跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/05 00:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李岳峯
研究生(外文):Yueh-FengLee
論文名稱:使用手機之拇指腕掌關節之接觸力學
論文名稱(外文):In Vitro Contact Mechanics of Thumb Carpometacarpal Joint in Using Smartphone
指導教授:蘇芳慶蘇芳慶引用關係
指導教授(外文):Fong-Chin Su
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生物醫學工程學系
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:61
中文關鍵詞:腕掌關節接觸位移旋轉
外文關鍵詞:carpometacarpalcontact patterntranslationrotation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
手拇指腕掌關節退化性關節炎是為人體上肢常見的關節炎之一,儘管有不少文獻針對手拇指腕掌關節的生物力學特性做研究,但仍有許多不足之處。再者,現行的多種治療方法都有其缺點,主要因為現今對於手拇指腕掌關節生物力學特性沒有明確瞭解,若能了解手拇指腕掌關節的生物力學特性,對於治療方式或是復健程序都有相當大的幫助,所以本篇實驗目的要探討拇指腕掌關節的基本接觸特性。
本研究以大體實驗去模擬日常生活常見的拇指往掌側施力的抓握及按壓動作,給予不同肌肉不同的負載,以便模擬出不同位置的拇指按壓手機的動作以及不同力量的按壓動作有何差異性,利用荷重計以及客製化支架用以量測及模擬動作,利用平板代替抓握物品,並將按壓範圍由無名指向橈骨側延伸,進一步模擬手握手機的動作範圍的按壓,再以此情況下的三維模型去計算在不同力量負載下拇指腕掌關節的接觸性質以及旋轉位移量化描述關節特性。並進一步量測大體樣本之軟骨厚度,以及利用雙曲拋物線之方程式去表示軟骨面之曲率分布情形,希望可提供人工關節製作的資料。
從結果上來看,當拇指按壓在本研究所定義之按壓位置四時,拇指腕掌關節接觸情形可能延伸到大多角骨的尺骨前側的部位,是屬於較容易發生骨關節炎的地方,而我們也發現在此按壓姿勢下拇指掌骨的內旋角度最大,最容易造成關節面上的應力集中,屬於較不穩定的接觸情形。也就是說,若是按壓位置越接近手機螢幕的底部,也就是越靠近尺骨方向,對關節的傷害就可能越大。
而在軟骨厚度方面,主要發現拇指掌骨在掌側及橈骨側有較薄軟骨,而大多角骨則在掌側及橈骨側有較薄的軟骨。在關節曲率部分也發現掌側到背側的曲率較小的大體樣本在按壓位置一的時候,關節面接觸位置會較往背側移動。顯示骨頭的幾何形狀對於對抗關節的滑動有一定的影響。

The osteoarthritis (OA) of thumb carpometacarpal (CMC) joint is one of the most common diseases in human upper extremity. Although there are some researches about thumb movement and biomechanical analysis of CMC joint, but it is still insufficient. Moreover, various treatments for CMC OA were unsatisfactory which is caused by the insufficient knowledge of biomechanics for thumb CMC joint. Developing treatments or rehabilitation procedural would be helpful if we can know more biomechanics property of carpometacarpal (CMC) joint in different situations. Therefore, the purpose of this study is to investigate basic contact modes of thumb CMC joint.
This study used cadaveric experiments to investigate contact mechanics of thumb CMC joint by simulated the grasp or pinch posture which press on palmar side by thumb. The muscles were given different loading to simulate thumb posture in different positions and different press forces, and then investigated the contact pattern in different situation. This study used a plate to simulate the grasp objects, and extended press position to radial side of ring finger to simulate the range of motion when grasp something. Three-dimensional biomechanical model was developed to calculate the motion pattern. I calculated the translation and rotation of CMC joint under various loadings. This study also measured the cartilage thickness of cadaver specimen and used the equation of hyperbolic paraboloid to describe the curvature of articular surface.
From our result, when thumb pressed at press position four, the contact pattern on CMC joint might extend to voiar-ulnar side of trapezium. This region had higher prevalence of CMC OA disease. I also found the metacarpal bone had higher internal rotation angle at this posture which might lead to joint incongruity with localized stress peaks of the joint. This posture had unstable joint contact situation. That is, if the press position near ulnar side, it might have higher possibility to cause joint damage.
From data of cartilage thickness, I found the thinner cartilages are usually presented on volar and ulnar side on metacarpal and trapezium cartilage surface. I also found when thumb pressed at position one, the specimen who had small curvature on dorsal-volar direction might contact at more closed to dorsal side of trapezium. This result indicated that the geometric of bone had ability to against joint gliding.

Contents
中文摘要 I
Abstract III
致謝 V
Contents VI
List of Table VIII
List of Figure IX
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 The anatomy and biomechanics of the thumb carpometacarpal joint 1
1.3 The osteoarthritis of the first carpometacarpal joint 6
1.4 Literature review 8
1.5 Purpose 10
Chapter 2 Materials and Methods 11
2.1 Specimen and equipment 12
2.2 Experiment procedure 14
2.2.1 Muscle simulation 14
2.2.2 CT image acquisition 16
2.2.3 Silver paint on articular surface 17
2.3 Data analysis 19
2.3.1 Three dimensional model building 19
2.3.2 Contact region 20
2.3.3 Cartilage thickness measurement and curvature fitting 21
2.3.4 Model pre-stage preparation in motion analysis 23
2.3.5 Coordination system of trapezium and metacarpal 26
Chapter 3 Results 31
3.1 Contact patterns 31
3.2 Motion analysis of carpometacapal joint 38
3.3 Tendon force requirement on press postures 40
3.4 Cartilage thickness 43
3.5 Surface fitting 45
Chapter 4 Discussion 48
4.1 Contact region on each posture 48
4.2 Motion analysis in each press posture 50
4.3 Tendon force contribution on each posture 52
4.4 Cartilage thickness distribution 55
4.5 Surface fitting on cartilage 56
4.6 Limitation 57
Chapter 5 Conclusion 58
References 60


List of Table
Table 3-1 Average tendon force on each press situation 42
Table 3-2 the parameters “A” and “B” on three specimens and the average value of the equation “z=Ax2-By2” 45


List of Figure
Figure 1-1 Palmar View of the Right Hand 2
Figure 1-2: (a)The movement of the CMC joint[3] (b) Diagram of the mechanical feature of the CMC joint 3
Figure 1-3 A distal view of a 3-D model of a right first intermetacarpal joint[7] 5
Figure 1-4 The ligaments of CMC joint[5] 6
Figure 1-5 (a) Volar aspect of hand muscles (b) Dorsal aspect of hand 6
Figure 1-6 Age-specific prevalence rates[12] 7
Figure 1-7 The definition of nine anatomic regions of the trapezium and metacarpal[20] 9
Figure 2-1 Flow chart 11
Figure 2-2 customer design frame 12
Figure 2-3 (a) SLB-50 loadcell 13
Figure 2-3 (b) The size of SLB-50 (unit: inch; Transducer Techniques, Inc) 14
Figure 2-4 Muscle simulation setting[20] 15
Figure 2-5 (a) Plastic board and plastic block (b) Pressing positions on the board 16
Figure 2-6 CT image 17
Figure 2-7 Silver paint on the trapezium (left) and metacarpal (right) 18
Figure 2-8 CT image of the trapezium joint surface with silver paint 18
Figure 2-9 The shape and equation of hyperbolic paraboloid 19
Figure 2-10 three-dimensional model of CMC joint 20
Figure 2-11 Distances between the the trapezial and metacarpal saddle surfaces 21
Figure 2-12 Cartilage thickness on the metacarpal and trapezium 22
Figure 2-13 Articular surface fitting with the hyperbolic paraboloid surface 23
Figure 2-14 The raw data of three dimensional models 24
Figure 2-15 The superposition of trapezium 25
Figure 2-16 The inter face of software Visualization 3D 26
Figure 2-17 The anatomical landmarks of Cheze’s study on (a) metacarpal and (b) trapezium[23] 27
Figure 2-18 Landmarks for the metacarpal, MCB, MMDT and MLDT and for trapezium, TCTS, TRDT, TUDT and TSTJ. 28
Figure 2-19 SCS of trapezium and metacarpal 30
Figure 3-1 Distal view of the trapezium 31
Figure 3-2 Contact pattern on one specimen at press posture one (a) Thumb posture (b) Contact pattern at the unloading condition (c) Contact pattern at the 200g loading condition (d) Contact pattern at the 400g loading condition 33
Figure 3-3 Contact pattern on one specimen at press posture two (a) Thumb posture (b) Contact pattern at the unloading condition (c) Contact pattern at the 200g loading condition (d) Contact pattern at the 400g loading condition 33
Figure 3-4 Contact pattern on one specimen at press posture three (a) Thumb posture (b) Contact pattern at the unloading condition (c) Contact pattern at the 200g loading condition (d) Contact pattern at the 400g loading condition 34
Figure 3-5 Contact pattern on one specimen at press posture four (a) Thumb posture (b) Contact pattern at the unloading condition (c) Contact pattern at the 200g loading condition(d) Contact pattern at the 400g loading condition 34
Figure 3-6 Contact pattern on one specimen at press posture one (a) Thumb posture (b) Contact pattern at the unloading condition (c) Contact pattern at the 200g loading condition (d) Contact pattern at the 400g loading condition 36
Figure 3-7 Contact pattern on one specimen at press posture two (a) Thumb posture (b) Contact pattern at the unloading condition (c) Contact pattern at the 200g loading condition (d) Contact pattern at the 400g loading condition 36
Figure 3-8 Contact pattern on one specimen at press posture three (a) Thumb posture (b) Contact pattern at the unloading condition (c) Contact pattern at the 200g loading condition (d) Contact pattern at the 400g loading condition 37
Figure 3-9 Contact pattern on one specimen at press posture four (a) Thumb posture (b) Contact pattern at the unloading condition (c) Contact pattern at the 200g loading condition (d) Contact pattern at the 400g loading condition 37
Figure 3-10 The average total displacement of every press posture and press loading 38
Figure 3-11 The average Flexion (+) / Extension (-), Abduction (-) / Adduction (+) and Internal (+) / External (-) angle on every press situation (a) position 1 (b) position 2 (c) position 3 (d) position 4 39
Figure 3-12 Contribution of each muscle on every press situation (take total force on every press situation as one respectively) 42
Figure 3-13 Cartilage thickness of first specimen on (a) metacarpal and (b) trapezium and second specimen on (c) metacarpal and (d) trapezium and third specimen on (e) metacarpal and (f) trapezium 44
Figure 3-14 The fitting surface and cartilage surface 46
Figure 3-15 Surface fitting error of the first specimen on (a) metacarpal and (b) trapezium and second specimen on (c) metacarpal and (d) trapezium and third specimen on (e) metacarpal and (f) trapezium 47
Figure 4-1 3D bone model location on each posture (aligned to the trapezium bone) 49
Figure 4-2 Contact pattern from pressing positions 1 to 4 at 200g press loading 49
Figure 4-3 (a) contact region on pure flexion[20] (b)(c)(d) contact region on press position four 50
Figure 4-4 contact pattern and rotation angle for two specimens at press position four 52
Figure 4-5 Contact pattern on the metacarpal at press position four 54
Figure 4-6 The major muscle force direction on press positions one and two 54
Figure 4-7 The major muscle force direction on press positions three and four 54
Figure 4-8 cartilage thickness for all specimens, showing the most frequent sites of thin cartilage on the trapezium and metacarpal. 55
Figure 4-9 Contact region on press position one 56

References
1.Amy K. Karlson, B.B.B., Understanding Single-Handed Mobile Device Interaction. 2006.
2.Cooney, W.P. and E.Y.S. Chao, Biomechanical Analysis of Static Forces in Thumb during Hand Function. Journal of Bone and Joint Surgery-American Volume, 1977. 59(1): p. 27-36.
3.Cooney, W.P., 3rd, et al., The kinesiology of the thumb trapeziometacarpal joint. J Bone Joint Surg Am, 1981. 63(9): p. 1371-81.
4.Colman, M., D.P. Mass, and L.F. Draganich, Effects of the deep anterior oblique and dorsoradial ligaments on trapeziometacarpal joint stability. J Hand Surg Am, 2007. 32(3): p. 310-7.
5.Bettinger, P.C., et al., An anatomic study of the stabilizing ligaments of the trapezium and trapeziometacarpal joint. J Hand Surg Am, 1999. 24(4): p. 786-98.
6.Pellegrini, V.D., Jr., C.W. Olcott, and G. Hollenberg, Contact patterns in the trapeziometacarpal joint: the role of the palmar beak ligament. J Hand Surg Am, 1993. 18(2): p. 238-44.
7.Nanno, M., et al., Three-dimensional analysis of the ligamentous attachments of the first carpometacarpal joint. J Hand Surg Am, 2006. 31(7): p. 1160-70.
8.Smutz, W.P., et al., Mechanical advantage of the thumb muscles. Journal of Biomechanics, 1998. 31(6): p. 565-570.
9.Pearlman, J.L., S.S. Roach, and F.J. Valero-Cuevas, The fundamental thumb-tip force vectors produced by the muscles of the thumb. Journal of Orthopaedic Research, 2004. 22(2): p. 306-312.
10.Bettinger, P.C., et al., Material properties of the trapezial and trapeziometacarpal ligaments. J Hand Surg Am, 2000. 25(6): p. 1085-95.
11.Armstrong, A.L., J.B. Hunter, and T.R. Davis, The prevalence of degenerative arthritis of the base of the thumb in post-menopausal women. J Hand Surg Br, 1994. 19(3): p. 340-1.
12.Haara, M.M., et al., Osteoarthritis in the carpometacarpal joint of the thumb. Prevalence and associations with disability and mortality. J Bone Joint Surg Am, 2004. 86-A(7): p. 1452-7.
13.Xu, L., et al., Topography of the osteoarthritic thumb carpometacarpal joint and its variations with regard to gender, age, site, and osteoarthritic stage. J Hand Surg Am, 1998. 23(3): p. 454-64.
14.Kovler, M., et al., The human first carpometacarpal joint: osteoarthritic degeneration and 3-dimensional modeling. J Hand Ther, 2004. 17(4): p. 393-400.
15.Pelligrini, V.D., Jr., Osteoarthritis of the trapeziometacarpal joint: the pathophysiology of articular cartilage degeneration. II. Articular wear patterns in the osteoarthritic joint. J Hand Surg Am, 1991. 16(6): p. 975-82.
16.Pellegrini, V.D., Osteoarthritis at the Base of the Thumb. Orthopedic Clinics of North America, 1992. 23(1): p. 83-102.
17.Pellegrini, V.D., C.W. Olcott, and G. Hollenberg, Contact Patterns in the Trapeziometacarpal Joint - the Role of the Palmar Beak Ligament. Journal of Hand Surgery-American Volume, 1993. 18A(2): p. 238-244.
18.Pellegrini, V.D., R.L. Smith, and C.W. Ku, Pathobiology of Articular-Cartilage in Trapeziometacarpal Osteoarthritis .2. Surface Ultrastructure by Scanning Electron-Microscopy. Journal of Hand Surgery-American Volume, 1994. 19A(1): p. 79-85.
19.Doerschuk, S.H., et al., Histopathology of the palmar beak ligament in trapeziometacarpal osteoarthritis. J Hand Surg Am, 1999. 24(3): p. 496-504.
20.Ateshian, G.A., et al., Contact areas in the thumb carpometacarpal joint. J Orthop Res, 1995. 13(3): p. 450-8.
21.Koff, M.F., et al., Sequential wear patterns of the articular cartilage of the thumb carpometacarpal joint in osteoarthritis. J Hand Surg Am, 2003. 28(4): p. 597-604.
22.Wu, G., et al., ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion--Part II: shoulder, elbow, wrist and hand. J Biomech, 2005. 38(5): p. 981-992.
23.Cheze, L., et al., A joint coordinate system proposal for the study of the trapeziometacarpal joint kinematics. Comput Methods Biomech Biomed Engin, 2009. 12(3): p. 277-82.
24.Marzke, M.W., et al., Three-dimensional quantitative comparative analysis of trapezial-metacarpal joint surface curvatures in human populations. J Hand Surg Am, 2012. 37(1): p. 72-6.
25.Matsuura, Y., N. Ogihara, and M. Nakatsukasa, A Method for Quantifying Articular Surface Morphology of Metacarpals Using Quadric Surface Approximation. International Journal of Primatology, 2010. 31(2): p. 263-274.
26.Marzke, M.W., et al., Comparative 3D quantitative analyses of trapeziometacarpal joint surface curvatures among living catarrhines and fossil hominins. Am J Phys Anthropol, 2010. 141(1): p. 38-51.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top