跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/24 10:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉柏毅
研究生(外文):Po-YiLiu
論文名稱:脊椎動態穩定系統DYNESYS與剛性固定器的穩定度探討
論文名稱(外文):Investigation of Stability of Spine Dynamic Stabilization System DYNESYS and Rigid Fixator
指導教授:張志涵張志涵引用關係
指導教授(外文):Chih-Han Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生物醫學工程學系
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:57
中文關鍵詞:動態脊椎內固定器脊椎退化剛性固定器
外文關鍵詞:Dynamic spine stabilization systemSpineDegenerationRigid fixator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:958
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:0
脊椎內固定器合併融合術,主要用於治療腰椎不穩定問題,但臨床文
獻指出使用融合術後,加速鄰近椎節之退化;因此,動態脊椎內固定器
DYNESYS 被開發出來解決此問題,以提供椎節間穩定度與保留些微關節活
動度。但臨床報告指出使用DYNESYS 後,手術節段的關節活動度與剛性固
定器是相似的,意即DYNESYS 的勁度仍舊太高,甚至在先前本實驗室的脊
椎實驗中,脊椎植入DYNESYS 後的勁度比植入剛性固定器後還要大,因此
本研究目的主要探討為何號稱脊椎動態穩定系統的DYNESYS 的勁度會與剛
性固定器相似,甚至大於剛性固定器。
基於一個體外實驗樣本的電腦斷層影像,利用逆向工程軟體創建出一
個三圍的有限元素模型。這個模型包括了脊椎椎體、 椎間盤與韌帶。本
次模擬所應用的負載條件與體外實驗的附載一致。本次的研究評估三個也
許會導致DYNESYS 不如預期的高剛度(stiffness)的可能因子: (1)脊椎測
試系統附載模式的影響(附載利用力矩以及是否承受軸向力); (2)剛性固
定器的桿子的擺設方向的影響(探討實驗執行上的錯誤);(3)在剛性固定
器植入後,骨釘鬆脫的影響(從實驗順序中的錯誤)。
基於在理想情況下模擬的結果,DYNESYS 動態穩定系統的剛度是如預
期的較剛性固定器低,與先前實驗結果為DYNESYS 的鋼度較剛性固定器高
的結果產生對比。經由應用上述的三個可能因子,可以確定以下結果: (1)
在實驗設置的負載條件,純力矩沒有承受軸向力的情形下,比起純力矩並
且有承受軸向力的情況,DYNESYS 的剛度將減小。但是在沒有承受軸向力
的附載條件下剛性固定器的剛度也會下降,這個結果指出,實驗的負載模
式也許不是導致DYNESYS 的剛度大於剛性固定器的原因。(2)剛性固定器
的桿子方向不當的擺設將會減少剛性固定器的剛度。儘管如此,減少的量
不足以造成剛性固定器的剛度比DYNESYS 還要低。(3) 經由減少骨釘周圍
骨頭的接合面積,模擬的結果顯示剛性固定器的剛度會減少。在一個擴孔
的模擬當中,經由減少接近螺釘孔周圍骨頭的材料特性,本次的模擬結果
也顯示剛性固定器的剛度會減少。經由這兩組模型模擬的結果建議,由於
在實驗當中椎弓螺釘的多次採用而造成的螺釘的鬆動可能會減少剛性固
定器的剛度。
Fusion with spinal internal fixator was used to treat instability of the lumbar spine. Clinical studies have indicated that the fusion may accelerate degeneration at adjacent levels. Therefore, Dynamic stabilization system (DYNESYS) was developed to solve this problem. This device provides spine stability and preserves certain ROM. However, according to some studies, the ROM of DYNESYS is similar with rigid fixator which means the DYNESYS still possess high stiffness. Some studies even indicated that DYNESYS stiffness was bigger than rigid fixator. This study investigated the possible reason why the stiffness of DYNESYS could be higher than expected.
Based on CT (computed tomography) images of an in-vitro experiment, reversed engineering approach was employed to create a three-dimensional finite element solid model. This model includes vertebra bone intervertebral disc and ligaments. Loading conditions matched the corresponding in-vitro experimental loading were applied on the simulation model. Three possible factors that might lead to the unexpected high stiffness of DYNESYS were evaluated: (1) The effect of loading mode (loaded with moment and with or without axial force) in test system; (2) The rod orientation effect in rigid fixator (error from experiment execution); (3) The screw loosing effect in rigid rod (error induced from experiment sequence)
Based on the simulated outcome at ideal condition, the stiffness of the DYNESYS system, as expected, is less than the rigid rod system and contrast to the experimental outcome in which the stiffness of DYNESYS is higher. By applying the above three factors, it can be identified that: (1) The load of experiment setup, pure moment without axial load, would decrease the stiffness of the DYNESYS, compared to the model with axial load. But this loading, without axial load, would also decrease the rigid fixator stiffness which indicated that the experimental loading mode would not be the factor to cause the stiffness of DYNESYS larger that rigid fixator. (2) Improper orientation of the rod would decrease the stiffness of a rigid fixator. However, the decreasing amount would not cause the stiffness of a rigid fixator less than the DYNESYS one. (3) By decreasing the bonding area between pedicle screw and bone hole on pedicle, the simulation shown that the stiffness of a rigid fixator could be decreased. A simulation of enlarged pedicle screw hole, by decreasing the bone property near the hole wall, also shown that the stiffness of a rigid fixator could be decreased. These two simulation models suggested that the loosing of the pedicle screw, due to the multiple purchases of the pedicle screw during experiment, could decrease the stiffness of the rigid fixator.

摘要II
AbstractIV
致謝VI
ContentsVII
Figure of ContentsIX
Table of contentsXI
Chapter 1 Introduction1
1.1 Motivation1
1.2 Background1
1.3 Introduction of Spinal Lesions and spinal fusion1
1.4 Introduce of Posterior Dynamic Stabilization System DYNESYS3
1.4.1 Introduce of Posterior Dynamic Stabilization System3
1.4.2 Introduce of Posterior Dynamic Neutrolization System DYNESYS5
1.4.3 Review of the literature in the biomechanics analysis of DYNESYS6
1.4.4 The Problem of DYNESYS8
1.5 The investigated in-vitro experiment9
1.6 Spine Tester Compensation11
1.7 Objective13
Chapter 2 Material and Method14
2.1 Finite element analysis15
2.1.1 Creating an anatomically realistic three-dimensional (3D) FE model of sheep L4-L5 motion segment15
2.1.1.1 Image Acquisition15
2.1.1.2 Image Segmentation16
2.1.1.3 3D Modelling17
2.1.2 Finite element Analysis19
2.1.3The model of intact spine implant DYNESYS22
2.1.4 The model of intact spine implant polyaxial pedicle screw device24
2.1.5 Boundary Condition and Loading Condition27
2.2 In vitro experiment test29
2.2.1 Specimen Preparation29
2.2.2 Surgical procedures29
2.2.3 Testing procedures30
Chapter 3: Result31
3.1 Comparing previously experiment extension angle data31
3.2 The experiment ROM data in this study32
3.3 Finite element Analysis33
3.3.1 Load condition33
3.3.2 DYNESYS (with space)35
3.3.2.1 The spacer-screw contact pressure35
3.3.2.2 Pedicle Screw Stress36
3.3.2.3 Comparing the extension angle37
3.3.3 DYNESYS without spacer38
3.3.3.1 Pedicle Screw Stress38
3.3.3.2 Comparing the extension angle39
3.3.4 Rigid fixator mechanics40
3.3.4.1 Comparing the extension angle40
3.3.4.2 Comparing extension angle of big and small contact area between pedicle screw and bone41
3.3.4.3 Comparing extension angle of change the bone material property model with intact model42
Chapter4: Discussion and conclusion43
4.1 Part1: Comparing results with previously study data43
4.1.1 Spine Pure Moment43
4.1.2 Comparing the Finite element analysis with experiment45
4.1.2.1 The effects of spacer in DYNESYS47
4.1.2.2 Comparing DYNESYS with rigid fixator48
4.1.2.3 Influence of Experiment Process and Stability of Rigid Fixator50
4.2 part2: discussion the finite element model assumption and limitation51
Chapter5 conclusion53
Reference54


1.Andersson, G.B., Epidemiological features of chronic low-back pain. Lancet, 1999. 354(9178): p. 581-5.
2.Weinstein, J.N., et al., United States' trends and regional variations in lumbar spine surgery: 1992-2003. Spine (Phila Pa 1976), 2006. 31(23): p. 2707-14.
3.Zucherman, J., et al., Clinical efficacy of spinal instrumentation in lumbar degenerative disc disease. Spine (Phila Pa 1976), 1992. 17(7): p. 834-7.
4.Brantigan, J.W., A. Neidre, and J.S. Toohey, The Lumbar I/F Cage for posterior lumbar interbody fusion with the variable screw placement system: 10-year results of a Food and Drug Administration clinical trial. Spine J, 2004. 4(6): p. 681-8.
5.Eule, J.M., R. Breeze, and G.W. Kindt, Bilateral partial laminectomy: a treatment for lumbar spinal stenosis and midline disc herniation. Surg Neurol, 1999. 52(4): p. 329-37; discussion 337-8.
6.Eck, J.C., S.C. Humphreys, and S.D. Hodges, Adjacent-segment degeneration after lumbar fusion: a review of clinical, biomechanical, and radiologic studies. Am J Orthop (Belle Mead NJ), 1999. 28(6): p. 336-40.
7.Ekman, P., et al., A prospective randomised study on the long-term effect of lumbar fusion on adjacent disc degeneration. Eur Spine J, 2009. 18(8): p. 1175-86.
8.Lee, C.K. and N.A. Langrana, Lumbosacral spinal fusion. A biomechanical study. Spine (Phila Pa 1976), 1984. 9(6): p. 574-81.
9.Hayashi, T., et al., Degenerative change in the adjacent segments to the fusion site after posterolateral lumbar fusion with pedicle screw instrumentation--a minimum 4-year follow-up. Fukuoka Igaku Zasshi, 2008. 99(5): p. 107-13.
10.Lee, C.S., et al., Risk factors for adjacent segment disease after lumbar fusion. Eur Spine J, 2009. 18(11): p. 1637-43.
11.Aiki, H., et al., Adjacent segment stenosis after lumbar fusion requiring second operation. J Orthop Sci, 2005. 10(5): p. 490-5.
12.Cho, K.S., et al., Risk factors and surgical treatment for symptomatic adjacent segment degeneration after lumbar spine fusion. J Korean Neurosurg Soc, 2009. 46(5): p. 425-30.
13.Zencica, P., et al., [Adjacent segment degeneration after lumbosacral fusion in spondylolisthesis: a retrospective radiological and clinical analysis]. Acta Chir Orthop Traumatol Cech, 2010. 77(2): p. 124-30.
14.Kim, D.H., J.F.P. Cammisa, and R.G. Fessler, Dynamic Reconstruction of the Spineed. New York: Thieme Medical Publishers,Inc, 2006.
15.Gmb, H.Z., Dynesys® L.I.S. Surgical technique booked. 2005.
16.Stoll, T.M., G. Dubois, and O. Schwarzenbach, The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system. Eur Spine J, 2002. 11 Suppl 2: p. S170-8.
17.Vishnubhotla, S., V.K. Goel, and M.N. Shaw, Kinematic analysis of dynamic stabilization systems for the lumbar spine. 52th ORS conference Chicago:USA, 2006: p. No. 1278.
18.Schilling, C., et al., The effect of design parameters of dynamic pedicle screw systems on kinematics and load bearing: an in vitro study. Eur Spine J, 2011. 20(2): p. 297-307.
19.Schmoelz, W., et al., Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech, 2003. 16(4): p. 418-23.
20.Delank, K.S., et al., How does spinal canal decompression and dorsal stabilization affect segmental mobility? A biomechanical study. Arch Orthop Trauma Surg, 2010. 130(2): p. 285-92.
21.Cheh, G., et al., Adjacent segment disease followinglumbar/thoracolumbar fusion with pedicle screw instrumentation: a minimum 5-year follow-up. Spine (Phila Pa 1976), 2007. 32(20): p. 2253-7.
22.Chen, C.S., et al., Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Med Eng Phys, 2001. 23(7): p. 483-91.
23.Plev, D. and J.C. Sutcliffe, Outcome and complications using a dynamic neutralization and stabilization pedicle screw system (DYNESYS): Is this a soft fusion?? The spine journal : official journal of the North American Spine Society, 2005. 5: p. S141-S2.
24.Cowin, S.C., Bone mechanics. 2nd ed. Boca Raton, FL: CRC Press. 1991: p. 97-159.
25.Pitzen, T., et al., A finite element model for predicting the biomechanical behaviour of the human lumbar spine. Control Eng Pract, 2002. 10: p. 83-90.
26.MatWeb MATERIAL PROPERTY DATA [database online]. Updated.
27.Chang TS, C.C., et al., A new multidirectional tester for the evaluation of spinal biomechanics. JMBE, 2009. 29(1): p. 7-13.
28.Huang, R.C., et al., Biomechanics of nonfusion implants. Orthop Clin North Am, 2005. 36(3): p. 271-80.
29.Nolan, J.P., Jr. and H.H. Sherk, Biomechanical evaluation of the extensor musculature of the cervical spine. Spine (Phila Pa 1976), 1988. 13(1): p. 9-11.
30.Niosi, C.A., et al., Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system: an in vitro study. Eur Spine J, 2006. 15(6): p. 913-22.
31.Niosi, C.A., et al., The effect of dynamic posterior stabilization on facet joint contact forces: an in vitro investigation. Spine (Phila Pa 1976), 2008. 33(1): p. 19-26.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top