|
[1] Lugowski SJ, Smith DC, McHugh AD, Van Loon JC. Release of metal ions from dental implant materials in vivo: determination of Al, Co, Cr, Mo, Ni, V, and Ti in organ tissue. J Biomed Mater Res 1991;25:1443-58. [2] Kennady MC, Tucker MR, Lester GE, Buckley MJ. Stress shielding effect of rigid internal fixation plates on mandibular bone grafts. A photon absorption densitometry and quantitative computerized tomographic evaluation. Int J Oral Maxillofac Surg 1989;18:307-10. [3] Hench LL. Biomaterials: a forecast for the future. Biomaterials 1998;19:1419-23. [4] Bacakova L, Filova E, Rypacek F, Svorcik V, Stary V. Cell adhesion on artificial materials for tissue engineering. Physiol Res 2004;53 Suppl 1:S35-45. [5] Hench LL, Polak JM. Third-generation biomedical materials. Science 2002;295:1014-7. [6] Kojima Y. Platform science and technology for advanced magnesium alloys. Magnesium Alloys 2000 2000;350-3:3-17. [7] Musso CG. Magnesium metabolism in health and disease. International Urology and Nephrology 2009;41:357-62. [8] Nishimuta M, Kodama N, Morikuni E, Yoshioka YH, Yamada H, Kitajima H, Balance of magnesium positively correlates with that of calcium. Journal of the American College of Nutrition 2004;23:768s-70s. [9] Hartzell HC, White RE. Effects of Magnesium on Inactivation of the Voltage-Gated Calcium Current in Cardiac Myocytes. Journal of General Physiology 1989;94:745-67. [10] Wolf FI, Cittadini A. Chemistry and biochemistry of magnesium. Mol Aspects Med 2003;24:3-9. [11] Rude RK, Gruber HE, Wei LY, Frausto A, Mills BG. Magnesium deficiency: Effect on bone and mineral metabolism in the mouse. Calcified Tissue International 2003;72:32-41. [12] Song GL. Control of biodegradation of biocompatable magnesium alloys. Corrosion Science 2007;49:1696-701. [13] Vormann J. Magnesium: nutrition and metabolism. Mol Aspects Med 2003;24:27-37. [14] Pietak A, Mahoney P, Dias GJ, Staiger MP. Bone-like matrix formation on magnesium and magnesium alloys. J Mater Sci Mater Med 2008;19:407-15. [15] Zreiqat H, Markovic B, Walsh WR, Howlett CR. A novel technique for quantitative detection of mRNA expression in human bone derived cells cultured on biomaterials. J Biomed Mater Res 1996;33:217-23. [16] Yamasaki Y, Yoshida Y, Okazaki M, Shimazu A, Uchida T, Kubo T, Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. J Biomed Mater Res 2002;62:99-105. [17] Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res 2002;62:175-84. [18] Song GL, Song SZ. A possible biodegradable magnesium implant material. Advanced Engineering Materials 2007;9:298-302. [19] Y. S. Hong KY, G. D. Zhang, J. J. Huang, Y. Q. Hao and H. J. Ai. The role of bone induction of biodegradable magnesium alloy. Acta Metallurgica Sinica 2008;44:1035-41. [20] M. Erinc WSaRM. Applicability of existing magnesium alloys as biomedical implant materials. Magnesium Technology2009. [21] Gu XN, Zheng YF, Cheng Y, Zhong SP, Xi TF. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 2009;30:484-98. [22] Fatemi-Varzaneh SM, Zarei-Hanzaki A, Haghshenas M. The room temperature mechanical properties of hot-rolled AZ31 magnesium alloy. Journal of Alloys and Compounds 2009;475:126-30. [23] Zberg B, Uggowitzer PJ, Loffler JF. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nature Materials 2009;8:887-91. [24] Li LC, Gao JC, Wang Y. Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid. Surface & Coatings Technology 2004;185:92-8. [25] Zhang XP, Zhao ZP, Wu FM, Wang YL, Wu J. Corrosion and wear resistance of AZ91D magnesium alloy with and without microarc oxidation coating in Hank's solution. Journal of Materials Science 2007;42:8523-8. [26] Hiromoto S, Tomozawa M. Hydroxyapatite coating of AZ31 magnesium alloy by a solution treatment and its corrosion behavior in NaCl solution. Surface & Coatings Technology 2011;205:4711-9. [27] Song YW, Shan DY, Han EH. Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Materials Letters 2008;62:3276-9. [28] Wong HM, Yeung KWK, Lam KO, Tam V, Chu PK, Luk KDK, A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials 2010;31:2084-96. [29] Uan JY, Lin JK, Sun YS, Yang WE, Chen LK, Huang HH. Surface coatings for improving the corrosion resistance and cell adhesion of AZ91D magnesium alloy through environmentally clean methods. Thin Solid Films 2010;518:7563-7. [30] Wan YZ, Xiong GY, Luo HL, He F, Huang Y, Wang YL. Influence of zinc ion implantation on surface nanomechanical performance and corrosion resistance of biomedical magnesium-calcium alloys. Appl Surf Sci 2008;254:5514-6. [31] Xin YC, Liu CL, Zhang WJ, Huo KF, Tang GY, Tian XB, Corrosion resistance of ZrO2-Zr-coated biodegradable surgical magnesium alloy. Journal of Materials Research 2008;23:312-9. [32] Wen ZH, Wu CJ, Dai CS, Yang FX. Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid. Journal of Alloys and Compounds 2009;488:392-9. [33] Zhu YY, Wu GM, Zhang YH, Zhao Q. Growth and characterization of Mg(OH)(2) film on magnesium alloy AZ31. Appl Surf Sci 2011;257:6129-37. [34] Schwartz Z, Boyan BD. Underlying Mechanisms at the Bone-Biomaterial Interface. Journal of Cellular Biochemistry 1994;56:340-7. [35] Arima Y, Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 2007;28:3074-82. [36] Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nature Materials 2007;6:997-1003. [37] Jr. GLGa. “Insoluble Monolayers at Liquid-Gas Interface. New York: Wiley press; 1966. [38] Larkins GL, Thompson ED, Ortiz E, Burkhart CW, Lando JB. Langmuir-Blodgett Films as Barrier Layers in Josephson Tunnel-Junctions. Thin Solid Films 1983;99:277-82. [39] Langmuir I. THE CONSTITUTION AND FUNDAMENTAL PROPERTIES OF SOLIDS AND LIQUIDS. II. LIQUIDS. J Am Chem Soc 1917;39:1848–906. [40] Harnack O, Raible I, Yasuda A, Vossmeyer T. Lithographic patterning of nanoparticle films self-assembled from organic solutions by using a water-soluble mask. Applied Physics Letters 2005;86. [41] Senaratne W, Andruzzi L, Ober CK. Self-assembled monolayers and polymer brushes in biotechnology: Current applications and future perspectives. Biomacromolecules 2005;6:2427-48. [42] Nuzzo RG, Allara DL. Adsorption of Bifunctional Organic Disulfides on Gold Surfaces. J Am Chem Soc 1983;105:4481-3. [43] Toworfe GK, Bhattacharyya S, Composto RJ, Adams CS, Shapiro IM, Ducheyne P. Effect of functional end groups of silane self-assembled monolayer surfaces on apatite formation, fibronectin adsorption and osteoblast cell function. J Tissue Eng Regen Med 2009;3:26-36. [44] Haller I. Covalently Attached Organic Monolayers on Semiconductor Surfaces. J Am Chem Soc 1978;100:8050-5. [45] Sellers H, Ulman A, Shnidman Y, Eilers JE. Structure and Binding of Alkanethiolates on Gold and Silver Surfaces - Implications for Self-Assembled Monolayers. J Am Chem Soc 1993;115:9389-401. [46] Karpovich DS, Blanchard GJ. Direct Measurement of the Adsorption-Kinetics of Alkanethiolate Self-Assembled Monolayers on a Microcrystalline Gold Surface. Langmuir 1994;10:3315-22. [47] Walker AV, Tighe TB, Cabarcos OM, Reinard MD, Haynie BC, Uppili S, The dynamics of noble metal atom penetration through methoxy-terminated alkanethiolate monolayers. J Am Chem Soc 2004;126:3954-63. [48] Laibinis PE, Whitesides GM. Self-Assembled Monolayers of N-Alkanethiolates on Copper Are Barrier Films That Protect the Metal against Oxidation by Air. J Am Chem Soc 1992;114:9022-8. [49] Toworfe GK, Composto RJ, Shapiro IM, Ducheyne P. Nucleation and growth of calcium phosphate on amine-, carboxyl- and hydroxyl-silane self-assembled monolayers. Biomaterials 2006;27:631-42. [50] Singh RP, Way JD, Dec SF. Silane modified inorganic membranes: Effects of silane surface structure. Journal of Membrane Science 2005;259:34-46. [51] Hanson EL, Schwartz J, Nickel B, Koch N, Danisman MF. Bonding self-assembled, compact organophosphonate monolayers to the native oxide surface of silicon. J Am Chem Soc 2003;125:16074-80. [52] Neves BRA, Salmon ME, Russell PE, Troughton EB. Thermal stability study of self-assembled monolayers on mica. Langmuir 2000;16:2409-12. [53] Pourbaix M. Atlas d'Equilibres Electrochimiques. Paris1963. p. 139. [54] Yu JC, Xu AW, Zhang LZ, Song RQ, Wu L. Synthesis and characterization of porous magnesium hydroxide and oxide nanoplates. Journal of Physical Chemistry B 2004;108:64-70. [55] Yan CL, Xue DF, Zou LJ, Yan XX, Wang W. Preparation of magnesium hydroxide nanoflowers. Journal of Crystal Growth 2005;282:448-54. [56] Chen JM, Lin L, Song YH, Shao L. Influence of KOH on the hydrothermal modification of Mg(OH)2 crystals. Journal of Crystal Growth 2009;311:2405-8. [57] Xiang L, Jin YC, Jin Y. Hydrothermal formation of dispersive Mg(OH)(2) particles in NaOH solution. Transactions of Nonferrous Metals Society of China 2004;14:370-5. [58] Marcinko S, Fadeev AY. Hydrolytic stability of organic monolayers supported on TiO2 and ZrO2. Langmuir 2004;20:2270-3. [59] Pechy P, Rotzinger FP, Nazeeruddin MK, Kohle O, Zakeeruddin SM, Humphrybaker R, Preparation of Phosphonated Polypyridyl Ligands to Anchor Transition-Metal Complexes on Oxide Surfaces - Application for the Conversion of Light to Electricity with Nanocrystalline Tio2 Films (Pg 65, 1995). Journal of the Chemical Society-Chemical Communications 1995:1093-. [60] Li JG, Ikegami T, Lee JH, Mori T, Yajima Y. Synthesis of Mg-Al spinel powder via precipitation using ammonium bicarbonate as the precipitant. Journal of the European Ceramic Society 2001;21:139-48. [61] 陳欣蘋. 顯微組織對壓鑄AZ91D鎂合金之腐蝕行為影響研究: NCKU; 2002. [62] Sun TL, Wang GJ, Feng L, Liu BQ, Ma YM, Jiang L, Reversible switching between superhydrophilicity and superhydrophobicity. Angewandte Chemie-International Edition 2004;43:357-60. [63] Ishizaki T, Hieda J, Saito N, Saito N, Takai O. Corrosion resistance and chemical stability of super-hydrophobic film deposited on magnesium alloy AZ31 by microwave plasma-enhanced chemical vapor deposition. Electrochimica Acta 2010;55:7094-101. [64] Ishizaki T, Teshima K, Masuda Y, Sakamoto M. Liquid phase formation of alkyl- and perfluoro-phosphonic acid derived monolayers on magnesium alloy AZ31 and their chemical properties. Journal of Colloid and Interface Science 2011;360:280-8. [65] Liu M, Zanna S, Ardelean H, Frateur I, Schmutz P, Song GL, A first quantitative XPS study of the surface films formed, by exposure to water, on Mg and on the Mg-Al intermetallics: Al3Mg2 and Mg17Al12. Corrosion Science 2009;51:1115-27. [66] 陳國寧. 利用有機-無機混成法製備金屬防蝕薄膜之研究: 國立中央大學; 2005. [67] Zhang DQ, He XM, Cai QR, Gao LX, Kim GS. Arginine self-assembled monolayers against copper corrosion and synergistic effect of iodide ion. Journal of Applied Electrochemistry 2009;39:1193-8. [68] Wang J, Li DD, Liu Q, Yin X, Zhang Y, Jing XY, Fabrication of hydrophobic surface with hierarchical structure on Mg alloy and its corrosion resistance. Electrochimica Acta 2010;55:6897-906. [69] Yang L, Zhang EL. Biocorrosion behavior of magnesium alloy in different simulated fluids for biomedical application. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 2009;29:1691-6. [70] Mordike BL, Ebert T. Magnesium - Properties - applications - potential. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2001;302:37-45. [71] Lin JK, Uan JY, Wu CP, Huang HH. Direct growth of oriented Mg-Fe layered double hydroxide (LDH) on pure Mg substrates and in vitro corrosion and cell adhesion testing of LDH-coated Mg samples. J Mater Chem 2011;21:5011-20. [72] Bush KA, Driscoll PF, Soto ER, Lambert CR, McGimpsey WG, Pins GD. Designing tailored biomaterial surfaces to direct keratinocyte morphology, attachment, and differentiation. J Biomed Mater Res A 2009;90A:999-1009. [73] Xu LC, Siedlecki CA. Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials 2007;28:3273-83. [74] Sigal GB, Mrksich M, Whitesides GM. Effect of surface wettability on the adsorption of proteins and detergents. J Am Chem Soc 1998;120:3464-73. [75] Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006;27:2907-15.
|