跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/01 14:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳照臨
研究生(外文):Chao-LinChen
論文名稱:體內原位力學刺激對於管狀組織成熟的影響 – 組織工程血管上的啟示
論文名稱(外文):Effects of In Situ Mechanical Stimuli on the Maturation of Tubular tissue - Implications for Tissue-Engineered Blood Vessels
指導教授:胡晉嘉
指導教授(外文):Jin-Jia Hu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生物醫學工程學系
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:52
中文關鍵詞:組織工程血管力學測試順應性爆破壓縫線留置張力
外文關鍵詞:Tissue-engineered blood vesselsMechanical testComplianceBurst pressureSuture retention force
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
組織工程血管經過數十年的演進至今, 對於小口徑(〈6mm)的需求至今仍然沒有答案。傳統高分子合成之人工血管如PTFE (Polytetrafluoroethylene)、PET(Polyethylene teraphthalate)等材質已廣泛被運用於醫療中, 植入人體使用。但對血管而言, 異物反應(foreign body reaction)以及順應性差異(compliance mismatch)導致合成材質血管在小口徑(〈6mm)植入的表現差強人意, 因而導致其運用性的限制。另一方面, 製造組織工程血管的方式主要包括使用可降解支架(biodegradable scaffold)、細胞以及胞外基質ECM(extracellular matrix)在體外做培養 ; 近年來學界搭配生物反應器(bioreactor)以模擬體內環境的方式在體外做細胞培養, 以期能生長出更理想的組織工程血管,並已有令人振奮的結果。本實驗繼承上述前人研究成果, 進一步探討力學刺激對於生物組織的影響, 並且使用客製管狀組織力學測試機台來測量順應性、爆破壓以及縫線留置張力, 期望能為小口徑人工血管帶來新希望。
After decades of efforts, there is still a lack for ideal blood vessel substitute for those internal diameter less than 6mm. Conventional synthetic polymers like PTFE(Polytetrafluoroethylene), PET(Polyethylene teraphthalate) have been popularly applied as medical implantation. But for small blood vessel(〈6mm) applications, their functions are still enormously hampered by foreign body reaction and compliance mismatch. On the other side, tissue-engineered blood vessels are made mainly by culturing cells on biodegradable scaffold and ECM(extra-cellular matrix) in vitro, while bioreactor, a device to simulate physical hemodynamic condition in vitro, has gained its popularity in recent researches with promising results. This study is based on aforementioned footsteps and will look into the effect of mechanical stimulation on biological tissues. We use a custom-made mechanical tester to measure the compliance, burst pressure and suture retention force of tubular tissues, aiming to bring a new hope for small caliber tissue-engineered blood vessels.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第1章 緒論 1
1-1前言 1
1-2簡介人工血管發展 2
1-3 Biotube – 生物體內生成的血管移植物 4
1-4機械刺激對於生物組織的影響 5
1-5體外動態培養組織工程血管 6
1-6研究動機與目的 7
第2章 材料與方法 9
2-1材料 9
2-2實驗設備 9
2-3實驗流程 11
2-4動物實驗步驟 11
2-5組織管力學測試 13
2-6組織切片及染色 14
2-7 collagen比色軟體操作 15
2.8統計方法 16
第3章 結果 18
3-1組織管生長情形及力學測試概述 18
3-2位置差異對於各參數的影響 20
3-3同大鼠之配對比較 21
3-4各部位的參數相關性 25
3-5 配對組織染色(Masson trichrome) 30
3-6部份體內組織管生長情形 38
第四章 討論 39
4-1力學測試 39
4-2位置 40
4-3力學性質 42
4-4 Compliance, collagen and wall thickness 43
4-5 Collagen 及 力學強度 44
4-6洩漏 45
4-7生長率 46
4-8組織工程應用 46
第5章 結論 48
參考文獻 49

表目錄
表 1 描述性統計 18
表 2位置差異對於各參數的影響 20
表 3同大鼠之配對比較(1) 21
表 4同大鼠之配對比較(2) 22
表 5同大鼠之配對比較(3) 22
表 6同大鼠之配對比較(4) 23
表 7 相關性(1) 25
表 8 相關性(2) 26
表 9 相關性(3) 27
表 10 相關性(4) 28

圖目錄
圖 1 力學測試機台 10
圖 2 比色軟體操作 15
圖 3 比色軟體操作 16
圖 4 配對組織染色(1) 30
圖 5 配對組織染色(1) 30
圖 6 配對組織染色(2) 31
圖 7 配對組織染色(2) 31
圖 8 配對組織染色(3) 32
圖 9 配對組織染色(3) 32
圖 10 配對組織染色(4) 33
圖 11 配對組織染色(4) 33
圖 12 配對組織染色(5) 34
圖 13 配對組織染色(5) 34
圖 14 配對組織染色(6) 35
圖 15 配對組織染色(6) 35
圖 16 配對組織染色(7) 36
圖 17 配對組織染色(7) 36
圖 18 配對組織染色(7) 36
圖 19 配對組織染色(8) 37
圖 20配對組織染色(8) 37
圖 21 配對組織染色(8) 37
圖 22 組織照片(1) 38
圖 23 組織照片(2) 38




1.Teebken, O.E. & Haverich, A. Tissue engineering of small diameter vascular grafts. European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery 23, 475-485 (2002).
2.Daly, C.D., Campbell, G.R., Walker, P.J. & Campbell, J.H. In vivo engineering of blood vessels. Frontiers in bioscience : a journal and virtual library 9, 1915-1924 (2004).
3.Peirce, E.C., 2nd. Autologous tissue tubes for aortic grafts in dogs. Surgery 33, 648-657 (1953).
4.Eiken, O. Autogenous connective tissue tubes for replacement of small artery defects. A preliminary report of an experimental study in dogs. Acta chirurgica Scandinavica 120, 47-50 (1960).
5.Eiken, O. & Norden, G. Bridging small artery defects in the dog with in situ preformed autologous connective tissue tubes. Acta chirurgica Scandinavica 121, 90-102 (1961).
6.Schilling, J.A., Shurley, H.M., Joel, W., White, B.N. & Bradford, R.H. ABDOMINAL AORTIC GRAFTS: USE OF IN VIVO STRUCTURED AUTOLOGOUS AND HOMOLOGOUS FIBROCOLLAGENOUS TUBES. Annals of surgery 159, 819-828 (1964).
7.Sparks, C.H. Silicone mandril method for growing reinforced autogenous femoro-popliteal artery grafts in situ. Annals of surgery 177, 293-300 (1973).
8.Hallin, R.W. Complications with the mandril-grown (Sparks) dacron arterial graft. The American surgeon 41, 550-554 (1975).
9.Hallin, R.W. & Sweetman, W.R. The Sparks' mandril graft. A seven year follow-up of mandril grafts placed by Charles H. Sparks and his associates. American journal of surgery 132, 221-223 (1976).
10.Kretschmer, G., Polterauer, P., Wagner, O. & Piza, F. [Sparks grafts as arterial substitutes in the femoro-popliteal region with a postoperative follow-up of up to 54 months]. Helvetica chirurgica acta 48, 243-250 (1981).
11.Ryan, G.B., et al. Myofibroblasts in an avascular fibrous tissue. Laboratory investigation; a journal of technical methods and pathology 29, 197-206 (1973).
12.Campbell, G.R. & Ryan, G.B. Origin of myofibroblasts in the avascular capsule around free-floating intraperitoneal blood clots. Pathology 15, 253-264 (1983).
13.Campbell, J.H., Efendy, J.L. & Campbell, G.R. Novel vascular graft grown within recipient's own peritoneal cavity. Circulation research 85, 1173-1178 (1999).
14.Nakayama, Y., Ishibashi-Ueda, H. & Takamizawa, K. In vivo tissue-engineered small-caliber arterial graft prosthesis consisting of autologous tissue (biotube). Cell transplantation 13, 439-449 (2004).
15.Chue, W.L., et al. Dog peritoneal and pleural cavities as bioreactors to grow autologous vascular grafts. Journal of vascular surgery : official publication, the Society for Vascular Surgery [and] International Society for Cardiovascular Surgery, North American Chapter 39, 859-867 (2004).
16.Vranken, I., De Visscher, G., Lebacq, A., Verbeken, E. & Flameng, W. The recruitment of primitive Lin(-) Sca-1(+), CD34(+), c-kit(+) and CD271(+) cells during the early intraperitoneal foreign body reaction. Biomaterials 29, 797-808 (2008).
17.Le, S.J., et al. Gene expression profile of the fibrotic response in the peritoneal cavity. Differentiation; research in biological diversity 79, 232-243 (2010).
18.Mooney, J.E., et al. Cellular plasticity of inflammatory myeloid cells in the peritoneal foreign body response. The American journal of pathology 176, 369-380 (2010).
19.Song, L., Wang, L., Shah, P.K., Chaux, A. & Sharifi, B.G. Bioengineered vascular graft grown in the mouse peritoneal cavity. Journal of vascular surgery : official publication, the Society for Vascular Surgery [and] International Society for Cardiovascular Surgery, North American Chapter 52, 994-1002, 1002 e1001-1002 (2010).
20.Bregman, D. & Wolinsky, H. Autogenous vascular replacements induced by a subcutaneous pulsatile system. The Journal of surgical research 16, 624-631 (1974).
21.Leung, D.Y., Glagov, S. & Mathews, M.B. Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science (New York, N.Y.) 191, 475-477 (1976).
22.Sumpio, B.E., Banes, A.J., Link, W.G. & Johnson, G., Jr. Enhanced collagen production by smooth muscle cells during repetitive mechanical stretching. Archives of surgery (Chicago, Ill. : 1960) 123, 1233-1236 (1988).
23.Kim, B.S., Nikolovski, J., Bonadio, J. & Mooney, D.J. Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nature biotechnology 17, 979-983 (1999).
24.Niklason, L.E., et al. Functional arteries grown in vitro. Science (New York, N.Y.) 284, 489-493 (1999).
25.Solan, A., Mitchell, S., Moses, M. & Niklason, L. Effect of pulse rate on collagen deposition in the tissue-engineered blood vessel. Tissue engineering 9, 579-586 (2003).
26.Isenberg, B.C. & Tranquillo, R.T. Long-term cyclic distention enhances the mechanical properties of collagen-based media-equivalents. Annals of biomedical engineering 31, 937-949 (2003).
27.Huang, H., et al. Differentiation from embryonic stem cells to vascular wall cells under in vitro pulsatile flow loading. Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs 8, 110-118 (2005).
28.Huang, H., et al. In vitro maturation of biotube vascular grafts induced by a 2-day pulsatile flow loading. Journal of biomedical materials research. Part B, Applied biomaterials 91, 320-328 (2009).
29.Zhang, Z.X., et al. In vitro study of endothelial cells lining vascular grafts grown within the recipient's peritoneal cavity. Tissue engineering. Part A 14, 1109-1120 (2008).
30.Hu, J.-J., Chao, W.-C., Lee, P.-Y. & Huang, C.-H. Construction and characterization of an electrospun tubular scaffold for small-diameter tissue-engineered vascular grafts: A scaffold membrane approach. Journal of the Mechanical Behavior of Biomedical Materials.
31.Campbell, G.R., et al. The peritoneal cavity as a bioreactor for tissue engineering visceral organs: bladder, uterus and vas deferens. Journal of tissue engineering and regenerative medicine 2, 50-60 (2008).
32.Cao, Y., et al. Engineering tissue tubes using novel multilayered scaffolds in the rat peritoneal cavity. Journal of biomedical materials research. Part A 87, 719-727 (2008).
33.Mutsaers, S.E. Mesothelial cells: their structure, function and role in serosal repair. Respirology (Carlton, Vic.) 7, 171-191 (2002).
34.Armentano, R.L., et al. Assessment of elastin and collagen contribution to aortic elasticity in conscious dogs. The American journal of physiology 260, H1870-1877 (1991).
35.Dahl, S.L., Rhim, C., Song, Y.C. & Niklason, L.E. Mechanical properties and compositions of tissue engineered and native arteries. Annals of biomedical engineering 35, 348-355 (2007).
36.Konig, G., et al. Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials 30, 1542-1550 (2009).
37.McAllister, T.N., et al. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 373, 1440-1446 (2009).
38.Inoguchi, H., et al. Mechanical responses of a compliant electrospun poly(l-lactide-co-ε-caprolactone) small-diameter vascular graft. Biomaterials 27, 1470-1478 (2006).
39.Hong, Y., et al. A small diameter, fibrous vascular conduit generated from a poly(ester urethane)urea and phospholipid polymer blend. Biomaterials 30, 2457-2467 (2009).
40.Armentano, R.L., Barra, J.G., Levenson, J., Simon, A. & Pichel, R.H. Arterial wall mechanics in conscious dogs. Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior. Circulation research 76, 468-478 (1995).
41.Syedain, Z.H., Weinberg, J.S. & Tranquillo, R.T. Cyclic distension of fibrin-based tissue constructs: evidence of adaptation during growth of engineered connective tissue. Proceedings of the National Academy of Sciences of the United States of America 105, 6537-6542 (2008).
42.Solan, A., Dahl, S.L. & Niklason, L.E. Effects of mechanical stretch on collagen and cross-linking in engineered blood vessels. Cell transplantation 18, 915-921 (2009).
43.Patel, A., Fine, B., Sandig, M. & Mequanint, K. Elastin biosynthesis: The missing link in tissue-engineered blood vessels. Cardiovascular research 71, 40-49 (2006).
44.Kakisis, J.D., Liapis, C.D., Breuer, C. & Sumpio, B.E. Artificial blood vessel: the Holy Grail of peripheral vascular surgery. Journal of vascular surgery : official publication, the Society for Vascular Surgery [and] International Society for Cardiovascular Surgery, North American Chapter 41, 349-354 (2005).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top