclin D1 mRNA carries a potential IRES element, the hypothesis was reported that RPL19 may regulate the expression of cyclin D1 through IRES. To address it, cells were synchronized and following experiments were conducted. First, western blot analysis showed that RPL19 expression level remained unchanged during cell cycle progression. However, RNA-IP showed that RPL19 interacted with cyclin D1 mRNAs at G1/S boundary. Bicistronic reporter assay showed that the 5’UTR of cyclin D1 had strong IRES activity and was regulated by RPL19. IRES-mediated translation regulation is often facilitated with the help of IRES trans-acting factors (ITAFs). RPL19 cooperated with a known ITAF, hnRNP A1, to regulate the IRES activity of cyclin D1. Furthermore, we observed that down-regulation of RPL19 significantly decreased the proliferation rate of HeLa cells. To sum up, we identified that RPL19, a ribosomal protein, can cooperate with hnRNPA1 to regulate cell cycle progression through regulating the IRES activity of cyclin D1.

Chinese abstract........................... I
English Abstract........................... II
Acknowledgement............................ III
Content.................................... V
Figure index............................... VIII
Table index................................ IX
Abbreviations.............................. X
Introduction............................... 1
The mechanism of eukaryotic translation
initiation: cap-dependent and
IRES-dependent translation regulation ... 1
Ribosome complex, ribosomal proteins and
its relevance to diseases................ 3
Ribosomal protein large 19 (RPL19)....... 5
IRES trans-acting factors (ITAFs)........ 6
The role of D type cyclins in cell cycle
progression and cancer development....... 7
Internal ribosome entry site (IRES)
mediated translation and its role in cell
cycle progression........................ 8
Material and methods....................... 10
Materials................................ 10
Methods.................................. 14
Cell culture........................... 14
Cell synchronization with double
thymidine block assay.................. 14
Flowcytometry analysis................. 14
Plasmid construction................... 15
Plasmid transfection with PolyJet™ In
Vitro Transfection reagent............. 16
Polymerase chain reaction (PCR)........ 16
Proliferation assay.................... 17
Protein immunoprecipitation assay...... 17
Reporter assay......................... 18
RNA extraction......................... 19
Reverse transcription PCR (RT-PCR)..... 19
RNA-Immunoprecipitation (RNA-IP)....... 20
siRNA transfection with GenMute™ siRNA
Transfection Reagent................... 20
Quantitative real-time PCR............. 20
Western blot assay..................... 21
Result..................................... 22
The expression of RPL19 is always
abundant during cell cycle, but cyclin D1
is dynamic............................... 22
RPL19 interacted with cyclin D1 mRNAs at
specific time point...................... 23
The 5’UTR of cyclin D1 mRNA carries an
IRES element and RPL19 plays a role in
regulating the IRES activity of cyclin D1 23
RPL19 cooperated with hnRNP A1 to
regulate the IRES-mediated translation of
CCND1.................................... 24
Down-regulation of RPL19 decreased the
proliferation rate of HeLa cell.......... 25
Discussion................................. 27
The functional role of ribosomal protein
L19 and the concept of specialized
ribosome complex......................... 27
The importance of cyclin D1 IRES-mediated
translation regulated by RPL19 in cell
cycle progression and its role in cancer
progression.............................. 28
The functional role of hnRNP A1 and the
role of hnRNP in IRES-mediated translation
initiation............................... 29
Reference.................................. 31
Figures.................................... 47
Table...................................... 63
Albanese, C., Johnson, J., Watanabe, G., Eklund, N., Vu, D., Arnold, A., and Pestell, R.G. (1995). Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. The Journal of biological chemistry 270, 23589-23597.
Amsterdam, A., Sadler, K.C., Lai, K., Farrington, S., Bronson, R.T., Lees, J.A., and Hopkins, N. (2004). Many ribosomal protein genes are cancer genes in zebrafish. PLoS biology 2, E139.
Artero-Castro, A., Castellvi, J., Garcia, A., Hernandez, J., Ramon y Cajal, S., and Lleonart, M.E. (2011). Expression of the ribosomal proteins Rplp0, Rplp1, and Rplp2 in gynecologic tumors. Human pathology 42, 194-203.
Baird, S.D., Turcotte, M., Korneluk, R.G., and Holcik, M. (2006). Searching for IRES. RNA 12, 1755-1785.
Balasubramanian, S., Zheng, D., Liu, Y.J., Fang, G., Frankish, A., Carriero, N., Robilotto, R., Cayting, P., and Gerstein, M. (2009). Comparative analysis of processed ribosomal protein pseudogenes in four mammalian genomes. Genome biology 10, R2.
Barnes, D.M., and Gillett, C.E. (1998). Cyclin D1 in breast cancer. Breast cancer research and treatment 52, 1-15.
Bartkova, J., Lukas, J., Muller, H., Strauss, M., Gusterson, B., and Bartek, J. (1995). Abnormal patterns of D-type cyclin expression and G1 regulation in human head and neck cancer. Cancer research 55, 949-956.
Bee, A., Brewer, D., Beesley, C., Dodson, A., Forootan, S., Dickinson, T., Gerard, P., Lane, B., Yao, S., Cooper, C.S., et al. (2011). siRNA knockdown of ribosomal protein gene RPL19 abrogates the aggressive phenotype of human prostate cancer. PloS one 6, e22672.
Bee, A., Ke, Y., Forootan, S., Lin, K., Beesley, C., Forrest, S.E., and Foster, C.S. (2006). Ribosomal protein L19 is a prognostic marker for human prostate cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 12, 2061-2065.
Ben-Shem, A., Jenner, L., Yusupova, G., and Yusupov, M. (2010). Crystal structure of the eukaryotic ribosome. Science 330, 1203-1209.
Bert, A.G., Grepin, R., Vadas, M.A., and Goodall, G.J. (2006). Assessing IRES activity in the HIF-1alpha and other cellular 5' UTRs. RNA 12, 1074-1083.
Bieleski, L., Hindley, C., and Talbot, S.J. (2004). A polypyrimidine tract facilitates the expression of Kaposi's sarcoma-associated herpesvirus vFLIP through an internal ribosome entry site. The Journal of general virology 85, 615-620.
Bonnal, S., Pileur, F., Orsini, C., Parker, F., Pujol, F., Prats, A.C., and Vagner, S. (2005). Heterogeneous nuclear ribonucleoprotein A1 is a novel internal ribosome entry site trans-acting factor that modulates alternative initiation of translation of the fibroblast growth factor 2 mRNA. The Journal of biological chemistry 280, 4144-4153.
Bonnal, S., Schaeffer, C., Creancier, L., Clamens, S., Moine, H., Prats, A.C., and Vagner, S. (2003). A single internal ribosome entry site containing a G quartet RNA structure drives fibroblast growth factor 2 gene expression at four alternative translation initiation codons. The Journal of biological chemistry 278, 39330-39336.
Brown, E.C., and Jackson, R.J. (2004). All five cold-shock domains of unr (upstream of N-ras) are required for stimulation of human rhinovirus RNA translation. The Journal of general virology 85, 2279-2287.
Chabot, B., Blanchette, M., Lapierre, I., and La Branche, H. (1997). An intron element modulating 5' splice site selection in the hnRNP A1 pre-mRNA interacts with hnRNP A1. Molecular and cellular biology 17, 1776-1786.
Challagundla, K.B., Sun, X.X., Zhang, X., DeVine, T., Zhang, Q., Sears, R.C., and Dai, M.S. (2011). Ribosomal protein L11 recruits miR-24/miRISC to repress c-Myc expression in response to ribosomal stress. Molecular and cellular biology 31, 4007-4021.
Cheng, M., Sexl, V., Sherr, C.J., and Roussel, M.F. (1998). Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1). Proceedings of the National Academy of Sciences of the United States of America 95, 1091-1096.
Cho, S., Kim, J.H., Back, S.H., and Jang, S.K. (2005). Polypyrimidine tract-binding protein enhances the internal ribosomal entry site-dependent translation of p27Kip1 mRNA and modulates transition from G1 to S phase. Molecular and cellular biology 25, 1283-1297.
Cmejla, R., Cmejlova, J., Handrkova, H., Petrak, J., Petrtylova, K., Mihal, V., Stary, J., Cerna, Z., Jabali, Y., and Pospisilova, D. (2009). Identification of mutations in the ribosomal protein L5 (RPL5) and ribosomal protein L11 (RPL11) genes in Czech patients with Diamond-Blackfan anemia. Human mutation 30, 321-327.
Cmejla, R., Cmejlova, J., Handrkova, H., Petrak, J., and Pospisilova, D. (2007). Ribosomal protein S17 gene (RPS17) is mutated in Diamond-Blackfan anemia. Human mutation 28, 1178-1182.
Cornelis, S., Bruynooghe, Y., Denecker, G., Van Huffel, S., Tinton, S., and Beyaert, R. (2000). Identification and characterization of a novel cell cycle-regulated internal ribosome entry site. Molecular cell 5, 597-605.
Costa-Mattioli, M., Svitkin, Y., and Sonenberg, N. (2004). La autoantigen is necessary for optimal function of the poliovirus and hepatitis C virus internal ribosome entry site in vivo and in vitro. Molecular and cellular biology 24, 6861-6870.
Crick, F.H. (1968). The origin of the genetic code. Journal of molecular biology 38, 367-379.
Davies, B., and Fried, M. (1995). The L19 ribosomal protein gene (RPL19): gene organization, chromosomal mapping, and novel promoter region. Genomics 25, 372-380.
Diehl, J.A., Cheng, M., Roussel, M.F., and Sherr, C.J. (1998). Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes & development 12, 3499-3511.
Draptchinskaia, N., Gustavsson, P., Andersson, B., Pettersson, M., Willig, T.N., Dianzani, I., Ball, S., Tchernia, G., Klar, J., Matsson, H., et al. (1999). The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nature genetics 21, 169-175.
Dressman, M.A., Baras, A., Malinowski, R., Alvis, L.B., Kwon, I., Walz, T.M., and Polymeropoulos, M.H. (2003). Gene expression profiling detects gene amplification and differentiates tumor types in breast cancer. Cancer research 63, 2194-2199.
Dreyfuss, G., Kim, V.N., and Kataoka, N. (2002). Messenger-RNA-binding proteins and the messages they carry. Nature reviews Molecular cell biology 3, 195-205.
Ebert, B.L. (2009). Deletion 5q in myelodysplastic syndrome: a paradigm for the study of hemizygous deletions in cancer. Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, UK 23, 1252-1256.
Ebert, B.L., Pretz, J., Bosco, J., Chang, C.Y., Tamayo, P., Galili, N., Raza, A., Root, D.E., Attar, E., Ellis, S.R., et al. (2008). Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 451, 335-339.
Evans, J.R., Mitchell, S.A., Spriggs, K.A., Ostrowski, J., Bomsztyk, K., Ostarek, D., and Willis, A.E. (2003). Members of the poly (rC) binding protein family stimulate the activity of the c-myc internal ribosome entry segment in vitro and in vivo. Oncogene 22, 8012-8020.
Fantl, V., Stamp, G., Andrews, A., Rosewell, I., and Dickson, C. (1995). Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes & development 9, 2364-2372.
Farrar, J.E., Nater, M., Caywood, E., McDevitt, M.A., Kowalski, J., Takemoto, C.M., Talbot, C.C., Jr., Meltzer, P., Esposito, D., Beggs, A.H., et al. (2008). Abnormalities of the large ribosomal subunit protein, Rpl35a, in Diamond-Blackfan anemia. Blood 112, 1582-1592.
Fernandez, J., Yaman, I., Mishra, R., Merrick, W.C., Snider, M.D., Lamers, W.H., and Hatzoglou, M. (2001). Internal ribosome entry site-mediated translation of a mammalian mRNA is regulated by amino acid availability. The Journal of biological chemistry 276, 12285-12291.
Ferreira-Cerca, S., Poll, G., Gleizes, P.E., Tschochner, H., and Milkereit, P. (2005). Roles of eukaryotic ribosomal proteins in maturation and transport of pre-18S rRNA and ribosome function. Molecular cell 20, 263-275.
Fiset, S., and Chabot, B. (2001). hnRNP A1 may interact simultaneously with telomeric DNA and the human telomerase RNA in vitro. Nucleic acids research 29, 2268-2275.
Friedman, D.I., Schauer, A.T., Baumann, M.R., Baron, L.S., and Adhya, S.L. (1981). Evidence that ribosomal protein S10 participates in control of transcription termination. Proceedings of the National Academy of Sciences of the United States of America 78, 1115-1118.
Gallouzi, I.E., and Steitz, J.A. (2001). Delineation of mRNA export pathways by the use of cell-permeable peptides. Science 294, 1895-1901.
Gazda, H.T., Grabowska, A., Merida-Long, L.B., Latawiec, E., Schneider, H.E., Lipton, J.M., Vlachos, A., Atsidaftos, E., Ball, S.E., Orfali, K.A., et al. (2006). Ribosomal protein S24 gene is mutated in Diamond-Blackfan anemia. American journal of human genetics 79, 1110-1118.
Gazda, H.T., Sheen, M.R., Vlachos, A., Choesmel, V., O'Donohue, M.F., Schneider, H., Darras, N., Hasman, C., Sieff, C.A., Newburger, P.E., et al. (2008). Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients. American journal of human genetics 83, 769-780.
Gebauer, F., and Hentze, M.W. (2004). Molecular mechanisms of translational control. Nature reviews Molecular cell biology 5, 827-835.
Giraud, S., Greco, A., Brink, M., Diaz, J.J., and Delafontaine, P. (2001). Translation initiation of the insulin-like growth factor I receptor mRNA is mediated by an internal ribosome entry site. The Journal of biological chemistry 276, 5668-5675.
Gou, Y., Shi, Y., Zhang, Y., Nie, Y., Wang, J., Song, J., Jin, H., He, L., Gao, L., Qiao, L., et al. (2010). Ribosomal protein L6 promotes growth and cell cycle progression through upregulating cyclin E in gastric cancer cells. Biochemical and biophysical research communications 393, 788-793.
Grabowski, D.T., Deutsch, W.A., Derda, D., and Kelley, M.R. (1991). Drosophila AP3, a presumptive DNA repair protein, is homologous to human ribosomal associated protein P0. Nucleic acids research 19, 4297.
Green, H., Canfield, A.E., Hillarby, M.C., Grant, M.E., Boot-Handford, R.P., Freemont, A.J., and Wallis, G.A. (2000). The ribosomal protein QM is expressed differentially during vertebrate endochondral bone development. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 15, 1066-1075.
Hariharan, N., Kelley, D.E., and Perry, R.P. (1989). Equipotent mouse ribosomal protein promoters have a similar architecture that includes internal sequence elements. Genes & development 3, 1789-1800.
Henics, T., Sanfridson, A., Hamilton, B.J., Nagy, E., and Rigby, W.F. (1994). Enhanced stability of interleukin-2 mRNA in MLA 144 cells. Possible role of cytoplasmic AU-rich sequence-binding proteins. The Journal of biological chemistry 269, 5377-5383.
Henis-Korenblit, S., Strumpf, N.L., Goldstaub, D., and Kimchi, A. (2000). A novel form of DAP5 protein accumulates in apoptotic cells as a result of caspase cleavage and internal ribosome entry site-mediated translation. Molecular and cellular biology 20, 496-506.
Henry, J.L., Coggin, D.L., and King, C.R. (1993). High-level expression of the ribosomal protein L19 in human breast tumors that overexpress erbB-2. Cancer research 53, 1403-1408.
Hermann-Le Denmat, S., Sipiczki, M., and Thuriaux, P. (1994). Suppression of yeast RNA polymerase III mutations by the URP2 gene encoding a protein homologous to the mammalian ribosomal protein S20. Journal of molecular biology 240, 1-7.
Holcik, M., Gordon, B.W., and Korneluk, R.G. (2003). The internal ribosome entry site-mediated translation of antiapoptotic protein XIAP is modulated by the heterogeneous nuclear ribonucleoproteins C1 and C2. Molecular and cellular biology 23, 280-288.
Holcik, M., and Korneluk, R.G. (2000). Functional characterization of the X-linked inhibitor of apoptosis (XIAP) internal ribosome entry site element: role of La autoantigen in XIAP translation. Molecular and cellular biology 20, 4648-4657.
Holcik, M., Lefebvre, C., Yeh, C., Chow, T., and Korneluk, R.G. (1999). A new internal-ribosome-entry-site motif potentiates XIAP-mediated cytoprotection. Nature cell biology 1, 190-192.
Izaurralde, E., Jarmolowski, A., Beisel, C., Mattaj, I.W., Dreyfuss, G., and Fischer, U. (1997). A role for the M9 transport signal of hnRNP A1 in mRNA nuclear export. The Journal of cell biology 137, 27-35.
Jackson, R.J., Hellen, C.U., and Pestova, T.V. (2010). The mechanism of eukaryotic translation initiation and principles of its regulation. Nature reviews Molecular cell biology 11, 113-127.
Jang, S.K., Davies, M.V., Kaufman, R.J., and Wimmer, E. (1989). Initiation of protein synthesis by internal entry of ribosomes into the 5' nontranslated region of encephalomyocarditis virus RNA in vivo. Journal of virology 63, 1651-1660.
Jang, S.K., Krausslich, H.G., Nicklin, M.J., Duke, G.M., Palmenberg, A.C., and Wimmer, E. (1988). A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. Journal of virology 62, 2636-2643.
Jares, P., Colomer, D., and Campo, E. (2007). Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nature reviews Cancer 7, 750-762.
Jin, M., Inoue, S., Umemura, T., Moriya, J., Arakawa, M., Nagashima, K., and Kato, H. (2001). Cyclin D1, p16 and retinoblastoma gene product expression as a predictor for prognosis in non-small cell lung cancer at stages I and II. Lung Cancer 34, 207-218.
Jo, O.D., Martin, J., Bernath, A., Masri, J., Lichtenstein, A., and Gera, J. (2008). Heterogeneous nuclear ribonucleoprotein A1 regulates cyclin D1 and c-myc internal ribosome entry site function through Akt signaling. The Journal of biological chemistry 283, 23274-23287.
Kim, J., Chubatsu, L.S., Admon, A., Stahl, J., Fellous, R., and Linn, S. (1995). Implication of mammalian ribosomal protein S3 in the processing of DNA damage. The Journal of biological chemistry 270, 13620-13629.
Kondrashov, N., Pusic, A., Stumpf, C.R., Shimizu, K., Hsieh, A.C., Xue, S., Ishijima, J., Shiroishi, T., and Barna, M. (2011). Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell 145, 383-397.
Kuroda, K., Takenoyama, M., Baba, T., Shigematsu, Y., Shiota, H., Ichiki, Y., Yasuda, M., Uramoto, H., Hanagiri, T., and Yasumoto, K. (2010). Identification of ribosomal protein L19 as a novel tumor antigen recognized by autologous cytotoxic T lymphocytes in lung adenocarcinoma. Cancer science 101, 46-53.
LaBranche, H., Dupuis, S., Ben-David, Y., Bani, M.R., Wellinger, R.J., and Chabot, B. (1998). Telomere elongation by hnRNP A1 and a derivative that interacts with telomeric repeats and telomerase. Nature genetics 19, 199-202.
Lai, K., Amsterdam, A., Farrington, S., Bronson, R.T., Hopkins, N., and Lees, J.A. (2009). Many ribosomal protein mutations are associated with growth impairment and tumor predisposition in zebrafish. Developmental dynamics : an official publication of the American Association of Anatomists 238, 76-85.
Le, S.Y., and Maizel, J.V., Jr. (1997). A common RNA structural motif involved in the internal initiation of translation of cellular mRNAs. Nucleic acids research 25, 362-369.
Macejak, D.G., and Sarnow, P. (1991). Internal initiation of translation mediated by the 5' leader of a cellular mRNA. Nature 353, 90-94.
Malumbres, M., Sotillo, R., Santamaria, D., Galan, J., Cerezo, A., Ortega, S., Dubus, P., and Barbacid, M. (2004). Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 118, 493-504.
Malygin, A.A., Parakhnevitch, N.M., Ivanov, A.V., Eperon, I.C., and Karpova, G.G. (2007). Human ribosomal protein S13 regulates expression of its own gene at the splicing step by a feedback mechanism. Nucleic acids research 35, 6414-6423.
Martinez-Salas, E., Ramos, R., Lafuente, E., and Lopez de Quinto, S. (2001). Functional interactions in internal translation initiation directed by viral and cellular IRES elements. The Journal of general virology 82, 973-984.
Mayeda, A., and Krainer, A.R. (1992). Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2. Cell 68, 365-375.
Mills, A.A., Mills, M.J., Gardiner, D.M., Bryant, S.V., and Stanbridge, E.J. (1999). Analysis of the pattern of QM expression during mouse development. Differentiation; research in biological diversity 64, 161-171.
Miskimins, W.K., Wang, G., Hawkinson, M., and Miskimins, R. (2001). Control of cyclin-dependent kinase inhibitor p27 expression by cap-independent translation. Molecular and cellular biology 21, 4960-4967.
Mitchell, S.A., Spriggs, K.A., Bushell, M., Evans, J.R., Stoneley, M., Le Quesne, J.P., Spriggs, R.V., and Willis, A.E. (2005). Identification of a motif that mediates polypyrimidine tract-binding protein-dependent internal ribosome entry. Genes & development 19, 1556-1571.
Mitchell, S.A., Spriggs, K.A., Coldwell, M.J., Jackson, R.J., and Willis, A.E. (2003). The Apaf-1 internal ribosome entry segment attains the correct structural conformation for function via interactions with PTB and unr. Molecular cell 11, 757-771.
Morrish, B.C., and Rumsby, M.G. (2002). The 5' untranslated region of protein kinase Cdelta directs translation by an internal ribosome entry segment that is most active in densely growing cells and during apoptosis. Molecular and cellular biology 22, 6089-6099.
Muise-Helmericks, R.C., Grimes, H.L., Bellacosa, A., Malstrom, S.E., Tsichlis, P.N., and Rosen, N. (1998). Cyclin D expression is controlled post-transcriptionally via a phosphatidylinositol 3-kinase/Akt-dependent pathway. The Journal of biological chemistry 273, 29864-29872.
Narla, A., and Ebert, B.L. (2010). Ribosomopathies: human disorders of ribosome dysfunction. Blood 115, 3196-3205.
Nevins, T.A., Harder, Z.M., Korneluk, R.G., and Holcik, M. (2003). Distinct regulation of internal ribosome entry site-mediated translation following cellular stress is mediated by apoptotic fragments of eIF4G translation initiation factor family members eIF4GI and p97/DAP5/NAT1. The Journal of biological chemistry 278, 3572-3579.
Novoa, I., Gallego, J., Ferreira, P.G., and Mendez, R. (2010). Mitotic cell-cycle progression is regulated by CPEB1 and CPEB4-dependent translational control. Nature cell biology 12, 447-456.
Parenteau, J., Durand, M., Morin, G., Gagnon, J., Lucier, J.F., Wellinger, R.J., Chabot, B., and Elela, S.A. (2011). Introns within ribosomal protein genes regulate the production and function of yeast ribosomes. Cell 147, 320-331.
Pellagatti, A., Hellstrom-Lindberg, E., Giagounidis, A., Perry, J., Malcovati, L., Della Porta, M.G., Jadersten, M., Killick, S., Fidler, C., Cazzola, M., et al. (2008). Haploinsufficiency of RPS14 in 5q- syndrome is associated with deregulation of ribosomal- and translation-related genes. British journal of haematology 142, 57-64.
Pelletier, J., and Sonenberg, N. (1988). Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320-325.
Pickering, B.M., Mitchell, S.A., Evans, J.R., and Willis, A.E. (2003). Polypyrimidine tract binding protein and poly r(C) binding protein 1 interact with the BAG-1 IRES and stimulate its activity in vitro and in vivo. Nucleic acids research 31, 639-646.
Pinol-Roma, S., and Dreyfuss, G. (1991). Transcription-dependent and transcription-independent nuclear transport of hnRNP proteins. Science 253, 312-314.
Pogue-Geile, K., Geiser, J.R., Shu, M., Miller, C., Wool, I.G., Meisler, A.I., and Pipas, J.M. (1991). Ribosomal protein genes are overexpressed in colorectal cancer: isolation of a cDNA clone encoding the human S3 ribosomal protein. Molecular and cellular biology 11, 3842-3849.
Pyronnet, S., Pradayrol, L., and Sonenberg, N. (2000). A cell cycle-dependent internal ribosome entry site. Molecular cell 5, 607-616.
Ramagopal, S. (1990). Induction of cell-specific ribosomal proteins in aggregation-competent nonmorphogenetic Dictyostelium discoideum. Biochemistry and cell biology = Biochimie et biologie cellulaire 68, 1281-1287.
Ramagopal, S., and Ennis, H.L. (1981). Regulation of synthesis of cell-specific ribosomal proteins during differentiation of Dictyostelium discoideum. Proceedings of the National Academy of Sciences of the United States of America 78, 3083-3087.
Sachs, A.B. (2000). Cell cycle-dependent translation initiation: IRES elements prevail. Cell 101, 243-245.
Sanderbrand, S.A., Tautz, N., Thiel, H.J., Ochs, K., Beck, E., and Niepmann, M. (2000). Translation from the internal ribosome entry site of bovine viral diarrhea virus is independent of the interaction with polypyrimidine tract-binding protein. Veterinary microbiology 77, 215-227.
Santamaria, D., Barriere, C., Cerqueira, A., Hunt, S., Tardy, C., Newton, K., Caceres, J.F., Dubus, P., Malumbres, M., and Barbacid, M. (2007). Cdk1 is sufficient to drive the mammalian cell cycle. Nature 448, 811-815.
Satyanarayana, A., and Kaldis, P. (2009). Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 28, 2925-2939.
Shamma, A., Doki, Y., Shiozaki, H., Tsujinaka, T., Yamamoto, M., Inoue, M., Yano, M., and Monden, M. (2000). Cyclin D1 overexpression in esophageal dysplasia: a possible biomarker for carcinogenesis of esophageal squamous cell carcinoma. International journal of oncology 16, 261-266.
Sherr, C.J. (1993). Mammalian G1 cyclins. Cell 73, 1059-1065.
Shi, Y., Sharma, A., Wu, H., Lichtenstein, A., and Gera, J. (2005). Cyclin D1 and c-myc internal ribosome entry site (IRES)-dependent translation is regulated by AKT activity and enhanced by rapamycin through a p38 MAPK- and ERK-dependent pathway. The Journal of biological chemistry 280, 10964-10973.
Shimazaki, T., Honda, M., Kaneko, S., and Kobayashi, K. (2002). Inhibition of internal ribosomal entry site-directed translation of HCV by recombinant IFN-alpha correlates with a reduced La protein. Hepatology 35, 199-208.
Sicinski, P., Donaher, J.L., Parker, S.B., Li, T., Fazeli, A., Gardner, H., Haslam, S.Z., Bronson, R.T., Elledge, S.J., and Weinberg, R.A. (1995). Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82, 621-630.
Spriggs, K.A., Stoneley, M., Bushell, M., and Willis, A.E. (2008). Re-programming of translation following cell stress allows IRES-mediated translation to predominate. Biology of the cell / under the auspices of the European Cell Biology Organization 100, 27-38.
Stoneley, M., Chappell, S.A., Jopling, C.L., Dickens, M., MacFarlane, M., and Willis, A.E. (2000). c-Myc protein synthesis is initiated from the internal ribosome entry segment during apoptosis. Molecular and cellular biology 20, 1162-1169.
Stoneley, M., and Willis, A.E. (2004). Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene 23, 3200-3207.
Svitkin, Y.V., Ovchinnikov, L.P., Dreyfuss, G., and Sonenberg, N. (1996). General RNA binding proteins render translation cap dependent. The EMBO journal 15, 7147-7155.
Tange, T.O., Damgaard, C.K., Guth, S., Valcarcel, J., and Kjems, J. (2001). The hnRNP A1 protein regulates HIV-1 tat splicing via a novel intron silencer element. The EMBO journal 20, 5748-5758.
Taylor, D.J., Devkota, B., Huang, A.D., Topf, M., Narayanan, E., Sali, A., Harvey, S.C., and Frank, J. (2009). Comprehensive molecular structure of the eukaryotic ribosome. Structure 17, 1591-1604.
Van den Berghe, H., Cassiman, J.J., David, G., Fryns, J.P., Michaux, J.L., and Sokal, G. (1974). Distinct haematological disorder with deletion of long arm of no. 5 chromosome. Nature 251, 437-438.
van der Houven van Oordt, W., Diaz-Meco, M.T., Lozano, J., Krainer, A.R., Moscat, J., and Caceres, J.F. (2000). The MKK(3/6)-p38-signaling cascade alters the subcellular distribution of hnRNP A1 and modulates alternative splicing regulation. The Journal of cell biology 149, 307-316.
Wang, H., Zhao, L.N., Li, K.Z., Ling, R., Li, X.J., and Wang, L. (2006). Overexpression of ribosomal protein L15 is associated with cell proliferation in gastric cancer. BMC cancer 6, 91.
Wang, S., Huang, J., He, J., Wang, A., Xu, S., Huang, S.F., and Xiao, S. (2010). RPL41, a small ribosomal peptide deregulated in tumors, is essential for mitosis and centrosome integrity. Neoplasia 12, 284-293.
Warnakulasuriyarachchi, D., Cerquozzi, S., Cheung, H.H., and Holcik, M. (2004). Translational induction of the inhibitor of apoptosis protein HIAP2 during endoplasmic reticulum stress attenuates cell death and is mediated via an inducible internal ribosome entry site element. The Journal of biological chemistry 279, 17148-17157.
Weber, J.D., Raben, D.M., Phillips, P.J., and Baldassare, J.J. (1997). Sustained activation of extracellular-signal-regulated kinase 1 (ERK1) is required for the continued expression of cyclin D1 in G1 phase. The Biochemical journal 326 ( Pt 1), 61-68.
Wilson, D.M., 3rd, Deutsch, W.A., and Kelley, M.R. (1994). Drosophila ribosomal protein S3 contains an activity that cleaves DNA at apurinic/apyrimidinic sites. The Journal of biological chemistry 269, 25359-25364.
Wollerton, M.C., Gooding, C., Robinson, F., Brown, E.C., Jackson, R.J., and Smith, C.W. (2001). Differential alternative splicing activity of isoforms of polypyrimidine tract binding protein (PTB). RNA 7, 819-832.
Woodgate, R., Rajagopalan, M., Lu, C., and Echols, H. (1989). UmuC mutagenesis protein of Escherichia coli: purification and interaction with UmuD and UmuD'. Proceedings of the National Academy of Sciences of the United States of America 86, 7301-7305.
Wool, I.G. (1996). Extraribosomal functions of ribosomal proteins. Trends in biochemical sciences 21, 164-165.
Wool, I.G., Chan, Y.L., and Gluck, A. (1995). Structure and evolution of mammalian ribosomal proteins. Biochemistry and cell biology = Biochimie et biologie cellulaire 73, 933-947.
Wu, Q., Gou, Y., Wang, Q., Jin, H., Cui, L., Zhang, Y., He, L., Wang, J., Nie, Y., Shi, Y., et al. (2011). Downregulation of RPL6 by siRNA inhibits proliferation and cell cycle progression of human gastric cancer cell lines. PloS one 6, e26401.
Yang, D., Kusser, I., Kopke, A.K., Koop, B.F., and Matheson, A.T. (1999). The structure and evolution of the ribosomal proteins encoded in the spc operon of the archaeon (Crenarchaeota) Sulfolobus acidocaldarius. Molecular phylogenetics and evolution 12, 177-185.
Yang, X., Bani, M.R., Lu, S.J., Rowan, S., Ben-David, Y., and Chabot, B. (1994). The A1 and A1B proteins of heterogeneous nuclear ribonucleoparticles modulate 5' splice site selection in vivo. Proceedings of the National Academy of Sciences of the United States of America 91, 6924-6928.
Yeh, C.H., Hung, L.Y., Hsu, C., Le, S.Y., Lee, P.T., Liao, W.L., Lin, Y.T., Chang, W.C., and Tseng, J.T. (2008). RNA-binding protein HuR interacts with thrombomodulin 5'untranslated region and represses internal ribosome entry site-mediated translation under IL-1 beta treatment. Molecular biology of the cell 19, 3812-3822.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top